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Abstract. To compensate for a poorly known geoid, satel- 1 Introduction

lite altimeter data is usually analyzed in terms of anomalies

from the time mean record. When such anomalies are asAlthough sequential data assimilation algorithms rely on the
similated into an ocean model, the bias between the climaassumption of an unbiased model, this assumption is almost
tologies of the model and data is problematic. An ensemblealways violated. The severity of the violation varies from
Kalman filter (EnKF) is modified to account for the presence model to model, but systematic patterns are common to many
of a forecast-model bias and applied to the assimilation ofmodels. For example, many ocean general circulation mod-
TOPEX/Poseidon (T/P) altimeter data. The online bias cor-els (OGCMs) underestimate the amplitude of the annual cy-
rection (OBC) algorithm uses the same ensemble of modetle of upper-ocean temperature in the tropics, resulting in a
state vectors to estimate biased-error and unbiased-error coold bias in the summer and a warm bias in the winter (in
variance matrices. Covariance localization is used but thehis paper, the terms bias and systematic errors are used in-
bias covariances have different localization scales from thderchangeably, while the term random error identifies the part
unbiased-error covariances, thereby accounting for the facof the forecast error that has zero expectation.).

that the bias in a global ocean model could have much larger Methods to deal with bias were introduced decades ago
spatial scales than the random error. in the engineering community. In contrast, in the atmo-

The method is applied to a 27-layer version of the Posei-?phere and ocean modeling community, widespread interest

don global ocean general circulation model with about 30-" addre_ss_ing systematic fore(_:ast model errors is more re-
million state variables. Experiments in which T/P altime- cent. This is understandable since bias only became a major

ter anomalies are assimilated show that the OBC reduces thg>""c€™M after advances in model_ing and data assimilfa_tion had
RMS observation minus forecast difference for sea—surfacée‘juced random errors to the point of commensurability with

height (SSH) over a similar EnKF run in which OBC is not syst.ematlc errors. . :
used. Independent in situ temperature observations show that Bi@S correction approaches can be separated into offline

the temperature field is also improved. When the T/P datd"€thods — in which the bias is estimated beforehand from

and in situ temperature data are assimilated in the same rufft® model and observed climatologies — and online methods

and the configuration of the ensemble at the end of the rua~ Where a prior estimate of the bias is updated, resulting in
is used to initialize the ocean component of the GMAO cou-an analyzed bias. Several regent _onllne b|§s correction ap-
pled forecast model, seasonal SSH hindcasts made with ther0aches use a two-stage estimation technique (Dee and da
coupled model are generally better than those initialized with>!IV& 1998; Dee and Todling, 2000; Carton et al., 2000;
optimal interpolation of temperature observations without al-Martin et al., 2002; Chepurin et al., 2095 Originally in-

timeter data. The analysis of the corresponding sea-surfacgoduced by Friedland (1969) among signal processing en-
temperature hindcasts is not as conclusive. gineers, the two-stage techniques augment the model state

vector with an estimate of the bias. It is also assumed that

lChepurin, G., Carton, J. A., and Dee, D. : Forecast model bias
Correspondence tcC. L. Keppenne correction in ocean data assimilation. Mon. Wea. Rev., under re-
(keppenne@gsfc.nasa.gov) view, 2005.
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the bias can be “uncoupled” from the other state-vector vari-rithm is applied in the framework of T/P-anomaly assimila-
ables, thereby allowing the bias estimation and state estimaion with the Poseidon OGCM and the impact on seasonal
tion to occur successively. hindcasts of using the EnKF to initialize the GMAO coupled
To update the prior bias estimate, the two-stage estimageneral circulation model (CGCM) is examined. Tempera-
tion methods make assumptions about the biased-error arigire data are also assimilated but OBC is not used to process
unbiased-error covariance distributions. In this regard, inspithem. Section 4 contains the conclusion.
ration can be drawn from our knowledge of the background-
error distribution. Accordingly, Dee and da Silva (1998) —
followed by Dee and Todling (2000) and Martin et al. (2002)
— assume that the two distributions are identical except f0r2_1 Model
a proportionality factor. Another approach encountered in
the recent literature proceeds as follows. In a conven-The poseidon model (Schopf and Loughe, 1995; Konchadi
tional 3DVAR system, the error-covariance distributions areet g., 1998; Yang et al., 1999) is a finite-difference, reduced-
characterized by their amplitudes and horizontal and vergrayity ocean model which uses a generalized vertical co-
tical decorrelation scales. Therefore, Carton et al. (2000)yrdinate designed to represent a turbulent, well-mixed sur-
and Chepurin et al. (2005pstimate parameters of the bias face layer and nearly isopycnal deeper layers. The prognos-
and random-error covariance distributions offline by sepa+ic variables are layer thickness(x 6, ¢, t), temperature,
rating the basin-scale and synoptic-scale components of the 9, ¢, 1), salinity, S(1 6, ¢, #), and the zonal and merid-
observed-minus-forecast (OMF) differences. These worksonal current components(y. 6, ¢, ) andv(2. 6, ¢, t), where

make clear that the performance of the assimilation sys; is |ongijtude latitude, time andz is an isopycnal vertical
tem can be significantly enhanced when different covariancgqordinate. The SSH field is diagnostic.
models are used for the systematic and unbiased errors. Vertical mixing is parameterized through a Richardson
How the prior estimate of the bias is assumed to changgwumber-dependent mixing scheme (Pacanowski and Philan-
with time is another important component of a bias- der, 1981) implemented implicitly. An explicit mixed layer
estimation method. A steady state model can be assumeid embedded within the surface layers following Sterl and
in which b,{, the prior bias estimate at timg, is identical  Kattenberg (1994). For layers within the mixed layer, the
to b}_,, the posterior bias estimate at the time,1, of the  vertical mixing and diffusion are enhanced to mix the layer
previous analysis (e.g. Dee and Todling, 2000; Martin et al.,properties through the depth of the diagnosed mixed layer.
2002). Alternatively, Chepurin et al. (2065)se regression A time-splitting integration scheme is used whereby the hy-
analysis to fit simple bias models to the large-scale OMF dif-drodynamics are done with a short time step (15 min), but
ferences. In their work, the prior bias estimate has a temporathe vertical diffusion, convective adjustment and filtering are
component (i.eb! = F (1)) but the posterior bias estimate is done with coarser time resolution (half-daily).
not dynamically evolved (as iln,{zF(bz_l, 1). The model’s parallel implementation, described in Kon-

This paper builds upon the aforementioned studies fromChaOIy et al. (1998), uses a message-passing protocol and a

. ; . 2D horizontal domain decomposition.
the perspective of applying the ensemble Kalman filter . ) .
(EnKF) — augmented with an online bias correction (OBC) The 27-layer configuration of the OGCM used here is the

algorithm — to assimilate SSH anomaly measurements fronPc€aNC component of the coupled ocean-atmosphere-land

TOPEX/Poseidon (T/P) and in situ temperature data into amodel used in the GMAO seasonal-to-interannual forecast-

high-resolution global primitive-equation OGCM. The as- Ing system. Uniform 5/3 Zof‘a' and 1/3 mer'|d|onal res-
similation methodology is adapted from Keppenne and Rie-OIU.t'OnS a;re used_, resulting in 5%638x27 grid boxes, of
necker (2002) where a massively parallel multivariate EnKFWhICh gE_MJ_a_re situated over 'af‘d- Thus, there are about
algorithm is derived and applied to the assimilation of in 3.3x10%individual prognostic variables.
situ temperature data into a Pacific basin configuration of the, 5, | J.ii-ed ensemble Kalman filter

same OGCM (Poseidon: Schopf and Loughe, 1995). With

more than 30 million prognostic state variables, the globalThe EnkKE has quickly gained popularity since its introduc-
model’s state-vector size restricts the ensemble size and limyjgn by Evensen (1994). Applications range from simple-
its the choice of systematic-error covariance modeling apmodel studies to uses with more realistic forecast models.
proaches. Accordingly, the bias covariances are derived frongyensen (2003) lists most recent meteorological and oceano-
the same ensemble distribution as the random-error COVafigraphic EnKF applications. For the Poseidon model, the par-
ances, albeit different covariance scales are used in each cgjjg| implementation is described in Keppenne and Rienecker
variance model. Also, a steady state model is assumed fO(r2002) and detailed in a NASA Technical Report (Keppenne
the bias, but the bias estimate is allowed to propagate beang Rienecker, 2001). It is applied to the assimilation of in
tween successive assimilations (b¢=b{_,). situ temperature observations into a Pacific basin version of
The remainder of this article is organized as follows. Sec-Poseidon in Keppenne and Rienecker (2003). A less costly,
tion 2 focuses on the methodology with a description of thesteady-state version of the algorithm (multivariate optimal
model and assimilation system. In Sect. 3, the OBC algo-interpolation) is also discussed in Borovikov et al. (2005).

2 Model and algorithms
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! ! ! ! or process noise, represents the effect of model imperfections
t ' t t and forcing errors betweef_1 and#. The observations at
i H ; H time, Yk, are related to the true state by
, ' + Vi = Hi(x}) + e, (2)
] L} 1 | I N
Y £ ] Ll [ whereH is the observation operator ands a vector of ob-
RSN e servational errors. The model and observations are assumed
i : AR ; unbiased so thaf (,_,)=0 andE (g;)=0.
: = : : The Kalman filter update equation (Kalman, 1960) relates
' ' ' ! the analysis to the model forecast with
Fig. 1. Schematic view of the horizontal domain decomposition
sh%wing, for one PE, its PE-private area (textured inner repctangle)f\CZ - x,{ + Ky [yk B Hk(x’{)] ’ (3)

the halo region it shares with the surrounding PEs (darker shaded hereK. is k the Kal . dis i b
area), the ellipse with semi-axgsandiy which delimits the influ- WRETER IS known as the Ralman gain and IS given by

ence region of the PE-private area’s southeastern corner cell (dotted) 1
and the rectangular region from which it collects observations to as-Ky = P,{H,{ [Hk P,{H,Z + Rk] . 4)
similate (outer shaded rectangle containing the elliptical influence
i the PE-private areas of nearby PES. I the actual moqe e MacesP and Ry are the background-error and
imi -privi y . u : : : :
there are 578538x 27 grid bpxes, the PE-private areas have either?;bﬁgrgigggggsrg?rp;?;{gga;(:ﬁéégS(Zegt“’;en%er\é\gtnhatsg Xﬁ:
36x33x27 or 36x34x27 grid boxes and the halo regions are one A .
cell wide. derson, 1999; Van Leeuwen, 2003) in which the calculation
of the Kalman gain is not necessary, all sequential data as-
similation methods use an analysis equation like Eq. (3), but
To avoid costly ensemble transpositions across processorshey differ in the assumptions that are made regardh;fg
the assimilation uses the same horizontal domain decompaand R;. In the EnKF, an ensemble afmodel state vectors
sition used to integrate the ensemble. Thus, the ensemble is evolved fromy,_; to 7 owing to
distributed so that the memory of each processing element
(PE) contains the same elements of each ensemble membevl#fk =M g, fre) +Nik—1, i=12....n, (5)
state vector. Although between 16 and 64 HP SC45 PEs are ] )
commonly used for single-model runs, a8 PE lattice is where the flrst subscript refers to thih ensemb!e memper
used when running the EnKF. On this lattice, each PE is re2"dNi k-1 is a term added to the model equations to simu-
sponsible for the assimilation of the observations that occuf@te the process noise. Many applications ignore the process-
within a region surrounding its rectangular PE’s private area.0iS€ model and attempt to represent its effect through co-
This region’s size is a function df andls, two correlation- ~ Variance inflation, but our experience with the Poseidon
function parameters specifying the distance at which a SchuF“O_del suggests that tr_ad|t|onal multiplicative covariance in-
product of the ensemble-derived covariances with a comdlation may not be a viable approach when working with a
pactly supported correlation function forces background co-Nigh-dimensional state vector. . .
variances to vanish in the zonal and meridional directions, Since the remainder of the discussion refers to timene
respectively (Houtekamer and Mitchell, 2001; Keppenne andeorresponding subscript will now be dropped except where
Rienecker, 2002). This is illustrated in Fig. 1. required. Given the ensemblh{, x{, e x,{] of model
For the sake of brevity, the parallelization of the EnKF is forecasts. the EnKF first estimatésPf H” with
not explicitly discussed further in this paper and the equa-

tions are written as though a single processor were performs — {5, s,,....s5,} = {H(x{), H(xg), o H(th)} (6a)
ing all the computations. For details, the reader is referred to
Keppenne and Rienecker (2002). 1

Assume that the true climate stasé, evolves from time HP/H" = n—lSST . (6b)

fx—1 to time#; according t8
; ; Then, the representer weights used to updateétthensem-
X = Mg, fro1) + -1, (1) ble member are calculated with

whereM is the model operatoif ;. _; is the forcing between

-1 X
R gt . f
fx—1 andz, andn,_;, commonly referred to as system noise % = [C sHP H" + R] (y tei— Hx; )> ’ @

2Upper-case boldface characters refer to matrices while lowerWhereC is a compactly supported correlation matrix as dis-
case boldface characters correspond to column vectors. Thus, givegHssed in Keppenne and Rienecker (20@2)s a perturba-
the vectors andb, a’ bis their scalar product arab’ is their outer  tion term with covarianc® (Burgers et al., 1998) andrep-
product. resents the Schur (element by element) product (Houtekamer
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and Mitchell, 2001). Then, in each grid béxwith coordi- In analogy to Eg. (1), the true model bias is assumed to

nates();, 6, ¢;), the state variables of ensemble member evolve according to

are updated using

, Lo, by = My(bj_q1, X} _1) + 21, (11)

x=xi,+—— ) x5 (c;ea;), (8) . ) ) ) ) )
BT g ; B ' where®;_1 is a white noise process. Since the bias evolution

is much slower than that of the forecast and happens on much

longer timescales, a reasonable model fortheoperator is

the identity matrix. Similarly;_1 is neglected because we

Cgssume tha®;_1<<mn;_41. Therefore, the augmented state-

ropagation equations are

where the rightmost term is computed right to left to reduce
the computational burdens;; = {hi, T;1, Sz, uig, vig}
and¢; is a vector of correlation function coefficients. De-
noting the difference between the longitudes, latitudes an
vertical coordinates of grid bakand themth observation as

S81m=(8A1m, 86m, 8Cim), themth component o€, is given by xi}j'k _ M(x?,k_r fed+Nipa, i=1...n, (12a)
ctm = PGm) = Pr(8Aim) po (8601m) e (8Cim) - 9)
In Eq. (9), p1, pe and o, represent applications of a com- b/ = b?_, . (12b)

pactly supported correlation function (Eq. 4.10 of Gaspari

and Cohn, 1995) with scaling such that the correlations van—nhe unbiased state estimatezib—b” . wheres refers to the

ish atd,, dp andd; in the respective space dimensions. The ensemble mean. Therefore and in analogy to Eq. (3), the
elements ofC in Eq. (7) are obtained similarly, but are func- two-stage update proceeds as follows:
tions of coordinate differences between pairs of observations.

In the current study, the system-noise is modeled by,. ,f —f f
adding to the model equations for each ensemble membeIFk = b = Lilyie = HiGry =5l (13b)
a perturbation term computed as a linear combination of
scaled empirical orthogonal functions (EOFs) calculated of-xf’,ka,-ij+Kk[yk+ei—Hk(x;fk—bf:)], i=1,...,n. (13b)
fline from an ensemble of ocean states forced with an ensem-
ble of atmospheric forcing sets with perturbations representThe state update (Eq. 13b) is computed and applied as in
ing internal atmospheric noise (Borovikov et al., 2005). The Egs. (6-8), except that the unbiased state estim’;’(te,b“,

amplitude of the perturbations is continually adjusted duringg \;sed everywhere in lieu of The gain for the bias, given

the ensemble integration in an effort to ensure byL:P{: HT[HPZHT+R]—1, is preceded by a minus sign
ir(HP'HT + R) = (y — Hx")T(y — Hx/). (10)  inEq. (13a) because a systematically positive assimilation in-
crement suggests the presence of a negative model bias. Note
that it has been assumed that the bias and the unbiased errors

the right hand side term by 25% or more, the amplitude ofare uncorrelated. The bias update uses equations similar to

the perturbations applied betwegnand .1 is increased Egs. (6-8):

(vs. decreased) by 25%. Note that this trick is analogous in Foog Fog Foay

its purpose to traditional covariance inflation. Sp= {H(xi —b"), H(x;=b%), ..., H(x; =b )} . (14a)
Although the observation perturbation tergnjn Eq. (7),

can be avoided if a square-root formulation of the EnKF (e.g.HPfHT o«

Tippett et al., 2003) is used, a square-root algorithm is very ™~ ? T -1

inefficient in a localized analysis framework with compactly

supported covariances. The reason for this is that the square-

-1

- I gt _ ¥ —p,
root alternative to Eq. (8) would involve the solution of an a4 = [C” e HP,H + R] (y H (x bf)) » (140)
nxn eigenproblem in each grid box. Nevertheless, provided

The approximate equality is maintained as follows. If at time
t, the left hand side of Eq. (10) is smaller (vs. greater) than

SyS} . (14b)

=1

n n
= - i f @ f
thatg ¢;=0, the ensemble-mean update is unaffected by theb;l =b] - — Z bj,zs/T (chioap) , (14d)
perturbed observations. j=1

2.3 Bias estimation The! subscript in Eq. (14d) refers to thith grid box. The

a in Eq. (14b) and Eq. (14d) is an amplitude scaling factor.
The previous discussion assumes that the forecast errors arithe correlation matrixc, and the correlation vectots ; are
observational errors are unbiased. While the latter assumpeomputed a€ andc¢;, but using different correlation scales
tion is plausible given that the measurements can be biasbecause the spatial scales are expected to be longer for the
corrected when the instruments are known to produce sysbias than for the random errors if the systematic model errors
tematic errors, the former is more questionable. The ap+eflect large-scale atmospheric forcing biases. The adjustable
proach used here to account for the presence of forecasparameters of the bias estimation algorithm are thasd the
model bias is adapted from Dee and Todling (2000). spatial scales for the bias; ;,, Iy, andi, p.
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3 Application The observational-error covariance matricEs,are as-
sumed to be Gaussian and are modeled with the same com-
3.1 Assimilation experiments pactly supported correlation function used in the Schur prod-

uct calculations. For the T/P data, an observational error-
Altimeter measurements from space are important becaus@ariance of 4 crhis assumed and the data-error covariances
they provide insight into subsurface ocean dynamics suchyre forced to vanish at a distance of 1GFor the tempera-
as changes in the vertical displacement of the thermoclingre observations, the assumed error-variance is 6,25
and halocline layers. The T/P altimeter samples the SSH:ovariances vanish at 2(orizontally and — reflecting the
field with an error standard deviation of approximately 2 cm. pelief that the errors are strongly correlated within each tem-
After removal of the temporal mean from repeating mea-perature profile — at a spacing of 1000 m vertically.
surement tracks and of the specific frequency distribution of | a]| experiments, the initial conditions come from a free-
known tides, the residual time-varying measurements havenodel run forced with observed winds, heat fluxes and SSTs,
a spatial resolution of about 1 km along the orbit track andpyt with no data assimilation. The initial ensemble is con-
317 km between tracks at the equator. The orbit repeats itselftrycted around the state from the free-model run which we

every 9.9156 days. identify as ensemble member 1. The ensemble construction
The T/P data used in this study are processed as in Adamgg hased on perturbations of the form

(1998), resulting in an along-track average every 7 km. Since _
temperature profiles are the most abundant source of infor¥i = X1+ Z Yijvj, =21, (15)
mation about subsurface variability, TAO and XBT profiles J

and, when available, temperature prOﬁleS from ARGO and\Nhere the%] are norma”y distributed pseudorandom num-
PIRATA are also assimilated. bers and the ; are the leading EOFs of an ensemble of ocean
The assimilation of the altimeter observations into theruns calculated as in Borovikov et al. (2005). Given that
OGCM presents a peculiar problem. Since the data arghe higher-order EOFs reflect variability on smaller spatial
anomalies, the model climatology is used to reconstruct thescales, thirty two EOFs are used as a compromise between
signal prior to each assimilation. However, our previousysing just as many EOFs as there are ensemble members (to
experience with temperature and altimeter assimilation hagjuarantee a minimum rank) and using all available EOFs (to
indicated that the time-mean SSH fields from free-modelcover all the spatial scales of the model variability). The per-
and assimilation runs are markedly different. Moreover, turbations are applied gradually over a period of ten days us-
when altimeter data are processed, the model gradually shiftsig the same IAU procedure used to insert the assimilation
regimes and the adjustment — which may require severajncrements. Thereafter, the same equation and insertion pro-
months of simulation — has repercussions on the OMF calcedure are used daily to generate and apply perturbations to
culations. When a static model climatology is added to thesimulate the system noise — always striving to respect the
anomalies before they are fed to the assimilation system, theondition (Eq. 10).
resulting signal tends to steer the model towards an unnatu- |n both the temperature and altimetry assimilations, cross-
ral state. The problem can be mitigated if bias correction isfield covariances are used to upd4dtes, « andv in each
used in the altimetry assimilation and the SSH climatology grid box. The layer thicknesses are not updated and adjust
is continuously adjusted as the measurements are processeffeely between successive assimilations in response to the
The experimental setting as as follows. The model|AU. Bias correction is not used when temperature is assim-
complexity and the specifications of the parallel comput-jlated. When OBC is used in the altimetry assimilation, ad-
ing platform used (HP SC45) restrict the ensemble size tqustments are continuously made to the SSH climatology but
16-members. To minimize the effect of using small en-theT, S, u, v and# fields are not bias-corrected.
sembles, the deviations{xlf—)?f), i=1,.--,n, are heav- Although insight into the value of the parametersd, p,
ily pre-filtered by means of a spatial averaging in which dy 5 andd, ;, of the OBC algorithm can be gained from an
the weights are proportional to expdistancé), before the  analysis of OMF statistics, these parameters are adjusted in
required background covariances are calculated. The prea series of short tuning runs. First, the bias-covariance scales
filtering After a long experimentation, the spatial scales usedwere set to the same value as the corresponding scales for the
in the Schur-product calculations atig=60°, dy=30° and background covariances — i, ;,, dg,,=dp, andd ,=d. —
d-=400 m in the temperature assimilation. When altimeterande is varied in the interva{0—2). For each probed value
data are processed,=2(°, dy=10° andd =400 m. The as- of «, the T/P assimilation ran for two months starting on 1
similation interval is five days, but the SSH and temperatureJanuary 1993 and the RMS OMF for SSH was calculated for
data are processed in sequence. The separate processingtioé entire run. The results, shown in Table 1, prompted us to
the two data types is justified by the lack of correlation be-choosex=0.75 for the remaining experiments.
tween the temperature and altimeter observational errors. In- To simplify the task of tuning the bias-covariance scales,
cremental analysis updating (IAU: Bloom et al., 1996), in a parameteig, is introduced such thak, ,=8d,, dy ,=Bdp
which the analysis increments are applied gradually (dividedand d. ,=Bd.. The RMS OMF statistics of a new series
equally between time steps) over the sequence of time stepaf two-month runs varying with « fixed at 0.75 lead to the
from#; to 741, is used in all runs. choicep=3.0 (Table 2). Of course, the procedure followed to
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Table 1. RMS OMF of the unbiased estimate for SSH as a functiom iofthe runs withd,, ;, dy ,=dy, andd, p=d..

o 0.0 0.1 025 05 0.75 1.0 15 2.0

RMS(m) 0.087 0.084 0.081 0.074 0.072 0.089 0.104 0.127

Table 2. RMS OMF of the unbiased estimate for SSH as a functiof wf the runs withu=0.75.

B 0.5 1.0 2.0 3.0 4.0 5.0

RMS (m) 0.087 0.072 0.066 0.061 0.063 0.065

The next experiment is a comparison of three 12-month
runs, starting 1 January 1993. In the first run (EnKF-OBC),
both temperature and T/P data are assimilated, and OBC is

4 used in the T/P assimilation to continually adjust the SSH

= climatology (experience has shown that the misspecification

. ‘ of the SSH climatology is a more serious problem than the
‘ presence of a bias in the temperature, salinity or current fields
L - 1 and no attempt is made to correct the temperature, salinity or

e ’
] current bias in this run.). The second run (EnKF) is identical
0 to the first, except that OBC is not used, and the third run
ol i (control) is a free-model run without assimilation.

50 200 50 0 50 100 150 Figure 2 shows the SSH bias estimate at six and twelve
‘ ‘ ‘ ‘ ‘ ‘ ‘ months in the EnNKF-OBC run. The differences between the
o ] two estimates can likely be attributed to the continuing con-
o < vergence of the OBC algorithm as well as to the presence
of seasonality in the bias. A persistent feature of the bias

h » estimate discernable in Figs. 2a and 2b is a positive bias in

b)

® - areas of the North Atlantic and in the southern midlatitudes.
g “ < ji’ Western boundary current overshoots in the subtropics and
2 , subpolar regions are a likely cause for the positive bias in the
- - = ! North Atlantic. The mostly negative bias in the Tropical Pa-
cific occurs between the latitudes of zero wind stress curl and
is probably associated with the SSM/I forcing.

-60

L L L L L L L
-150 -100 -50 0 50 100 150

3.2 Background covariances

o1 008 005 004 002 0 002 004 o006 008 o0 One hallmark feature of the EnKF is its reliance on flow de-
pendent background covariances in the Kalman gain calcula-
Fig. 2. Estimates of the SSH climatology error () 1 July 1993  tion. In many operational assimilation systems, the contribu-
and(b) 1 January 1994, respectively after six and twelve months oftjon of a single additional observation to the assimilation in-
temperature + T/P altimetry assimilation with bias correction in the crement is solely a function of the corresponding innovation,
EnKF-OBC run. y—H(x/). The background covariances are often univariate
and isotropic, do not vary with time and — if at all depen-

adjusta and — by first searching for a value efthat mini- dent on the measurement location — the spatial dependency

mizes RMS OMF statistics whesr1 before varyings while is .usuaIIy very simple and specified a prio_ri (in analpgy with

keepinge at this value — in no way assures that the resultingMicroeconomics, we refer tp the contribution o.f a single Qb—

(«, B) pair will minimize RMS statistics. Further iterations servatlon to the Kalman gain as that observation’s marginal

with #=3.0 and varyingr would likely yield a “better” ¢, ~ 9&in.). _ _ - _

B) pair. With the EnKF, the marginal gain of a unit innovation re-
sults from the local (in space and time) ensemble configura-
tion in the neighborhood of the corresponding measurement.
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Fig. 3. Isopycnal cross-sections showing layer 10 of the Marginal Kalman gain corresponding to a hypothetical 0.1 m SSH innovation at
(0° N, 100° W) on 1 July 1993. The large dot corresponds to the latitude and longitude of the obseri@tibryain, (b) S gain,(c) u gain
and(d) v gain.

Figures 3—7, which all correspond to the EnKF-OBC run, il-  Because the bias update (Eq. 14) uses wider covariance lo-
lustrate this point. calization scales than the state update, the marginal SSH bias
In Fig. 3, we show the marginal contribution on 1 July increments cover a much larger geographical area. More-
1993 of a hypothetical 0.1 m SSH innovation af KQ over, while we never allow a datum to affect the ocean state
100° W) to the T, s, u andv increments in layer 10 (count- in another basin (Pacific, Atlantic or Indian Ocean) than that
ing from the surface). The anisotropy of the background co-where it is observed, we do not impose the same restriction
variances is evident. The positive SSH innovation results inon the bias increment. While some bias patterns result from
a warmer layer 10 and the temperature increase is centeregfrors in ocean model parameterization (e.g. Vossepoel et al.,
around the SSH observation (Fig. 3a). In contr&stor- 2005), other patterns are believed to reflect large-scale atmo-
rections increase west of the datum and decrease to the eagpheric forcing biases. It is sensible to assume that the latter
(Fig. 3b). The zonal current of the South Equatorial Cur- patterns will not be confined to a particular ocean. Accord-
rent decelerates, mostly west of the observation (Fig. 3c)jngly, the zonally elongated negative bias increment in the
and there is increased meridional divergence of the merideastern Equatorial Pacific extends in the Atlantic on 1 July
ional current (Fig. 3d). 1993 (Fig. 5a). On 1 January 1994 (Fig. 5b), the bias incre-
Figure 4 illustrates the flow dependency of the backgroundment is still mostly negative in the eastern Equatorial Pacific,
covariances by showing how the depth of théQ@sotherm  but in the Tropical Atlantic it is generally opposite to the bias
is affected by the same 0.1 m SSH innovations on 1 Julyincrement obtained on 1 July 1993.
1994 and on 1 January 1994. The positive SSH innovations Figure 6 shows isopycnal cross sections through layer 10
result in a deeper thermocline in both cases, although on through the marginal’, s, u andv increments correspond-
July 1993 the deepening occurs mostly to the east of the obing to a positive 1C innovation in the Western Pacific at
servation location, while on 1 January 1994 it happens in a20° N, 150° E) at a depth of 53m (layer 10). The posi-
zonally elongated pattern centered about the datum. tive temperature innovation produces a salinity increase to its
The effect of the 0.1 m SSH innovations at (0 100 W) north and a freshening to its south (Figs. 6a and 6b). As seen
on 1 July 1993 and 1 January 1994 on the SSH bias estimati@ Fig. 3 for the SSH innovations in the eastern Equatorial
is shown in Fig. 5. In general, a positive SSH innovation Pacific, the marginak andv gains have generally opposite
results in a deepening of the thermocline and in a negativesigns (Figs. 6¢ and 6d).
SSH bias increment since the model is likely to be negatively The background covariances estimated with the EnKF ex-
biased when the observed SSH is consistently higher thahibit not only anisotropy and temporal variations, but also a
what it predicts. strong dependency on the observation location. To illustrate
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a hypothetical 0.1 m SSH innovation ¢a) 1 July 1993 andb) 1 to a hypothetical 0.1 m SSH innovation ¢s) 1 July 1993 andb)
January 1994. 1 January 1994.

this, Fig. 7 shows layer 10 of thE, s, u andv increments  bias in one part of the ocean could cancel out a large nega-
corresponding to a°C innovation at (20S, 60E) and at tjve bias in another part, insight into whether the assimilation
a depth of 68m (layer 10 at 28, 60°E) on 1 July 1993.  reduces or eliminates systematic errors can be gained by ex-
Here, the temperature increase in layer 10 caused by't@e 1 amining time series of spatial-mean OMF statistics. Accord-
innovation (Fig. 7a) is larger than in the case of the Westerningly, Fig. 8 shows how the latter evolve during the 12-month
Pacific innovation (Fig. 6a). Moreover, the temperature in-experiment. The statistics shown lump all observations to-
crease extends more to the south of the observation than tgether, independent of depth. Since SSH is a diagnostic vari-
its north. The amplitude of the marginalgain is also much  able, improvements in its statistics mostly reflect improve-
larger than in the case of the Western Pacific innovation angnents in the subsurface temperature and salinity fields.

is positive east of the observation and negative north of it |, Fig. 8a, showing the OMF corresponding to the tem-
(Fig. 7c). On the other hand, the amplitude of the marginalyerature observations, the strong positive bias of the control

v gain is relatively small (Fig. 7d). In contrast to the case ryn appears to be quickly reduced, but not eliminated, in the
of the Western Pacific temperature observation (Fig. 6b), thg=,K F-OBC and EnKF runs. In fact, although the original

marginals gain exhibits a wavy zonal pattern with freshen- kaiman filter equations are not designed to handle bias, a
ing east and west of the datum and a salinity increase closegjgnificant part of the work done by the assimilation consists
to it (Fig. 7b). in correcting the bias. The same observation can be made
One important question which has not been addressed iabout most ocean data assimilation systems. Since the tem-
this study because of computational limitations is whetherperature bias is not explicitly estimated or corrected in the
marginal Kalman gains like those shown in Figs. 6 and 7 areenKF and EnKF-OBC runs, the corresponding spatial-mean
robust with respect to increases in ensemble size. Before thigMF differences do not show much difference. Averaged
is done, we can not rule out the presence of artificial biases ibver the entire run, the spatial-mean OMF differences are
the corrections. Also note that the EnKF correction is vari-0.08°C, 0.10C and 0.22C respectively in the EnKF-OBC,
ance minimizing only for Gaussian ensemble distributionsEnkF and control runs. The situation is different for the

(van Leeuwen, 2001). spatial-mean SSH OMF (Fig. 8b). After an initial adjust-
ment, the estimated unbiased OMF from the EnKF-OBC run
3.3 OMF statistics is much closer to zero than the biased OMF from the same

run, or than the spatial-mean OMF of the control and EnKF
The SSH bias is a two-dimensional field. Notwithstanding runs. Averaged over the entire run, the spatial-mean OMF is
and with the caveat that, in a spatial average, a large positive.0 cm, 0.6 cm, 0.6 cm and 0.12 cm for the unbiased EnKF-



@ T10 07/01/93: T obs. (20N, 150E, L10)

60

50

40

30

20 .

10

080 100 120 140 160 180 200
HE = 42
-1 0.5 0 0.5 1

c)
u10 07/01/93: T obs. (20N, 150E, L10)

60

50

40

30

20 e~

10

080 100 120 140 160 180 200
s

-0.05 0 0.05

a)

T10 07/01/93: T obs. (20S, 60E, L10)
10
0
-10
20| -
-30
40
-50

40 60 80 100 120 140
-1 0.5 0 0.5 1
)

u10 07/01/93: T obs. (208, 60E, L10)
10
]
-10

| —_—

-20 o —
-30
40
-50

40 60 80 100 120 140
-0.05 0 0.05

C. L. Keppenne et al.: Online bias estimation with an ensemble Kalman filter

b)
$10 07/01/93: T obs. (20N, 130E, L10)

60
50
40
30

20 [ J

v10 07/01/93: T obs. (20N, 150E, L10)

60

50

40

30

20 [
10

0
80 100 120 140 160 180 200

-0.05 0 0.05

Fig. 6. Isopycnal cross sections showing layer 10 of the Marginal Kalman gain corresponding to a hypotR€tigahperature innovation
in layer 10 at (20N, 15C° E) on 1 July 1993(a) T gain,(b) S gain,(c) « gain and(d) v gain.

$§10 07/01/93: T obs. (208, 60E, L10)

10

0

-10

-20 .

-30

40

0740 60 80 100 120 140
HE 4 e
-0.1 -0.05 0 0.05 0.1

d)

v10 07/01/93: T obs. (208, 60E, L10)

10

0

-10

-20 .

-30

40

70 60 80 100 120 140
H 4 e
-0.05 0 0.05

Fig. 7. Same as Fig. 6 for a hypotheticdl@ temperature innovation at (28, 60 E).

499



500 C. L. Keppenne et al.: Online bias estimation with an ensemble Kalman filter

a) b)

05 T

0.025 T

I T T IT $TT
—£- mean T OMF: enkf OBE —&- mean SSH OMF: enkf OBE
—5— mean T OMF: control —&— mean SSH OMF: control
#— mean T OMF: enkf no-OBE —~©- mean unb. SSH OMF: enkf OBE
T M >

0.4

0.015

0.011

0.005

-0.1 * o -0.005 +
-0.2} . -0.01

=03 1 -0.015 3,

-04f - -0.02 - .

—05 1 I I L -0.025 L L L L
1993 1993.2 19934 1993.6 1993.8 1994 1993 1993.2 1993.4 1993.6 1993.8 1994

Fig. 8. Temporal evolution of the spatial-mean OMF &) temperature an¢b) SSH in the no-assimilation control run (diamonds), the

EnKF run with temperature and T/P-anomaly data assimilation and continuous correction of the SSH climatology using OBC (squares) and
the EnKF run with temperature and T/P assimilation without SSH bias correction (stars). The circles in (b) correspond to the difference
between the T/P observations and the unbiased state estimate of the EnKF run with OBC.

OBC estimate, the biased EnKF-OBC estimate, the EnKF3.4 Hindcast experiments
run, and the control run, in that order.

Figure 9 shows the evolution of RMS OMF statistics T_he th'rd. experiment con5|sts_of a series of coupled-model
. hindcast initializations to examine the impact on the seasonal

corresponding to the spatial-mean statistics displayed Morecast skill of using the EnKF to process temperature and

Fig. 8. In both the EnKF-OBC and EnKF runs, the RMS _ . : : ) .
; o altimetry observations and of applying OBC in the altimeter
OMF for temperature drops quickly from an initial value of o . ; . . :
data assimilation. Unlike the previous experiment in which

1.54C during the first month and stay near Xthereafter L )
a no-assimilation control run was used to measure the im-

g;lrgéti?;' gx\l\//leFraagrzdoogzr tr %LS gg;fr:é)flt Zeggl r:ﬁ ttr?ee Er:\:l(?:fem_pact of the assimilation, the performance of the EnKF-based

OBC, EnKF and control runs. Thus, although the effect of assimilation system is assessed in a comparison to the sys-

applying OBC in the T/P assimilation on the spatial—meantem used for the GMAO production seasonal forecasts. In

OMF statistics for temperature was hardly noticeable, the ef-the production system, only temperature data are assimilated

fect on the RMS temperature OMF is more significant. usi_ng a standa_rd o_ptimal _inte_rpolation (O1) algorithm and a
salinity correction is applied in an attempt to preserve the
As expected, the application of OBC in the T/P assimila- temperature and salinity properties of water masses (Troccoli
tion has more impact on the RMS OMF statistics for SSH et al., 2003).
than on the RMS temperature OMF (Fig. 9b). Indeed, the In the hindcast initialization experiment, a three-month
RMS OMFs of the biased state estimate from the EnKF-OBCENKF run is started on February 1 of each year from 1993
run are very close to those of the control, while the RMSto 2003. The setup of each run is identical to that of the
OMFs of the unbiased estimate quickly become markedlyEnKF-OBC run of the previous experiment, i.e. temperature
lower. The corresponding RMS statistics from the EnKF runand T/P data are assimilated and OBC is used to continually
lie between those of the control and unbiased EnKF-OBCadjust the model SSH climatology which is used to calculate
estimate. Averaged over the entire runs, the RMS OMFs ardorecast SSH anomalies. Following the three months of as-
0.077 m, 0.092 m, 0.087 m and 0.094 m for the unbiasedsimilation, the final state of each of the first five ensemble
EnKF-OBC estimate, biased EnKF-OBC estimate, EnKF,members is provided as an initial ocean state to an instance
and control, respectively. of the CGCM, which is then run in forecast mode without
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Fig. 9. Same as Fig. 8 for the spatial RMS OMF differences.

assimilation for 12 months. Only five of the 16 EnKF-OBC altimeter. Much as is the case for temperature, the hind-
ensemble members are used in order to reduce the computaasts using ocean initial conditions obtained from EnKF-
tional expense of the experiment. OBC runs underestimate the amplitude of the large posi-
The impact of data assimilation on the coupled-modeltive SSH anomalies of nearly 20 cm observed at the time of
seasonal-prediction skill can be assessed from a comparihe 1997/1998 El Nio. The production system also under-
son of CGCM hindcasts of Rb-3.4 SST anomalies used predicts the SSH anomalies during this major warm event,
with observed SST anomalies from the Reynolds data sebut to a lesser extent. Yet, the effect of the altimeter data as-
(Reynolds and Smith, 1994). This is done in Fig. 10 for the similation with bias correction on the SSH hindcasts is gen-
production system (Fig. 10a) and for the EnKF-based sys-erally manifested by less bias than in the hindcasts obtained
tem (Fig. 10b). Although the production system produces arwith the production system. The effect on the bias is par-
excellent hindcast of the major 1997/1998 ERMNiand cor- ticularly noticeable in the May 1993—April 1994 and May
rectly predicts the minor 1995 warm event, it fails to predict 2000—April 2001 hindcasts.
the 2003 El Nilo and generates false Lafidi alerts in 1996
and 2000. It also produces a false EfNialert in 2001. In
contrast, the system with EnKF-OBC initialization slightly 4 Conclusions
underestimates the amplitude of the major 1997/1998 event
and fails to predict the 1995 and 2003 events. Yet, it pro-The popularity of the EnKF is growing. Although a dozen
duces none of the false El fit and La Niia alerts generated or so ensemble-based approximate Kalman filters have been
by the production system. There is also one ensemble menproposed, applications to realistic ocean or atmospheric
ber that more accurately predicts the timing of the 1997/1998models are few and far between. When an operational model
peak and the later stages of the 1998 LadNiAn examina- is used and real observations are involved, issues such as how
tion of Nifio-3 and of Niio-4 SST hindcasts confirms that the to account for model errors and bias become important. The
system with EnKF-OBC initialization tends to underestimate situation is complicated by the fact that computational limi-
the amplitude of warm events. tations mandate the use of small ensembles. Besides, the rel-
The effect of the temperature+T/P data assimilation withative scarcity of observations of the ocean subsurface makes
the EnKF on Niio-3.4 SSH-anomaly hindcasts is illustrated it difficult to verify and validate assimilation products.
in Fig. 11 where the SSH hindcasts obtained with the EnKF- In this paper, an attempt is made to overcome these chal-
based and production systems are shown together with a timienges in an application to a high-resolution global ocean
series of observed No-3.4 SSH anomalies from the T/P forecast model where in situ temperature observations and
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Fig. 11. Similar to each panel of Fig. 10, but for the SSH field and
comparing the production seasonal forecast runs with the EnKF-
initialized runs using bias correction in the altimeter data assimila-
tion. The dotted line shows the T/P anomalies. The first five en-
semble members are shown in red for the production forecasts and
in green for the forecasts initialized from EnKF-OBC runs. The
corresponding ensemble means are colored gray for the production
system and black for the system initialized with EnKF-OBC.
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W S N, S SO N SO, SO S Although the results suggest that the EnKF has the po-
e Topenn B aRRleoinm b Reblanes 000 20y tential to outperform standard assimilation methodologies
in seasonal forecasting applications, more validation exper-
Fig. 10. Time series of Nio-3.4 SST-anomaly hindcasts.made with iments are required before definitive conclusions can be
ensembles of the GMAO CGCM in which the ocean-model compo-drawn. In terms of filter performance, the small ensemble
nent is initialized with(a) the temperature-Ol system used in pro- size is likely the most serious limiting factor. Since halving
duction runs andb) the EnKF system with assimilation of tem- the model grid spacing demands roughly the same increase
perature and T/P data and use of OBC in the altimeter data assimp computational resources as quadrupling the ensemble size,
ilation. The individual ensemble members are shown in red, they {adeoff between these two factors must always be found.

ensemble mean in black. The dotted line corresponds to observegerhaps the results obtained in the present work could be im-
Reynolds SSTs. For computational economy, only the first five en- ’

semble members from the EnKF-OBC runs are used in the hindcastgrov.ed b)fl rhunnlng Ilarger ensembles of a coarser-resolution
shown in (b). The version of the production system used in (a) jsversion of the model.

based on six-member ensembles. Another question that remains unanswered is whether in-
flating the covariances by means of random state perturba-
satellite altimeter data are assimilated. From this perspections, as is done in this work, is generally superior to tradi-
tive, the problem of forecast-model bias is exacerbated bytional multiplicative (or additive) covariance inflation. With
alterations of the model SSH climatology that occur as athe model used here, any level of multiplicative inflation
consequence of the assimilation of SSH anomalies. The valelearly worsens OMF statistics, but the situation may be dif-
idation and hindcast experiments described herein indicatéerent in another context.
that a simple modification of the EnKF alleviates the prob-
lem. Still, it remains to be seen whether the benefits of the
adaptive bias correction methodology applied here justify its
choice over simpler online and offline methodologies. Es-
senthlly, the cost of the gnalyss is doubled since the updatempirical orthogonal functions of the model's variability. This
equations are solved twice, first to update_ the bias estimatg i supported by NASAs Physical Oceanography Program
then the model state. |If t_he same covariance localization,,jer RTOP 622-48-04. The computing resources were provided
scales were used for the bias and random error componentgy the NASA Center for Computational Sciences.
assumingb;f:b,{ would allow one to only solve one set of

equations, but the results confirm that it is best to use largeEdited by: Z. Toth
covariance scales in the bias update. Reviewed by: P. J. van Leeuwen and another referee
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