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Problem of the gyroscopic stabilizer damping
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Abstract

The gyroscopic stabilization of the vibro-isolation system of an ambulance couch is analyzed. This paper follows
several previous papers, which concern the derivation of the complete system of appropriate differential equations
and some analyses were provided there, as well. It was supposed that mass matrix, stiffness matrix and gyroscope
impulse-moment remain constant and the stability of equilibrium state was solved according to different alterna-
tives of the damping and of the radial correction. Little known theorems of the stability were used there. With
respect to these theorems, vibro-isolation systems can be classified according to odd or even number of generalized
coordinates.
c© 2009 University of West Bohemia. All rights reserved.
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1. Introduction

The vibro-isolation of the couch for a terrain ambulance car (see fig. 1) is realized by pneu-
matic springs and controlled by hydraulic dampers. These vibro-isolation elements are placed
between the members of conducting space-mechanism (see fig. 2), which consists of the paral-
lelogram (for the elimination of vertical kinematic excitation), on the upper base of which the
Cardan suspension is placed (for the elimination of horizontal rotations). The complete system
of appropriate nonlinear differential equations was derived in [1], where the linearised case is
also mentioned. Further, the problem of the dependency of characteristic equation roots on
the general position of human body was solved in [2]. The velocity characteristics of dampers
were analysed in [3] and [4]. In [5] the authors solved possibilities of single and double internal
resonance. The main problem of human body vibro-isolation system lays in a decreasing of sus-
pension stiffness (see [6]). The comprehensive overview of all possibilities of the gyroscopic
stabilization using Cardan suspension was given in [7]. The dependencies of characteristic
equation roots on the gyroscope impulse-moment were solved there.

Fig. 1. Sprung ambulance couch
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Fig. 2. Scheme of conducting mechanism

The verification of possible applications of theorems for gyroscopic systems and also for
vibro-isolation systems with gyroscopic stabilizer are main aims of this paper.

2. Formulation of the problem

First of all, we identify a certain destabilizing effect of radial correction forces by the dynamic
analysis of the vibro-isolation system with two gyroscopic stabilizers (see fig. 2). It will be
necessary to consider this effect in the relation to damping forces and to define area of the
stability.

Equations describing system in fig. 1 were derived in [7] with angle coordinates: θ – the
angle of parallelogram arms, ϕ and ψ – angles of Cardan frames, ε and E – angles of precession
frames, γ and Γ – angles of self rotation of gyroscopes. Then we eliminate cyclic coordinates γ
and Γ and we denote �q = �q(ϕ, ψ, θ, ε, E) as the vector of position coordinates.

If we suppose small angles and small angle velocities, we can make a trigononometric and
power linearization and we can write corresponding system of equation in the matrix form

A�̈q + (B0 + B1(t) + G)�̇q + (C0 + C1(t) + K)�q = �E0 + �E1(t), (1)

where A is the symmetrical matrix of mass, B0 the diagonal matrix of damping, B1(t) the
damping matrix of parametric excitation, C0 the diagonal matrix of stiffness, C1(t) the stiffness
matrix of parametric excitation, �E0 the vector of static gravity forces and static moment of
pneumatic springs, �E1(t) the vector of external kinematic excitation, G the matrix of gyroscopic
effect and Kis the matrix of radial correction1.

The elements of the symmetrical mass matrix are functions of masses mj , inertia moments
Jij, length of parallelogram arm R etc. The elements of the diagonal stiffness matrix are func-
tions of pressure Pj, gravity forces, parameters of effective area S0i, S1i of the pneumatic springs
and of arms rpi of their moments. The elements of the diagonal damping matrix are functions
of steepness b1j , of damper velocity characteristics and of arms rT i of dampers moment.

1G. Ziegler made the classification of forces of different structure in [10]: Linear non-conservative forces with
antisymmetrical matrix of their coefficients were called “circulation forces”. However, Merkin in [9] proposed to
remain by a name “forces of radial correction”, used in the applied theory of gyroscopes. This term is used from
the first half of 20th century and has a physical substance: a gyroscope moves by their influence to its equilibrium
state by the shortest way.
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A11 = (mR + m4 + m5 + m6)R
2 + 4JRy,

A22 = J5y + J6y + m6(x
2
56 + z2

56 + 2x56xT6 + 2z56zT6),

A12 = R[m5(−xT5 cos ϑ0 − zT5 sin ϑ0) +

+ m6((−xT6 − x56) cosϑ0 + (−zT6 − z56) sin ϑ0)],

A33 = J6x, A13 = m6R cos ϑ0yT6,

A23 = −D6xy −m6x56yT6. (2)

Elements Ai,j correspond to original mass matrix (without gyroscopes) and they are denoted
in black.

Elements of extended matrix (with gyroscopes) were derived in [8] and the are denoted in
grey. They are functions of equatorial and axial inertia moments of the gyroscope and of the
precession frames and of its placement in the second Cardan frame.

Damping and stiffness matrices are diagonal:

B011 = 4b1ir
2
Tϑi cos2 ϑ0, B022 =

2∑
j=1

b1jr
2
Tϕj , B033 =

2∑
j=1

b1jr
2
Tψj , (3)

C011 = −(2mR + m4 + m5 + m6)gR sin ϑ0 +

+ 4r2
pϑ

(
n(pa + p4)S

2
04

V4

+ p4S14

)
+ 4p4S04rpϑ sin ϑ0,

C022 = −(m5zT5 + m6z56 + m6zT6)g +

2∑
i=1

r2
pϕ1

(
n(pa + p5i)S

2
05

V5
+ p5iS15

)
, (4)

C033 = −m6gzT6 +
2∑

i=1

r2
pψi

(
n(pa + p6i)S

2
06

V6

+ p6iS16

)
.

Vectors �E0, �E1(t) and matrices B1(t), C1(t) were derived in [8]. The matrix G is anti-
symmetrical and the matrix K is unsymmetrical. We denote H as the impulse moment of
the gyroscope; (H = Jax · Ω; Jax is the axial inertia moment, Ω is the angle velocity of the
gyroscope).

G =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 −H
0 0 0 H 0
0 0 −H 0 0
0 H 0 0 0

⎤⎥⎥⎥⎥⎦ , K =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 −k2,5

0 0 0 k3,4 0
0 0 −k4,3 0 0
0 k5,2 0 0 0

⎤⎥⎥⎥⎥⎦ . (5)

We suppose that the both moment motors on axes of precession frames, as well as the both
relieving motors on axes of Cardan frames, have identical characteristics. Then there hold the
equalities

k3,4 = k2,5 = k1, k4,3 = k5,2 = k2. (6)
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3. General considerations

The system disturbed from equilibrium state, relevant to the model (1), is (δ�q is the disturbance
of �q)

Aδ�̈q + (B0 + G)δ�̇q + (C0 + K)δ�q = �0. (1′)

When we want to solve the stability of the equilibrium state of our system, it is useful to trans-
form this system to the standard form (see [9]):

ẍk + bkẋk +
s∑

j=1

[Hgkj · ẋj + (ckj + ekj)xj ] = Xk, (7)

where the kinetic energy and the Rayleigh dissipative function were transformed into quadratic
forms with unit matrices; the parameter H was factored out from the gyroscopic terms. The
transformed stiffness matrix (conservative forces) [ckj] is symmetrical, transformed matrices
[gkj] and [ekj] of gyroscopic and radial correction forces, respectively, are anti-symmetrical.
Terms on the right side of (7) denote nonlinearities.

If the axis of the Cardan frame (see fig. 2) is loaded by external failure moment, the relevant
precession frame deflects and this deflection is input value for the relieving motor on the Cardan
frame axis. This relieving motor realizes a moment, which is opposite to the failure moment and
the precession frame returns to its equilibrium state. Analogously, the deflection of the Cardan
frame (registered by water level) is eliminated by the correction moment of motor, which is
placed on the axis of precession frame. The terms “moment motors” and “relieving motors” are
useful also in applied theory of the gyroscopes.

At the same time the new terminology is introduced: The forces with positive coefficients
bk are called “dissipative” and with negative coefficients bk are “accelerating”. If dissipative
forces exceed the accelerating ones, then

∑s
k=1 bk > 0 and vice versa. If all the bk > 0, we say

that the dissipation is complete or full. The linearised system corresponding to (7) is

ẍk + bkẋk +

s∑
j=1

[Hgkj · ẋj + (ckj + ekj)xj ] = 0. (7′)

The presence of dissipative and radial correction forces determines, if the system is conservative
or not, because gyroscopic forces do not perform a work and therefore they do not have any
influence on the energy integral. It is useful to remember some theorems of the gyroscopic
system stability (see [9]):

1. If the conservative system has an unstable equilibrium state and this instability is of the
odd degree (|ckj| < 0), it is impossible to reach a stability by the help of gyroscopic
forces.

2. If the equilibrium state is stable, then it is possible to reach an asymptotic stability by
help of gyroscopic forces and dissipative forces with a full dissipation.

And for non-conservative systems we have these following theorems:

3. If
∑s

k=1 bk < 0, the system (7) is unstable by arbitrary gyroscopic, radial correction and
conservative forces and by arbitrary structure of nonlinear terms.

4. If the system does not contain conservative forces (ckj = 0) or nonlinear terms (Xk = 0),
then
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(a) in the case of odd number of position coordinates, it is impossible to reach an asymp-
totic stability by the help of gyroscopic, dissipative and accelerating forces.

(b) in the case of even number of position coordinates (if we want to reach the asymp-
totic stability), it is necessary to attach gyroscopic forces and forces with full dissi-
pation at the same time.

5. If the potential energy of a conservative system has an isolated maximum, then:

(a) in the case of odd number of position coordinates and by arbitrary nonlinear terms it
is impossible to reach a stability by means of any gyroscopic, dissipative and radial
correction forces;

(b) in the case of even number of position coordinates and if the dissipation is com-
plete (full), then it is necessary to attach gyroscopic and radial correction forces
(independently of nonlinear terms) for reaching the stability.

If we apply all above introduced theorems at the system analysed, we can say that our system
has an odd number of position coordinates (unfavourable for reaching the stability).

Before the activation of gyroscopes, it is necessary to reach a stable equilibrium state. All
elements of the stiffness matrix must be positive. We can fulfil this requirement by means of a
suitable spring and by its displacement.

The decrease of spring stiffness is limited — to keep the stability.

1. According to the validity of important theorems, stated in [9], it is necessary to reach the
stability of equilibrium state before the activation of gyroscopes.

2. On the basis of numerical experiments, we record a destabilizing effect of radial correc-
tion forces.

3. The characteristic equation

Det [A · λ2 + (B0 + G) · λ + (C0 + K)] = Det [A] ·
10∑
i=0

aiλ
i = 0,

a10 = 1, a9 =

5∑
j=1

b0jĀ
(4)
j · (DetA)−1, (8)

is of the tenth degree. Ā
(4)
j are diagonal minors of the fourth degree. To reach an asymptotic

stability, it is necessary that b0i > 0 for at least one i.

4. Solution of the stability

Let us denote Di(i = 1, . . . , 10) Hurwitz determinants corresponding to the equation (8). The
dependencies of characteristic equation coefficients ai and Hurwitz determinants Di on the
parameters k1 and k2 are presented in fig. 3. We will change:

(a) parameters of radial correction of the Cardan frames or precession frames k1 or k2, re-
spectively;

(b) coefficients bi of linear damping (b1 is the damping of parallelogram, b2, b3 represent
the damping of Cardan frames. Let us remind that this damping will be realized with
controlled magnetorheologic dampers. Coefficients b4, b5 represent the damping of the
precession frames and it is supposed to be very small. This damping is uncontrolled.)
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Fig. 3. Hurwitz conditions

From the testing of the validity of all the 19 Hurwitz conditions (the example is in fig. 3),
we can determine the limits of stability in the plane of parameters (k1, k2).

The results of systematic stability mapping in the plane of radial correction parameters (k1,
k2) at different alternatives (b1, b2, b3) are demonstrated in fig. 4. Grey points correspond to
the state when all the 19 Hurwitz stability conditions are fulfilled and black points represent the
opposite case. Passing through the stability limit, we can denote, which Hurwitz condition is
not fulfilled and which root changes the sign of its real part. The change of b1 is in the vertical
direction, the change of b2, b3 is in the horizontal direction.

The change of b4 = b5 = bp by analogical mapping is presented in fig. 5.

5. Conclusion

The application of general theorems from gyroscopic system area allows the principal orien-
tation in dynamic analysis of vibro-isolation system with gyroscopic stabilizer. Our system
has seven degrees of freedom and is described by five position coordinates and two cyclic co-
ordinates. The general theory of gyroscopic systems distinguishes even (favourable) and odd
(unfavourable) number of position coordinates.

1. Owing to the validity of relevant theorems (stated in the references), it is necessary to
reach the stable equilibrium state before the activation of gyroscopes.
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Fig. 4. The areas of stability in the plane k1, k2

2. On the base of the fulfilling of Hurwitz conditions, it is possible to map areas of the
stability in the plane of parameters of the radial correction by different alternatives of
damping parameters.

3. The area of the stability, defined in the plane of the radial correction, increases with the
damping. This fact is valid as for damping of the parallelogram, as for damping of Cardan
frames and even for damping of precession frames.

The proposed method of stability mapping was verified in other cases of system tuning and it
can be used with small expense of machine time.
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Fig. 5. The areas of stability in the plane k1, k2
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