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Abstract

We show that the clamped column equation may not possess
a positive first eigenfunction. This result discovers the anoma-
lies of some papers in determining the shape of the strongest
clamped-clamped column.
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1 Introduction

Let σ ∈ L∞(0, 1) be a nonnegative function and consider the fourth
order linear differential equation

(σ(x)u′′)′′ + λu′′ = 0, 0 < x < 1, (1)

subject to the boundary conditions

u(0) = u′(0) = 0, u(1) = u′(1) = 0. (2)

This boundary value problem describes the equilibrium of an axially
symmetric column clamped at the extremities x = 0 and x = 1 and
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having a cross sectional area equal to σ(x). We denote by U the set of
all functions in L∞(0, 1) bounded below by positive constants, that is

U = {σ ∈ L∞(0, 1),∃ h > 0 such that σ(x) ≥ h a.e. in (0, 1)}.

The weak formulation of the clamped column equation for σ ∈ U is

∫ 1

0

σu′′v′′ dx = λ

∫ 1

0

u′v′ dx, ∀v ∈ H2
0 (0, 1). (3)

For each σ ∈ U , its spectrum consists of a sequence of positive eigen-
values {λk} which, counted with their multiplicities, can be arranged
as follows [4]

0 < λ1(σ) ≤ λ2(σ) ≤ λ3(σ) ≤ · · · → +∞.

These eigenvalues correspond to a sequence of eigenfunctions {uk(σ)} ⊂
H2

0 (0, 1), which can be chosen orthonormal with respect to the bilinear
form associated with the right side of (3). It is not difficult to show
that the multiplicity of each eigenvalue of (1)-(2) is at most two, see
for instance [7] or [4].

By employing the change of variable w = σu′′ [12], Equation (1)
becomes

w′′ + λσ−1w = 0, (4)

If we integrate twice the following equation w′′ = −λu′′, and use the
clamped conditions imposed on u at x = 0, we obtain the following
relations

u′(x) = [w′(0) − w′(x)]/λ, u(x) = [xw′(0) − w(x) + w(0)]/λ. (5)

By using the clamped conditions at x = 1, we derive the boundary
conditions for w

w(0) = w′(1), w(1) − w(0) = w′(1). (6)

Equation (4) and boundary conditions (6) form a self-adjoint eigenvalue
problem for the determination of λ. This eigenvalue problem admits an
infinite sequence of nonnegative eigenvalues increasing without limit.
Once an eigenvalue λ 6= 0 and an associated eigenfunction w(x) are
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found, we can use (5) to uniquely determine an eigenfunction u(x) as-
sociated with λ, and vice versa. However, the two problems in question
are not completely equivalent for the reason that the second one has
a double zero eigenvalue with associated eigenfunctions w(x) = 1 and
w(x) = 1− x. The first eigenvalue λ1(σ) requires therefore to be equal
to the smallest positive (i.e. third) eigenvalue of (4)-(6), see [11].

In [4], Cox and Overton claim in Theorem 2.2 that if σ ∈ U is
even (about 1/2), i.e., σ(x) = σ(1 − x), then there exists a pos-
itive even eigenfunction corresponding to λ1(σ). The idea of their
proof is inspired from a finite-dimentional technique for computing
the least eigenvalue and eigenvector of symmetric matrix. They tried
then to approximate the least eigenfunction u1(x) by a solution of a
related non-homogeneous boundary value problem. For a given func-
tion v0 ∈ H2

0 (0, 1) they considered its expansion in the complete set of
eigenfunctions {uk},

v0(x) = v̄(x) +
∞

∑

k=m+1

akuk(x),

where m is the least integer for which λ1(σ) < λm+1(σ) and v̄ is an
eigenfunction corresponding to λ1(σ). Next they produced a function
v0 whose corresponding v̄ is even. However, the remainder of the proof
assume implicitely that v̄ 6= 0, which is not true if the eigenfunctions
corresponding λ1(σ) are all odd. Cox and Overton’s claim has been
implicitely used in [2] and later in [5], and led to erroneous results. The
aim of this paper is to show that symmetric clamped-clamped columns
may not possess positive first eigenfunctions. To our knowledge this
fact was missing in all papers dealing with the optimal shape of the
clamped-clamped column.

2 Oscillation of the first eigenfunction

Let F be the functional defined by

F [σ, u] =

∫ 1

0

σu′′2 dx/

∫ 1

0

u′2 dx. (7)
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According to a variational principle, λ1(σ) can be represented as

λ1(σ) = inf
u

F [σ, u],

where the inf is taken over all functions u in H2
0 (0, 1). It is easy to

verify that λ1(σ) can also be found as

λ1(σ) = inf
u

G[σ, u], (8)

where G is defined by

G[σ, u] =

∫ 1

0

σu′2 dx/

∫ 1

0

u2 dx,

and the inf is taken over the set H of all functions u ∈ H1
0 (0, 1) and

satisfying the condition
∫ 1

0
u dx = 0. Notice than each element of H

has at least one zero in (0, 1). Throughout the paper, we denote by
µn(σ) the nth eigenvalue of the following problem

(σv′)′ + µv = 0, 0 < x < 1. (9)

v(0) = v(1) = 0. (10)

Since µ1(σ) = infu G[σ, u], and the inf is taken over of u ∈ H1
0 (0, 1),

it follows that µ1(σ) < λ1(σ). The next theorem provides an upper
bound for λ1(σ).

Theorem 1. Let σ be a member of U (σ is not necessarily even). Then
we have

λ1(σ) ≤ µ2(σ).

Proof. Let v2 be an eigenfunction corresponding to µ2(σ). Then it
is known that v2 has exactly one zero (call it a) in the interval (0, 1).
Moreover, µ2(σ) is the first eigenvalue of the two problems

(σv′)′ + µv = 0, v(0) = v(a) = 0,

(σv′)′ + µv = 0, v(a) = v(1) = 0,

Let v̄2 be the function equal to v2 in [0, a] and equal to ξv2 in [a, 1],

where the real number ξ is chosen such that
∫ a

0
v2 dx + ξ

∫ 1

a
v2 dx = 0.
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That is
∫ 1

0
v̄2 dx = 0. Since v̄2 is an eigenfunction corresponding to

µ2(σ) in both intervals (0, a) and (a, 1), we have
∫ a

0

σv̄′2
2 dx = µ2(σ)

∫ a

0

v̄2
2 dx,

and
∫ 1

a

σv̄′2
2 dx = µ2(σ)

∫ 1

a

v̄2
2 dx.

By summing, we obtain
∫ 1

0
σv̄′2

2 dx = µ2(σ)
∫ 1

0
v̄2

2 dx. Therefore, in view
of (8), we have λ1(σ) ≤ µ2(σ). 2

Notice that when ξ 6= 1, the function v̄2 is not an eigenfunction of
(9). In such a case, we have λ1(σ) < µ2(σ) as the function v̄2 is not
an eigenfunction of (1)-(2). Notice however that the case ξ = 1 does
not necessary imply that λ1(σ) = µ2(σ). It only informs us that µ2(σ)
is a member of the spectrum of (1)-(2) and the function

∫ x

0
v2 dt is an

associated eigenfunction. We will see later that when λ1(σ) is simple,
µ2(σ) may be equal to the second eigenvalue λ2(σ) of (1)-(2).

We also notice that the strict inequality λ1(σ) < µ2(σ) implies that
the functional G[σ, ·] attains its minimum over H at some function v
satisfying the Euler-Lagrange equation (σv′)′ + λ1(σ)v = C, where C
is a nonzero constant.

Theorem 2. Let σ be an arbitary member of U . If λ1(σ) is double,
then λ1(σ) = µ2(σ).

Proof. If λ1(σ) is double, then there exists two linearly independent
eigenfunctions u1 and u2 correponding to λ1(σ). Let v1 = u′

1 and
v2 = u′

2. Then, v1 and v2 are linearly independent in H, and satisfy

(σv′

1)
′ + λ1(σ)v1 = C1,

(σv′

2)
′ + λ1(σ)v2 = C2,

where C1 and C2 are constants. If C1C2 = 0, then as v1 and v2 change
sign in (0,1), we have by Sturm’s theorem λ1(σ) ≥ µ2(σ). From
Thereom 1 we deduce that λ1(σ) = µ2(σ). If C1C2 6= 0, then the
function v̂ = v1 − (C1/C2)v2 belongs to H and satisfies the equation
(σv̂′)′ +λ1(σ)v̂ = 0. From Sturm’s theorem and Theorem 1, we deduce
again that λ1(σ) = µ2(σ). 2
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We notice that the equality λ1(σ) = µ2(σ) does not imply that
λ1(σ) is double. This is the case for the uniform column (σ ≡ 1). In
what follows, we examine in detail the case where σ is even. We have
the following lemma.

Lemma 1. Let σ ∈ U be an even function. If the eigenfunctions
associated with λ1(σ) are not all odd, then there exists, up to a scalar
multiple,a unique even eigenfunction associated with λ1(σ). This eigen-
function is positive and symmetrically decreasing.

Proof. Assume that there is an eigenfunction u associated with λ1(σ),
and which is not odd, i.e., u(x) 6= −u(1 − x). Then, the function ψ
defined by ψ(x) = u(x) + u(1 − x) is a member of H2

0 (0, 1) and is not
identically zero. As σ is even, ψ is also an eigenfunction to λ1(σ). Let
us define a new function ū as follows: ū =

∫ x

0
v(t) dt, where

v(t) =

{

|ψ′(x)| for 0 ≤ x ≤ 1/2,
−|ψ′(x)| for 1/2 < x ≤ 1.

Then v ∈ H1
0 (0, 1), v is odd and the integral

∫ 1

0
v(t) dt is zero. It follows

that ū is even, increasing on the interval (0, 1/2) (i.e. positive in (0, 1))
and belongs to H2

0 (0, 1). On the other hand, since F [σ, u] = F [σ, ū],
we deduce that ū is an eigenfunction associated with λ1(σ). Assume
now that ũ is another even first eigenfunction. As ū′ and ũ′ are odd,
they are both solutions of the problem

(σv′)′ + λ1(σ)v = 0, v(0) = v(1) = 0.

Since the eigenvalues of this problem are simple, ū′ and ũ′ are linearly
dependent, and so ū and ũ are. 2

The following lemma provides a necessary and sufficient condition
for the equality λ1(σ) = µ2(σ).

Lemma 2. Let σ ∈ U be an even function. Then λ1(σ) = µ2(σ) if and
only if λ1(σ) admits an even eigenfunction.

Proof. Since σ is even, µ2(σ) admits an odd eigenfunction v2, and
therefore the function u1 defined by u1 =

∫ x

0
v2 dt ∈ H2

0 (0, 1), is even
and satisfies

(σu′′

1)
′′ + µ2(σ)u′′

1 = 0.
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If λ1(σ) = µ2(σ), then u1 is a first eigenfunction of (1)-(2) correspond-
ing to λ1(σ). Conversely, if u1 is an even first eigenfunction corre-
sponding to λ1(σ), then (σu′′

1)
′ + λ1(σ)u′

1 = C , for some constant C.
As u′

1 is odd, C is zero and therefore λ1(σ) ≤ µ2(σ). By Theorem 1,
we conclude that λ1(σ) = µ2(σ). 2

It follows from this lemma that, if λ1(σ) < µ2(σ) then λ1(σ) is
simple and admits an odd eigenfunction.

In [4], Cox and Overton considered the problem of maximizing the
first eigenvalue of λ1(σ) under the conditions

0 < a < σ < b < ∞,

∫ 1

0

σα(x) dx = 1,

where a, b and α are given numbers. In Theorem 2.2, they claimed
that, if σ ∈ U is even, then there exists a positive even eigenfunction
corresponding to λ1(σ). They also proved, basing on this theorem,
that for each σ ∈ U there exists an even function σ∗ ∈ U satisfying the
above conditions and such that λ1(σ) ≤ λ1(σ

∗). We notice that this
result can also be proved independent of Theorem 2.2, using different
approaches. According to Lemma 2, if Cox and Overton’s claim is true,
then the problem of maximizing λ1(σ) will be reduced to the one of
maximizing µ2(σ), or equivalently, to the problem of maximizing the
first eigenvalue of

(σv′)′ + µv = 0, 0 < x < 1/2, (11)

v(0) = v(1/2) = 0, (12)

under the conditions

0 < a < σ < b < ∞,

∫ 1/2

0

σα(x) dx = 1/2.

This is a classical problem since it involves only simple eigenvalues
which vary smoothly with σ. It can also be proved that Cox and Over-
ton’s claim leads to the optimality of Tadjbakhsh and Keller’s shape
[12], which was shown to be wrong, numerically in [9], and analytically
in [8], [11], [4] and [6].
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Theorem 3. Let σ be an even member of U . If λ1(σ) is double, then

λ1(σ) = µ2(σ),

and λ1(σ) admits, up to a scalar multiple, a unique odd and a unique
even eigenfunction.

Proof. From the previous results, when λ1(σ) is double, λ1(σ) =
µ2(σ), and according to Lemma 1, λ1 admits an even eigenfunction u
which is not even. From u, we may construct the odd first eigenfunction
û = u(x) − u(1 − x). This function satisfies the equation

(σû′′) + λ1(σ)û = C(x − 1/2),

for some constant C. At x = 1/2, we obtain (σû′′)(1/2) = 0 as û(1/2) =
0. Hence, û restricted to the interval (0, 1/2) is a solution for the
follwoing problem

(σu′′)′′ + λ1(σ)u′′ = 0, 0 < x < 1/2, (13)

u(0) = u′(0) = 0, u(1/2) = (σu′′)(1/2) = 0. (14)

Equation (13) with boundary conditions (14) describe the equilibrium
of a column clamped at 0 and hinged at 1/2. To complete the proof,
it suffices to show that the eigenvalues of this boundary value problem
are simple. For this, we introduce the change of variable w = σu′′ and
we obtain the Sturm-Liouville problem

w′′ + λσ−1w = 0, 0 < x < 1/2, (15)

2w(0) + w′(0) = 0, w(1/2) = 0, (16)

having only simple eigenvalues, and zero as a first eigenvalue, with
a corresponding eigenfunction w1(x) = 1/2 − x. This completes the
proof. 2

Theorem 3 states that when σ ∈ U is even and λ1(σ) is double,
λ1(σ) is equal to µ2(σ) and also equal to the second eigenvalue of (15)-
(16). Recall that µ2(σ) is equal to the first eigenvalue of (11)-(12) and
also to the second eigenvalue ν(2)(σ) of

w′′ + νσ−1w = 0, 0 < x < 1/2, (17)
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w′(0) = 0, w′(1/2) = 0. (18)

Now we address the crucial question. When σ is even and λ1(σ) is
simple, is an odd first eigenfunction expected? The answer is however
positive. From our analysis, we see that the possibility of having a first
eigenfunction which changes sign in (0, 1), is due to the fact that we
cannot in general compare the second eigenvalue of problem (15)-(16),
which we denote by λ(2)(σ), and the second one of problem (17)-(18).
Consider for instance the case where

σ(x) =

(

x −
1

4

)2

+ 0.1

on [0, 1/2]. Then, numerical computations using COLSYS [1] give us
λ(2)(σ) = 9.465 and ν(2)(σ) = 5.175, and corresponding eigenfunctions
are displayed in Figure 1.
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Figure 1: Eigenmodes corresponding to λ(2) (solid line) and ν(2) (dashed line).

It follows that we have three different cases:

(i) if λ(2)(σ) > ν(2)(σ) then λ1(σ) is simple and u1(σ) is odd; u1(σ)
restricted to the interval (0, 1/2) is a first eigenfunction of (13)-(14).

(ii) if λ(2)(σ) < ν(2)(σ) then λ1(σ) is simple and u1(σ) is even; we have
λ1(σ) = µ2(σ).
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(iii) if λ(2)(σ) = ν(2)(σ) then λ1(σ) is double.
We have in other words

λ1(σ) = min{λ(2)(σ), ν(2)(σ)}. (19)

In case (i), it is possible to show that µ2(σ), which is a member of
the spectrum of problem (1)-(2), coincides with the second eigenvalue
λ2(σ) of (1)-(2). Indeed, let u2 be an eigenfunction associated with
λ2(σ). If u2 is even, then u′

2 is a solution of (σv′)′ +λ2(σ)v = 0, v(0) =
v(1) = 0, and since u′

2 vanishes in (0, 1), we conclude that µ2(σ) ≤
λ2(σ).

If u2 is odd, then λ2(σ) will be equal to the third eigenvalue λ(3)(σ)
of problem (15)-(16). Recall that λ(3)(σ) is greater than the second
eigenvalue µ(2)(σ) of the boundary value problem

w′′ + µσ−1w = 0, 0 < x < 1/2,

w(0) = w(1/2) = 0

see for instance [11], since the latter is equivalent, except for the pres-
ence a simple zero eigenvalue, to the following problem

(σu′′)′′ + λ1(σ)u′′ = 0, 0 < x < 1/2,

u(0) = (σu′′)(0) = 0, u(1/2) = (σu′′)(1/2) = 0,

which describes the equilibrium of a column hinged at both extremities
x = 0 and x = 1/2. On the other hand, since the inequalty µ(2)(σ) ≥
ν(2)(σ) holds for any σ ∈ U , we have

µ2(σ) = ν(2)(σ) ≤ µ(2)(σ) ≤ λ(3)(σ) = λ2(σ),

and finally, in view of Theorem 1, we have µ2(σ) = λ2(σ). It now
follows that in case (i) the first eigenfunction of (1)-(2) changes sign
in (0, 1) while the second eigenfunction is of one sign, which seems
an unusual phenomenon. This explains in part why Tadjbakhsh and
Keller’s best clamped-clamped column has a much lower buckling load
than 16π2/3, the value they claimed. This was first revealed in [9],
as an evidence to the erroneous of Tadjbakhsh and Keller’s optimal
shape. According to our analysis, the value 16π2/3 corresponds to the
second eigenvalue of the clamped column equation.
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Osobine prvih sopstvenih funkcija jednačine stuba
slobodno oslonjenog na krajevima

UDK 534.16

Pokazano je da jednačina stuba slobodno oslonjenog na krajevima
ne sme da ima pozitivnu prvu sopstevnu funkciju. Ovaj rezultat otkriva
nepravilnosti nekih radova u odredjivanju oblika najjačeg stuba oslon-
jenog na krajevima.


