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Abstract. In recent years, linear mixed models (LMM) have become more pop-
ular to deal with spatial effects in forestry and ecological data. In this study, 
different structure specifications of linear mixed model were applied to model 
tree height-diameter relationships, including LMM with random blocks only 
(LMM-block), LMM with spatial covariance only (LMM-covariance), and the 
combination of the last two (LMM-block-covariance). Further, the between-
group heterogeneous variances were incorporated into LMM-covariance and 
LMM-block-covariance. The results indicated that, in general, LMM-covar-
iance significantly reduced spatial autocorrelation in model residuals, while 
LMM-block was effective in dealing with spatial heterogeneity. LMM-block 
treated the blocks as random effects and avoided the estimation of param-
eters of the variogram model. Thus, it produced better model predictions 
than LMM-covariance. LMM-block-covariance took both block effects and 
spatial covariance into account, and significantly improve model fitting. 
However, it did not produce better model predictions due to the increase of 
model complexity and estimation of the local variogram within each block.  
Keywords linear mixed model, spatial heterogeneity, spatial autocorrelation, 
height-diameter equation. 
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Introduction

The development of geographic informa-
tion systems (GIS) in recent years has made 

geographically referenced information easily 
available for researchers and made more com-
prehensive data exploration, analysis and mod-
eling possible. As one type of spatial analysis, 
spatial regression is used to capture the spatial 
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dependency in the relationships between vari-
ables in order to overcome statistical problems 
such as unstable parameter estimation and un-
reliable signifi cance testing. However, the use 
of geo-spatial information leads to a number 
of features that merit special attention, because 
spatial regression models are different from 
traditional (aspatial) regression models or time 
series models in terms of model errors. The 
two main characteristics of the model errors in 
spatial regression are spatial dependence and 
heterogeneity (Anselin 1999, Fotheringham et 
al. 2002). Spatial dependence is mostly due to 
the existence of spatial spillovers because of 
the miss-match between the scale of the spa-
tial unit of observations and the phenomenon 
of interest, while spatial heterogeneity is due 
to the structural differences between locations 
and led to different error distributions (Anse-
lin 1999). These distinguished characteristics 
have important implications for description, 
explanation, and prediction in spatial analysis 
and modeling.
 For a linear regression model, the spatial 
dependence can be incorporated in two ways: 
(1) using a spatially lagged dependent variable 
as an additional regressor or predictor in the 
model, and (2) specifying a particular vari-
ance-covariance structure for the model errors. 
The former is referred to as a spatial lag model 
and the latter is called a spatial error model 
(Anselin 1988). In recent years, geographi-
cally weighted regression (GWR) has become 
popular to explore and model spatial heteroge-
neity (Brunsdon et al. 1996, Fotheringham et 
al. 2002, Zhang et al. 2004). GWR attempts to 
capture spatial variations by calibrating a re-
gression model at different locations in space 
that allows the different relationships between 
variables of interests (Zhang et al. 2004). In 
forestry and ecological applications, Fox et 
al. (2007) used moving average autoregres-
sive models for individual tree growth models. 
Zhang & Shi (2004) and Shi et al. (2006) tried 
GWR as a local modeling technique for tree 
growth. 

 Linear mixed models (LMM) have become 
popular for dealing with spatial dependence 
and heterogeneity over the last 15 years. Re-
searchers have been applying different tech-
niques for this purpose under various circum-
stances. One way is to use blocking approach 
to diminish the effect of variations among 
experimental or sampling units. The block ef-
fects are usually considered random because 
the blocks in an experiment are only a subset 
of all available blocks on which the statisti-
cal inference about treatment means is to be 
made (Littell et al. 2006). Thus, one can sepa-
rate the entire study area or data observations 
into “blocks” such as forest plots or stands, or 
tree species, or even an individual tree with 
repeated measures. By taking these “blocks” 
as the random effect, LMM can corporate spa-
tial heterogeneity and/or spatial dependence 
into the modeling process. Another way is to 
specify a spatial variance-covariance structure 
or function to represent the spatial dependence 
or autocorrelation in the model errors, which 
is incorporated into the process of parameters 
estimation (Littell et al. 2006). It is similar to 
the way of dealing with repeated measure-
ments (Wolfi nger 1996). Further, the spatial 
prediction can be implemented by a Kriging 
procedure based on the spatial variance-cov-
ariance function estimated by LMM (Littell et 
al. 2006, Minasny & McBratney 2007). 
 Researchers also utilize other forms of LMM, 
which have limited practical applications, but 
may have benefi cial impacts on the outcomes 
of spatial data analysis and modeling. For ex-
ample, random coeffi cient models are built on 
the analysis of covariance models and can be 
used to treat the regression coeffi cients for one 
or more covariates as a random sample from 
a population of possible coeffi cients (Littell et 
al. 2006). Heteroscedasticity (i.e., heteroge-
neous variances) can be incorporated into the 
covariance structures of LMM to overcome 
the violation of the homogeneous variance 
assumption for the model errors (Dutilleul & 
Legendre 1993). There are within-group and 
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between-group heterogeneous variances. A 
particular and useful term of LMM with with-
in-group variances is known as the weighted 
linear mixed model (WLMM), where the vari-
ance is modeled as a function of exploratory 
variable(s)(Bates 2008). Therefore, there are 
multiple features in LMM that researchers can 
use to explore and model spatial dependence 
and heterogeneity. 
 LMM has drawn attentions from forest-
ry and ecological researchers. Calama and 
Montero (2004), Meng et al. (2007), and 
Vazquez & Pereira (2005) applied LMM with 
the random effects specifi ed for geographical 
regions, plots or individual trees. Calegario et 
al. (2005), Budhathoki et al. (2008), Nothdurft 
et al. (2006), and Gregoire & Schabenberger 
(1996) used nonlinear mixed models for tree 
growth. Zhang et al. (2008) incorporated the 
spatial dependence into the modeling process 
using LMM with a spatial covariance struc-
ture.
 In this study, we attempted to apply several 
structures of LMM to model the tree height-
diameter relationships. There are basically two 
ways to capture the spatial effects: blocking for 
spatial heterogeneity and spatial covariance for 
spatial dependence. For convenience, we call 
the former LMM-block and the latter LMM-
covariance. Further, a LMM model can incor-
porate both blocking and covariance, namely 
LMM-block-covariance. The betwe-en-group 
heterogeneity of variance can be specifi ed in 
either LMM-covariance or LMM-block-covar-
iance in which blocks are present. Consequent-
ly, we specifi ed fi ve LMM models with the 
ordinary least squares (OLS) model as a bench-
mark. These 5 models were compared in terms 
of model fi tting, residuals, and prediction. Our 
main objectives were: (1) to investigate which 
model structure or specifi cation was more ap-
propriate for describing the spatial effects on 
the tree height-diameter relationships, and (2) 
to choose a best model specifi cation for the dif-
ference between blocks, if spatial heterogene-
ity was proved to be the main spatial effect. 

Materials and methods

Theory and methods

LMM-block

Linear mixed models (LMM) extend the gen-
eralized linear model by allowing a more fl ex-
ible specifi cation of the variance-covariance 
matrix of model errors. In other words, LMM 
allows for both spatial autocorrelation and het-
erogeneous variances although it still assumes 
normality for the model errors (Littell et al. 
2006). LMM can be expressed as:

 εβ ++= uZXy               (1)
     
where y is a vector of the observed response 
variable, X is a known matrix of explanatory 
variables for the fi xed effects, Z is a known 
design matrix of the random effects, β is a vec-
tor of unknown fi xed-effects parameters, u is a 
vector of unknown random-effects parameters, 
and ε is a vector of unobserved random errors 
(Littell et al. 2006). 
 A key assumption for LMM is that u and ε 
are normally distributed such that
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where G is the variance-covariance matrix of 
u and R is the variance-covariance matrix of 
ε. The variance of the response variable y is 
V = ZGZT + R, and can be estimated by set-
ting up the random-effects design matrix Z 
and by specifying covariance structures for G 
and R. If R is specifi ed as a diagonal matrix, 
LMM only considers the random effects such 
as blocks which can be refl ected by G. Thus, 
we call the LMM with the diagonal R and a 
specifi c G as the LMM-block model.
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 For the purpose of model prediction, it is re-
quired not only to estimate the para 

 
meters 

of the fi xed effects and covariance, but also to 
estimate the random effects. The solutions for 
β and u in LMM are called the best linear unbi-
ased predictor (BLUP), and the prediction of y 
can be obtained by:
 
                                                                     (4)

LMM-covariance

By integrating spatial variability into the mod-
el, the LMM with spatial covariance is derived. 
The function describing the spatial covariance 
actually comes from the models of spatial vari-
ogram. The R matrix can be derived by:

FIR 22
1 σσ +=                 (5) 

      

where I  is diagonal matrix, 2
1σ  is the nug-

get of the variogram model, σ2 is the sill of the 
variogram model, and F is a matrix whose ijth 
element is f(dij) as a function of distance (dij) 
between observations i and j. The three most 
commonly used functions are (Littell et al. 
2006):

Exponential                            (6)

Gaussian                            (7)

Spherical              
                                                                    
                 (8)

where ρ is the range. The spatial covariance 
structure is the same across the geographical 
region. The between-group heterogeneity can 
also be refl ected by a different spatial cov-
ariance structure from different groups (i.e., 
blocks). In other words, each block has its own 

parameters, including sill, nugget and range, in 
its spatial covariance function.
 The prediction for LMM-covariance is dif-
ferent from LMM-block, in which Kriging is 
needed for the prediction based on the esti-
mated spatial covariance parameters. Residual 
maximum likelihood-empirical best linear 
unbiased predictor (REML-EBLUP) was pro-
posed and applied for the spatial prediction 
of soil properties by Minasny & McBratney 
(2007). This method includes two steps: (1) 
estimating the parameters of spatial covariance 
by LMM using REML; and (2) Kriging with 
external drift (i.e., the exploratory variables) 
using these parameters for prediction. When 
we predict y at an unsampled location v0, the 
solution is
                                                                    (9)

YKX)XKX(ˆ 1'11' −−−=β                      (10)

where Y = [y(υ1), y(υ2),…, y(υn)] and X = 
[x(υ1), x(υ2),…, x(υn)] are the vectors of ob-
servations at the sampled locations υ1, υ2,…, 
υn, , and K = cov(Y, Y’), and k = 
cov(Y, y(υi) ) are the covariance functions.
 Kriging is designed to predict the response 
variable at unsampled locations in the plot us-
ing the information from the sampled locations. 
In contrast, the common way for assessing the 
models is to use the model residuals (i.e., re-
sidual = observation - predictions at the same 
location). Therefore, for every observation we 
make the estimation of fi xed effects using the 
LMM generated from the whole data, but use 
the whole data minus this observation to pre-
dict the random effects of spatial dependence. 
To compare LMM-covariance and LMM-
block, a cross-validation process is conducted 
to assess the effects of Kriging. 

LMM-block-covariance

It is also possible to build the LMM models 
with both random effects of block and spatial 
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covariance simultaneously. We call this model 
as LMM-block-covariance, which has the po-
tential to improve the model fi tting. However, 
it is also more complex in model specifi cation 
and structure. Thus, it is necessary to statisti-
cally test the signifi cance of improvement in 
model fi tting.

Model assessment

Akaike’s information criterion (AIC) and 
Bayesian information criterion (BIC) are com-
monly used for model selection and compari-
son (Hoeting et al. 2006):

AIC = -2 log L + 2(p + k + 1)           (11)

where L is the likelihood (restricted likelihood 
in this study), p is the number of fi xed effect 
terms, and k is the number of random effect 
terms. The candidate model with the lowest 
AIC is selected as the best model. AIC can also 
be used for assessing possible variance-covari-
ance structures. 
 For models selection, it is necessary to test 
the differences among the candidate models 
with different model structures and specifi ca-
tions. Commonly, a LMM model with more 
complex variance-covariance structure fi ts 
the data better. For example, the more terms 
of random effects specifi ed, the more complex 
the LMM model is. However, the complexity 
may cause the over-parameterization of the 
variance-covariance structure, which leads to 
ineffi cient estimation and poor assessment of 
standard errors for estimating the mean re-
sponse profi les (fi xed effects). On the other 
hand, an overly restricted specifi cation of the 
variance-covariance structure invalidates the 
inferences on the mean response profi le when 
the assumed covariance structure does not hold 
(Altham 1984). 
 Likelihood ratio test (LRT) has been used 
extensively as a tool for testing the signifi -
cance of random effects in LMM. To test the 
signifi cance of one random effect, it assumes 

this effect has zero variance in the null hypoth-
esis. Thus, the test statistic of LRT is defi ned as 
(Verbeke & Molenberghs 1997):
 
                            
               (12)
      

where 
0,REMLθ̂ and 

1,
ˆ
REMLθ  are the restricted 

maximum likelihood estimates under the null-
hypothesis and under the alternative hypoth-
esis, respectively. The statistic, -2lnλN  
follows a χ2 distribution with the degrees of 
freedom equal to the difference of the number 
of parameters of random effects in the model 
under the null and alternative hypotheses. 
 Note that AIC does not enable the evaluation 
of model prediction for the response variable. 
More importantly, the prediction of LMM-
covariance involves Kriging. Therefore, the 
root mean squared deviation (RMSD) and 
standardized squared deviation can be used for 
comparing the predictions from different mod-
els/methods (Minasny & McBratney 2007). 
Because RMSD actually provides the same in-
formation as the residual sum of squares (RSS) 
commonly used in nonparametric regression, 
we adopted RSS as an index for the compari-
son between prediction methods:
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Residual diagnostics

Moran’s I can be used examine the spatial au-
tocorrelation in model residuals from different 
models (Anselin 1995, Tiefelsdorf 2000, Boots 
2002, Zhang & Gove 2005, Zhang et al. 2005) 
as follows:
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location i and j, respectively,  e  is the mean 
of ei over the n locations, and cij(θ)  is the 
spatial weight within a given bandwidth θ. If 
the location j is a neighbor of the subject loca-
tion i, cij(θ) = 1. Otherwise, cij(θ) = 0. The ex-
pected mean of the Moran’s I is -1 / (n - 1). The 
Moran’s I is positive when the observed values 
of locations within the bandwidth tend to be 
similar, negative when they tend to be dissimi-
lar, and approximately 0 when the observed 
values are arranged randomly and independ-
ently over space (Lee and Wong 2001, Zhang 
and Gove 2005). Further, spatial correlograms 
with a 5-m lag increment were obtained to in-
vestigate the changes of Moran’s I in model 
residuals across different lag distances (Zhang 
et al. 2008).
 Spatial heterogeneity in model residuals can 
be evaluated by the relative structured vari-
ability (RSV) which is defi ned as (partial sill / 
sill) and used to represent the proportion of the 
autocorrelated spatial heterogeneity (Schaben-
berger & Gotway 2005). Others also used the 
intra-block spatial variation of model residu-
als at a range of block sizes (spatial scales) to 
quantify the local spatial variability (Garrigues 
et al. 2006, Zhang et al. 2009).

Implementation of models

Because the scatterplot of the tree height (HT) 
against diameter (DBH) was quadratic in 
shape, we chose the following model to fi t the 
height-diameter relationship:

ln(HT) = β0 + β1·ln(DBH) + ε           (15)
      
where ln is natural logarithm, β0 and β1 are 
regression coeffi cients to be estimated, and ε 
is the model error term. Model residuals were 
defi ned as the difference between the observed 
and predicted ln(HT).
 To analyze the spatial effects on the height-
diameter relationship, LMM-block and LMM-
covariance were fi tted to the example data. 

LMM-covariance can directly use the spatial 
coordinates of observations. For LMM-block, 
blocking in the region needs to be implement-
ed. However, there were no universal criteria 
for blocking. Because the example plot size 
was 100 × 100 m and the number of trees was 
659, we decided to use 20 × 20 m blocks to 
compromise the number of blocks and the 
number of trees within each block. The be-
tween-group heterogeneous variances can be 
added into either LMM-covariance or LMM-
block-covariance. Finally, we proposed fi ve 
LMM models to compare as the combinations 
of different model structures and specifi cations 
as follows: (i) LMM-block, (ii) LMM-covari-
ance, (iii) LMM-block-covariance, (iv) LMM-
covariance (between-group heterogeneity), (v) 
LMM-block-covariance (between-group het-
erogeneity).
 The comparison among the model structures 
provides us the information on which one de-
scribes the spatial effects best, e.g., blocking or 
spatial covariance or the combination of block-
ing and spatial covariance. In addition, the use 
of between-group heterogeneous variances 
can explore the difference between blocks, be-
cause the LMM model with the between-group 
heterogeneous variances allows each block a 
unique within-block spatial variogram.
 The data used in this study were a part of 
the stem map data of a softwood stand located 
near Sault Ste. Marie, Ontario, Canada (Ek 
1969). The stand was mature, second growth, 
and uneven-aged. An example plot of 100 × 
100 m in size with 659 trees was used. The 
average tree diameter at breast height (DBH) 
was 17.9 cm (ranging from 10.2 to 74.2 cm), 
and the average total height (HT) was 13.1 
m (ranging from 6.4 to 32.9 m). The position 
of every tree was recorded in spatial coordi-
nates. The major species in the example plot 
were balsam fi r (Abies balsamea (L.) Mill.) 
(58.1% in number of trees) and black spruce 
(Picea mariana (Mill.) BSP) (36.6%). Other 
minor species included white birch (Betula pa-
pyrifera Marsh.) (0.3%), white spruce (Picea 
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glauca (Moench) Voss) (2.6%), and white pine 
(Pinus strobue L.) (2.4%). 

Results

Model fitting and estimation of variance

Table 1 indicated that the LMM-block model 
(AIC = -819.8) had the signifi cant improve-
ment over OLS (AIC = -745.4) in terms of 
model fi tting. LRT showed a strong evidence 
(p-value <0.0001) to statistically reject the null 
hypothesis of no block effects. The estimated 
variance of random errors, 2

1σ  (0.01536) of 
LMM-block was smaller than that of OLS 

( 2
1σ  = 0.01852). The estimated variance of 

the block effects, 2
bσ , was 0.00324. From the 

perspective of LMM-block, some variability 
of observations can be attributed to the spatial 
effects across the example plot. 
 There are several ways to specify the LMM-
covariance model such as exponential, Gaus-
sian, or spherical variogram models, which 
can also be with or without a nugget effect. 
The covariance among the observations can 
be assumed existing either within blocks or 
throughout the entire study area. First, the 
exponential model with a nugget effect was 
tried within blocks and across the example 
plot, resulting in that AIC was -754.4 for the 
LMM-covariance within blocks, while AIC 
was -842.7 for the LMM-covariance across the 
example plot. Thus, it seemed that it was more 
reasonable and benefi cial to apply the LMM-

covariance across the entire study region rather 
than within blocks. In addition, the exponential 
model was compared with or without a nugget 
effect. The model AICs were -845.1 for the ex-
ponential model with a nugget and -820.9 for 
the exponential model without a nugget. LRT 
also rejected the null hypothesis of no nug-
get effect (p-value < 0.0001). The exponential 
model was compared with other commonly 
used variogram models. The result indicated 
that the exponential variogram model (AIC = -
845.1) was a better choice than either Gaussian 
(AIC = -836.7) or spherical (AIC = -825.7) for 
our data. Finally, the model parameters of the 
LMM-covariance with exponential variogram 
and nugget were sill = 0.0106, range = 4.96, 
and nugget = 0.0083. 
 The combination of blocking and covariance 
generated the LMM-block-covariance model, 
which had AIC equaled to -848.1 for model 
fi tting (Table 1). The LRT tests indicated that 
the LMM-block-covariance model was signif-
icantly improved in model fi tting over either 
LMM-block or LMM-covariance, respectively 
(p -value < 0.0001 for both LRT tests). The es-

timated model parameters were 2
bσ  = 0.0019

, sill = 0.0099, range = 2.92, and 
nugget = 0.0069, which were signifi cantly 
smaller than the estimate of block variance of 
LMM-block and the estimates of three vari-
ogram parameters of LMM-covariance. 
 To consider different covariance structures 
in different blocks, the LMM-covariance with 
between-group heterogeneity was used to fi t 
the data and the resultant model AIC was -
880.7 (Table 1). However, allowing each block 

Table 1 Model fi tting statistics
Models RSS RSS-fi xed AIC
OLS 12.1676 - -745.4
LMM-block   9.7849 - -819.8
LMM-covariance 10.5703 12.2252 -845.1
LMM-block-covariance 10.0103 10.3115 -848.1
LMM-covariance (between-group heterogeneity)   9.6079 12.2426 -880.7
LMM-block-covariance (between-group heterogeneity)   8.9662 10.2300 -919.2
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has different covariance structures added many 
parameters into the model because each block 
had its own variogram parameters. However, 
LRT still showed the signifi cant improvement 
of LMM-covariance with between-group het-
erogeneity over LMM-covariance (p-value < 
0.0001). Similarly, the addition of between-
group heterogeneity to the LMM-block-co-
variance model reduced the model AIC from 
-848.1 to -919.2 (Table 1) and LRT indicated a 
signifi cant improvement for incorporating the 
between-group heterogeneity into the LMM-
block-covariance model (p-value < 0.0001).

Model coefficients of fixed effects

The estimates of coeffi cients of fi xed effects 
and the standard error (S.E.) of estimates of all 
the models were presented in Table 2. LMM-
block and LMM-covariance had similar coef-
fi cients of fi xed effects, β0 and β1, to those of 
the OLS model, but their β0 was lower than 
that of OLS and β1 higher than that of OLS. In 
contrast, the two coeffi cients of LMM-block-
covariance were just between LMM-block 
and LMM-covariance. The incorporation of 
between-group heterogeneity into LMM-cov-
ariance made the model coeffi cients more dif-
ferent from those of OLS, while this addition 
of the between-group heterogeneity to LMM-
block-covariance produced the model coeffi -
cients closer to those of OLS (Table 2). 
 Both LMM-block and LMM-covariance had 
smaller S.E. of β0 and β1 than those of OLS. 
LMM-block yielded smaller S.E. for β0, but 
larger S.E. for β1 than those of LMM-covari-

ance. The corporation of between-group het-
erogeneity produced smaller S.E. than those of 
both LMM-covariance and LMM-block-cov-
ariance (Table 2).

Model prediction

Good model fi tting in LMM does not neces-
sarily guarantee good performance of predic-
tion, which is measured by the residual sum of 
squares (RSS, eq. [24]). However, the model 
RSS for LMM-covariance is actually from the 
combination of prediction by fi xed effects and 
Kriging by cross-validation. We separated the 
RSS of model prediction by the fi xed effects 
alone and denoted it as RSS-fi xed. The RSS, 
RSS-fi xed (only for models with covariance 
structures) and AIC (model fi tting) of different 
models were listed in Table 1.
 LMM-block performed much better (RSS 
= 9.7849) than OLS (RSS = 12.1676). LMM-
covariance had smaller RSS (10.5703) than 
OLS, but larger RSS than LMM-block. An 
interesting point was if LMM-covariance was 
used for prediction without using Kriging its 
prediction was similar to OLS because the 
RSS-fi xed of LMM-covariance was 12.2252 
(slightly larger than the RSS of OLS). It indi-
cated that although LMM-covariance fi tted the 
data better (smaller AIC) than OLS, it relied 
on the Kriging process to achieve better model 
prediction. Incorporating block or random ef-
fects into LMM-covariance not only improved 
the model fi tting, but also helped with model 
prediction (smaller RSS) (Table 1). 

Table 2 The estimates of model coeffi cients and standard errors (S.E.) of the fi xed effects
Models β0 S.E.(β0) β1 S.E.(β1)
OLS 0.972 0.0470 0.559 0.0170
LMM-block 0.920 0.0458 0.576 0.0156
LMM-covariance 0.938 0.0461 0.568 0.0155
LMM-block-covariance 0.936 0.0459 0.569 0.0155
LMM-covariance (between-group heterogeneity) 0.927 0.0377 0.572 0.0132
LMM-block-covariance (between-group heterogeneity) 0.957 0.0374 0.566 0.0125
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Residual analysis

The model residuals were analyzed using Mo-
ran’s I (Fig. 1). It is clear that all LMM models 
produced much smaller Moran’s I in the model 
residuals than OLS. In general, Moran’s I are 
positive across a range of spatial lags and ap-
proach to zero after the spatial lag 15 m for all 
LMM models. LMM-block has higher Moran’s 
I than that of LMM-covariance. LMM-block-
covariance also has higher Moran’s I than that 
of LMM-covariance models. It seems that the 
addition of between-group heterogeneity leads 
to higher Moran’s I in LMM-covariance. 
 The intra-block variances (Fig. 2) show that 
LMM-block has smaller spatial heterogeneity 
in the model residuals than LMM-covariance. 
In fact, LMM-covariance is very close to OLS 
in the intra-block variances across the spatial 
lags. The addition of between-block heteroge-
neity does not change the intra-block variances 
much.

Discussion
 
It was evident that LMM models with better 
model fi tting (lower AIC) did not necessarily 
produce better model prediction. For example 
the AIC of LMM- covariance was smaller than 
that of LMM-block, but LMM-block produced 
smaller RSS for model prediction than LMM-
covariance. The reason was that LMM-cov-
ariance required a Kriging process which was 
based on the estimated parameters of a vari-
ogram model. The errors of prediction by the 
Kriging process were added to the total errors 
of prediction by the LMM-covariance model. 
In addition, if the study area was spatially het-
erogeneous such as the example plot in this 
study (a mixed-species stand), the stationar-
ity assumption needed for the Kriging was 
violated, consequently, affected the prediction 
by the LMM-covariance model. On the other 
hand, LMM-covariance was designed to incor-
porate spatial autocorrelation in the data into 
the modeling process. It yielded much smaller 
Moran’s I in the model residuals than the mod-

Moran’s I of model residuals across a range of spatial lagsFigure 1 
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els without using spatial covariance.
 In contrast, LMM-block was designed to 
deal with the spatial heterogeneity in the data. 
Thus, it produced more reliable estimates of 
fi xed effects and, better prediction, and smaller 
intra-block variances of residuals (indicating 
the reduction of spatial heterogeneity in the 
model residuals). However, the selection of 
block size was ad hoc and relatively arbitrary 
for LMM-block, if the segmentation of the 
study area was used as the blocks. A good bal-
ance between number of blocks and number of 
trees within a block needed to be kept. Oth-
erwise, some blocks may end up without suf-
fi cient observations for fi tting the model, es-
pecially in a spatially clustered stand (e.g. the 
example plot). 
 LMM-block-covariance, which considered 
both blocking and spatial covariance simul-
taneously, had better AIC than both LMM-
block and LMM-covariance, but its RSS was 
between LMM-block and LMM-covariance. 
Although LMM-block-covariance took the 
advantage of incorporating both blocking and 
spatial covariance into the modeling process, it 
did not yield a better model prediction as one 

would expect. If improving model fi tting is in-
tended to obtain accurate estimations on model 
coeffi cients, LMM-block-covariance should 
be considered. If the model prediction is the 
primary objective of the study, LMM-block is 
a better choice. 
 Incorporating between-group heterogeneity 
into model structure allowed the local vari-
ogram to be used in LMM and was proved to 
enable the Kriging to make better predictions 
(Walter et al. 2001, Corstanje et al. 2008). It 
not only improved model fi tting but also pro-
duced better model prediction. However, its 
drawback was that it signifi cantly increases the 
number of model parameters to be estimated, 
i.e. the complexity of the model structure. Nev-
ertheless, our results provided some insights 
on using local variogram in spatial analyses 
and modeling, which may be compared with 
other local spatial modeling techniques such 
as geographically weight regression (Fother-
ingham et al. 2002, Zhang et al. 2004). 

Intra-block variances of model residuals across a range of spatial lagsFigure 2
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Conclusions

Previous studies showed that linear mixed 
models with spatial covariance can effectively 
reduce spatial autocorrelation and heterogene-
ity in model residuals (e.g., Zhang et al. 2005, 
Zhang et al. 2008). In this study we compared 
the LMM with different specifi cations of model 
structure. The results indicated that, in general, 
LMM-covariance signifi cantly reduced spa-
tial autocorrelation in model residuals, while 
LMM-block was effective in dealing with spa-
tial heterogeneity. The tradeoff in model selec-
tion is always a challenge, and the selection of 
an appropriate model structure may depend on 
the specifi c situation of data.
 LMM-block treated the blocks as random ef-
fects and avoided the estimation of parameters 
of the variogram model. Thus, it produced bet-
ter model predictions than LMM-covariance. 
It showed a different way of incorporating spa-
tial heterogeneity into a “global model”, unlike 
local models such as GWR. 
 LMM-block-covariance took both block ef-
fects and spatial covariance into account, and 
signifi cantly improve model fi tting. However, 
it did not produce better model predictions 
due to the increase of model complexity and 
estimation of the local variogram within each 
block. Therefore, we would recommend one 
considering LMM-block for the prediction 
purpose and LMM-block-covariance for the 
analytic purpose of spatial effects. 
 Linear mixed models with different model 
structures provide prosperous perspectives on 
spatial analysis and modeling. Future works 
may focus on developing more effective algo-
rithms for estimating parameters of local vari-
ograms, and combining between-group hetero-
geneity in spatial covariance and within-group 
heterogeneity in error variance together. 
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