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Abstract. The wintertime abundance of nitric acid (HNO3)
in the polar upper stratosphere displays a strong inter-annual
variability, and is known to be strongly influenced by ener-
getic particle precipitation (EPP), primarily by protons dur-
ing solar proton events (SPEs), but also by precipitating au-
roral or relativistic electrons. We analyse a multi-year record
(August 2001 to April 2009) of middle atmospheric HNO3
measurements by the Sub-Millimeter Radiometer instrument
aboard the Odin satellite, with a focus on the polar upper
stratosphere. SMR observations show clear evidence of two
different types of polar high-altitude HNO3 enhancements
linked to EPP. In the first type, referred to as direct en-
hancements by analogy with the EPP/NOx direct effect, en-
hanced HNO3 mixing ratios are observed for a short period
(1 week) after a SPE, upwards of a level typically in the
mid-stratosphere. In a second type, referred to as indirect
enhancements by analogy with the EPP/NOx indirect effect,
the descent of mesospheric air triggers a stronger and longer-
lasting enhancement. Each of the three major SPEs that oc-
curred during the Northern Hemisphere autumn or winter,
in November 2001, October–November 2003 and January
2005, are observed to lead to both direct and indirect HNO3
enhancements. On the other hand, indirect enhancements oc-
cur recurrently in winter, are stronger in the Southern Hemi-
sphere, and are influenced by EPP at higher altitudes.

1 Introduction

Nitric acid (HNO3) is a key minor constituent of the mid-
dle atmosphere, part of the odd nitrogen family (NOy), and
a reservoir for the active nitrogen species (NOx), which pro-
vide a major ozone loss catalytic cycle in the middle and up-
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per stratosphere. Stratospheric HNO3 has been observed by
means of ground-based, balloon, aircraft and satellite instru-
mentation. The most complete dataset to date has been pro-
vided by the Microwave Limb Sounder (MLS) instrument
aboard Upper Atmosphere Research Satellite (Santee et al.,
2004), albeit not in the upper stratosphere. Since July 2004,
the EOS/MLS instrument also makes global observations of
HNO3 that cover the mid and upper stratosphere (Santee et
al., 2007). The infrared Michelson Interferometer for Passive
Atmospheric Sounding (MIPAS) aboard the ENVISAT satel-
lite has also been measuring HNO3 since July 2002 (Stiller
et al., 2005), but following an interruption in 2004, observa-
tions have not been continuous.

The “Odin Sub-Millimetre Radiometer” (SMR) instru-
ment provides a continous record of global HNO3 observa-
tions every third day since summer 2001. We present re-
sults from a multi-year record (August 2001 to April 2009)
in a two-part article. Urban et al. (2009) describes the char-
acteristics of the satellite retrievals and the climatology and
variability in the lower stratosphere, neither of which are re-
peated here. Here, we focus on the polar upper stratosphere-
lower mesosphere. Enhanced layers of HNO3 are commonly
observed in winter at high altitudes in the polar regions, as
revealed by ground-based (de Zafra and Smyshlaev, 2001)
or satellite (Austin et al., 1986; Kawa et al., 1995; Lopez-
Puertas et al., 2005b, hereafter LP05; Orsolini et al., 2005a,
hereafter OR05; Stiller et al., 2005) observations. Excep-
tionally strong enhancements have been shown in connection
with energetic particle precipitation (EPP) events or anoma-
lous descent of mesospheric air, both of which provide an
enhanced source of stratospheric NOx. However, they have
not been previously documented over so many years by a sin-
gle satellite instrument. The aim of this paper is to show the
high inter-annual variability of high-altitude HNO3 polar en-
hancements, especially in the aftermath of major solar proton
events (SPEs).
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2 Polar HNO3 enhancements from 2001 to 2009

In the polar upper stratosphere in winter, HNO3 enhanced
layers appeared recurrently in the Odin/SMR observation pe-
riod considered here (2001–2009). In Fig. 1, the zonal-mean
zonal wind at 1 hPa and latitudes of 60◦ N or 60◦ S (top),
the normalised solar radio flux at 10.7 cm (F10.7 index) and
the daily A-p index of geomagnetic activity (middle), are
shown to document the dynamical conditions in the polar
upper stratosphere and the magnitude of solar-terrestrial cou-
pling during that period. Winds are derived from operational
analyses from the European Centre for Medium-Range Fore-
casting (ECMWF). Normalised intensities of GOES proton
flux measurements are shown as indicators of SPEs (Fig. 1,
middle), with Class-X SPEs highlighted. The period corre-
sponds to the declining phase of the solar cycle as seen in
the F10.7 index, and numerous, intense SPEs were observed
(see also Jackman et al., 2008). SMR observations of HNO3
at a potential temperature level of 1600 K and at latitudes of
60◦ N or 60◦ S in Fig. 1 (bottom), or at 1400 K as a func-
tion of equivalent latitude in Fig. 2, reveal that, while re-
current, the amplitude of these winter polar enhancements
varies widely from year to year in both hemispheres. The
figures can be examined together with Figs. 2, 3 in Urban
et al. (2009) which show the descent of the anomalies from
the upper stratosphere. The largest enhancements in the NH
follow the very strong SPEs in November 2001, in October–
November 2003 (Halloween storms), and in January 2005.
The SH also shows inter-annual variations, with the largest
enhancement occurring in austral winter 2003.

Individual winters in each hemisphere from 2001 to 2007
are presented in Figs. 3 and 4, as time versus potential tem-
perature cross-sections of HNO3 mixing ratio as well as mix-
ing ratio anomalies from the winter mean, averaged over
equivalent latitudes poleward of 70◦. More recent winters
have not been characterised by strong enhancements and are
not shown. Occurrences of major Class-X SPEs are shown
by pink circles with vertical lines. Enhancements appear re-
currently in winter as air descending from the mesosphere
always provides some amount of NOx and HNO3 conver-
sion (de Zafra and Smyshlaev, 2001). Anomalously ele-
vated stratospheric NOx abundances can hence arise from
this downward transport, if EPP phenomena such as relativis-
tic electron precipitation, or lower energy electron precipita-
tion from auroral activity are strong or persistent, or SPEs
occur. This is refered to as the EPP/NOx indirect effect (e.g.,
Randall et al., 2006). The efficiency of the mesosphere-to-
stratosphere transport depends upon meteorological condi-
tions, which are quite variable, especially in the Northern
Hemisphere. Stratospheric NOx abundances can also be am-
plified in-situ by most energetic EPP events, such as SPEs.
This is refered to as the EPP/NOx direct effect (e.g., Randall
et al., 2006). EPP events have occasionally led to upper-
stratospheric NO2 abundances over a hundred ppb (Callis
and Lambeth, 1998; OR05; LP05).

3 Direct and indirect HNO3 enhancements following
major SPEs

SMR observations show clear evidence of two different types
of HNO3 enhancements following the 3 major SPEs that
occurred during the Northern Hemisphere autumn or win-
ter over the Odin/SMR observation period considered here:
November 2001, October–November 2003, and mid-January
2005. In a first type, enhancements are observed for a short
period (1 week) upwards of a level typically in the mid-
stratosphere, and are analogous to the EPP/NOx direct ef-
fect. In a second type, the descent of mesospheric air trig-
gers a stronger and longer-lasting enhancement, analogous
to the EPP/NOx indirect effect. In both cases though, HNO3
is mostly created in the stratosphere (unlike the NOx).

A first example showing both direct and indirect enhance-
ments follows the powerful November 2001 SPE: a short-
lived (one week) layer of enhanced HNO3 appears above
1200 K, extending upward into the upper stratosphere-lower
mesosphere (at least 2000 K). It is followed in December by
a much stronger and longer-lasting descending enhancement,
in fact the strongest anomaly in the SMR record for the NH.
Probably the best studied SPEs were associated with the vi-
olent “Halloween” solar storms of autumn 2003. Both di-
rect and indirect HNO3 enhancements were observed for the
first time by MIPAS (LP05; OR05). Immediately following
the SPE, a short-lived (about 1 week) stratospheric layer of
enhanced HNO3, peaking at 2–2.5 ppb, was observed above
35 km by LP05. Newly reprocessed MIPAS retrievals in-
dicate that the HNO3 enhancements extend into the upper
stratosphere and lower mesosphere (Jackman et al., 2008).
In the indirect enhancement, several weeks after the SPE,
an anomalous HNO3-rich layer was first observed at about
45 km (OR05), and intensified considerably while descend-
ing confined in vortex air. By mid-January, it had reached
30 km and vortex-averaged HNO3 abundances were as high
as 13–15 ppb, leading to double-peaked high-latitude HNO3
profiles. Vortex-averaged SMR measurements are in good
agreement with those of MIPAS cited above. In individ-
ual SMR profiles, mixing ratios were as high as 7 ppb at
40–45 km in early November 2004. A weaker direct HNO3
enhancement was also observed by MIPAS in the Southern
Hemisphere following the SPEs (LP05). The corresponding
enhancement is SMR is very weak, in the range of 1–2 ppb
at 40 km in individual profiles, not conclusively above the
background levels.

Multiple HNO3 enhancements also appear during the win-
ter 2004/2005. The indirect enhancement is starting early
in December, while a direct enhancement coincides with the
strong SPE of mid-January 2005, which ranked as number
11 of the last 4 decades (Jackman et al., 2007). However,
the high fluxes for the most energetic protons (>100 Mev),
supported by calculation of ionisation rates (Verronen et al.,
2005; Sepp̈alä et al., 2008) indicate that the SPE penetrated
as deep into the stratosphere as the Halloween 2003 event.
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Fig. 1. (top) Zonal-mean zonal winds at 1 hPa and at latitudes of 60◦ N or 60◦ S, derived from ECMWF operational analyses. (middle)
Normalised solar radio flux at 10.7 cm, A-p index of geomagnetic activity, and normalised proton flux for both major (Class-X) as well as
minor SPEs. (bottom) HNO3 mixing ratio (ppb) at a potential temperature level of 1600 K and at equivalent latitudes poleward of 60◦ N or
60◦ S. X-axis is time, from August 2001 to April 2009.

Fig. 2. Time vs. equivalent latitude HNO3 mixing (ppb) from August 2001 to April 2009, at a potential temperature of 1400 K (near 40 km).
Tick marks indicate the beginning of months.

The SMR observations indeed indicate HNO3 enhancements
reaching lower levels, about 1000 K, than during the Hal-
loween 2003 event, and being in the 10–15 ppb range at
30 km in early January. High carbon monoxide (CO) abun-
dance can also be used to infer the descent of lower meso-
spheric air into the stratosphere, and vortex-averaged MLS
observations already show a separated peak in CO at the
1400 K by mid-December (Manney et al., 2007). Hence the
SPE, and the direct enhancement, occurred after the winter
descent, and the indirect enhancement, had already started.

The above-mentioned three cases are the clearest cases in the
Northern Hemisphere, when both direct and indirect HNO3
enhancements are observed. In the autumn 2004, a much
weaker, short-lived enhancement can also be seen after a SPE
in November, extending upward of 1500 K. The two SPEs
of December 2006 gave rise to a direct enhancement with
a maximum near 1300 K–1500 K, but it was weak and did
not extend upwards as in the three clearly defined cases men-
tioned above. The indirect enhancement maximised in mid-
January 2007.
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Fig. 3. Time vs. potential temperature evolution of vortex-averaged (equivalent latitudes 70◦ N–90◦ N) HNO3 mixing ratio (ppb) (left
column) and deviations from the winter mean (i.e. anomalies, right column), during NH winters 2001/2002 through 2006/2007. X-axis is
labelled with months. Major, class X SPEs are indicated by pink circles with vertical lines.
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4 Discussion

The time development of the HNO3 anomalies involves the
interplay of middle atmospheric dynamics and chemistry,
and solar-terrestrial coupling. Two chemical pathways have
been suggested in LP05 to explain the direct HNO3 enhance-
ments: either gas phase reactions of NO2 with OH, both en-
hanced by the SPE, or else ion chemistry (Solomon et al.,
1981). A recent ion chemistry model study by Verronen
et al. (2008) indicates that abundances of HNO3 observed
by MIPAS following the Halloween 2003 SPEs are largely
consistent with production above 35km resulting from ion-
ion recombination between ion clusters. They showed that
the latter mechanism dominated both the gas phase forma-
tion and the heterogeneous conversions of N2O5 into HNO3
upon hydrated ion clusters. Whether the short duration of
the enhancement can be solely explained by chemistry or
by a combination of transport and chemistry, requires further
modelling studies.

Following earlier suggestions (Bohringer et al., 1993;
Kawa et al., 1995), de Zafra and Smyshlaev (2001) esti-
mated that such N2O5 heterogeneous conversions upon hy-
drated ion clusters were responsible for the enhancements
they observed in ground-based microwave measurements at
the South Pole. This is the likely mechanism for the indi-
rect enhancements, although this conclusion awaits quanti-
tative model results. Sulphate aerosols were also suggested
to play a role below 35 km (Bekki et al., 1995). The indi-
rect enhancements require a large downward flux of NO2 to
generate N2O5, a process favoured by vortex confinement,
hence explaining the stronger effect in the SH. The back-
ground abundance of hydrated ion clusters is thought to be
generated by galactic cosmic rays. How EPP influences that
background abundance is an open question.

While the HNO3 enhancements share some characteristics
of the NOx enhancements, such as high-altitude origin, polar
confinement and descent, the latter are not always followed
by HNO3 enhancements. An enhanced descent from the
mesosphere into the stratosphere well-confined by a strong
vortex would be leading to a large EPP/NOx indirect effect.
Three such strong descent events have been observed to oc-
cur during the vortex recovery from the mid-winter strato-
spheric sudden warmings in 2004, 2006 and 2009 (Randall et
al., 2005, 2006, and reference therein; Manney et al., 2009),
or as revealed by inspection of zonal-mean zonal winds at
1 hPa in Fig. 1. NOx enhancements have been shown dur-
ing the 2004 and 2006 events (see above references). The
EPP/NOx indirect effect did not give rise to large HNO3 en-
hancements. This would be consistent with the ion cluster
chemistry requiring darkness to build up HNO3, conditions
which are not provided in late winter and spring. In fact,
there is only a signature of a weak enhancement during the
NOx descent in March–April 2006 at the highest levels mea-
sured by SMR. These NOx descents in 2004 and 2006 were
nevertheless important for the upper stratospheric ozone bud-

get, leading for example to nearly 60% ozone destruction
at 45 km in spring 2004 (Natarajan et al., 2004; Randall et
al., 2005). Hence, while the short-lived, direct HNO3 en-
hancements could be triggered by SPEs in any season, SPEs
contribute to indirect enhancements only from late autumn
to winter. Hence, the seasonal timing of EPP events largely
constrain their impact on HNO3 enhancements. Another ef-
fect of stratospheric warmings is that they could dampen the
HNO3 anomalies by bringing polar air to sunlit regions.

Polar HNO3 enhancements in the SH also display a strong
inter-annual variability (Fig. 4). But, in the SH, the vortex
is less variable than in the NH, and the variations in EPP is
playing a key role in year-to-year variability of polar NOx
(Randall et al., 2007) or HNO3 enhancements. The strongest
enhancement is seen to occur in austral winter 2003, and was
studied by Stiller et al. (2005) using MIPAS data. The vortex-
averaged magnitude of about 7 ppbv at 1400 K is in good
agreement with MIPAS measurements. Stiller et al. (2005)
concluded that the enhancement originated from strong de-
scent of mesospheric air enriched in NOx by enhanced au-
roral activity. Indeed, Tanskanen et al. (2005) indicated a
high occurrence of magnetic substorms and auroral activity
in 2003. It can be noticed in Fig. 1 that the SH vortex was
not the strongest in austral winter 2003.

In SMR observations over the SH, we do not observe any
clear-cut case showing both direct and indirect enhancements
following SPEs. There is however a series of weak short-
lived enhancements throughout the austral winter 2002, in-
cluding a pronounced one following the July 2002 SPE, ex-
tending upward of about 1200 K. As shown by the zonal-
mean zonal wind in Fig. 1 (top), this winter was characterised
by a large dynamical variability that led to the sudden strato-
spheric warming of late September 2002 (Allen et al., 2003;
Orsolini et al., 2005b). As for the January 2005 event in
the NH, the direct July 2002 enhancement would have oc-
curred after the winter descent had started. It is not possi-
ble to clearly disentangle the effects of dynamical variability
and SPEs, without a detailed model study. In particular, it
is not clear why only the second SPE in July 2002 led to
an upward-extended structure, that is characteristic of direct
enhancements.

Inspection of Figs. 3 and 4 (as well as Figs. 2, 3 in Ur-
ban et al., 2009) reveals that, in the Northern Hemisphere,
the enhancements descending from the upper stratosphere
merge with the main layer when the abundance is still high,
as clearly seen during the two strongest episodes in 2002 and
2004. In the SH, on the contrary, the descending layer nor-
mally reaches the lower stratosphere when the main layer
abundance has already decreased considerably due to polar
stratospheric cloud formation, during which there is uptake
of HNO3 from the gas phase. A further point to note is that,
as the high-altitude layer descends, the mixing ratios increase
down to a certain level, which is quite variable, indicating
continued production.
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Fig. 4. Same as Fig. 2, for SH (equivalent latitudes 70◦ S–90◦ S) winters 2002 through 2007.
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5 Summary

The Odin/SMR observations provide for the first time a
multi-year record of polar HNO3 enhancements at high alti-
tudes, and their downward propagation inside the winter po-
lar vortex. Outstanding enhancements are seen during major
SPEs or strong mesospheric descent events. Direct enhance-
ments take the form of a short-lived (about 1 week) layer
of enriched HNO3, extending from typically 35 km upwards
into the upper stratosphere-lower mesosphere. The indirect
enhancements are characterised by slowly-descending, larger
anomalies, and are generally stronger in the Southern Hemi-
sphere. Not all SPEs contribute to the indirect enhancements.
Their effects depend not only of their intensity and penetra-
tion depth, but also on seasonal timing and meteorological
conditions. On the other hand, indirect enhancements can
occur without the occurrences of SPEs, and are influenced
by EPP at higher altitudes. The occurrence of both direct
and indirect HNO3 enhancements following a SPE was first
observed by MIPAS (LP05; OR05) following the Halloween
solar storms of autumn 2003, and is here confirmed by the
SMR data in at least 2 additional cases.

The descending low or high HNO3 anomalies appear
somewhat analogous to the tropical “tape-recorder” effect
(Mote et al., 1996), that describes how low-latitude tracer
anomalies imprinted at the tropopause level ascend over
years, keeping a memory of their initial composition, and
giving rise to layered anomalies in the tropical stratosphere.
In this case, it is rather acting at high latitudes, and in reverse
(propagating downwards) fashion, and on a faster (seasonal)
scale: HNO3 anomalies are imprinted in the upper strato-
sphere, descending to the lower stratosphere over the course
of the winter, and giving rise to a double-layered profile.

Further modelling studies are needed as a step toward im-
plementing appropriate schemes to represent these processes
affecting the stratospheric NOy budget into global chemical
transport models.
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