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ABSTRACT 
 
    Available mareograms from ports of Ecuador and the Galapagos Islands made possible analysis and 
understanding of the tsunami generated by the great Chile earthquake of 27 February 2010. In general, 
all tidal gauges along the coastal zones at these localities begun to record sea level changes minutes 
after the predicted low water tide near 08:30 in the morning of February 27. The mareographic 
records showed waves with amplitudes ranging from 20 to 70 cm and periods of up to 2 hours.  From 
then on the records indicated lower amplitude waves and rather short periods perhaps due to local 
conditions at each port. At Caleta, Aeolian and Baltra Island in the Galapagos, sea level changes 
begun just before low tide.  Recorded waves in Academy Bay of Puerto Ayora (Santa Cruz Island) 
ranged at about 35 cm in amplitude and boats sat on the rocky bottom at around 07:30 (local time). 
Initial periods were less than 60 minutes but later were shorter - possibly because of the port’s 
configuration. The water level fluctuations lasted for about 48 hours. Along the coast of Ecuador the 
tsunami wave amplitudes ranged between 20 and 70 cm the periods were longer but shorter in the 
Galapagos Islands. Based on initial sea level changes and the issuance of a tsunami warning at Puerto 
Ayora on Santa Cruz Island, there was evacuation of coastal inhabitants to safer, higher grounds.  
 
    Keywords: Tsunami Chile 2010, Impact on Ecuador and Galapagos Islands. 
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1. INTRODUCTION 

     The great earthquake (Mw= 8.8) occurred at 03:34 (local Chilean time) on 27 February 2010, 
along the south central Nazca/South American plate boundary, just offshore Maule. Its epicenter was 
at 35.9 S and 72.7 W and had a focal depth estimated at 35 km. It occurred as thrust-faulting along a 
highly stressed coastal segment of Chile's central seismic zone - extending from about 33ºS to 37ºS 
latitude - where active, oblique subduction of the Nazca tectonic plate below South America occurs at 
the high rate of up to 80 mm per year. It was the 5th most powerful earthquake in recorded history and 
the largest in the region since the extremely destructive May 22, 1960 magnitude Mw9.5 earthquake 
near Valdivia (Pararas-Carayannis, 2010). Its rupture extended nearly 500-600 km in length and the 
area that was affected was estimated to be 130 km wide. The quake generated destructive tsunami 
waves that struck the Chilean coastline and also affected distant locations elsewhere in the Pacific 
Ocean Basin (Cienfuegos, 2010; Comte, 2010).  The tsunami was responsible for the death of nearly 
500 people and caused extensive destruction along the Chilean coastal zone.  Maximum run-up 
reached a height of 19 meters on the cliffs near the generating area but there was also major impact on 
bays and river mouths - like that of Maule river - where local coastal villages were swept away by the 
giant waves (Lagos, 2010).   
 
    The Pacific Tsunami Warning Center (PTWC) in Honolulu, Hawaii issued a tsunami warning and 
countries like Ecuador, USA (Hawaii) and Japan - among others – and people were evacuated to 
higher ground. Because of the warning, there was not any loss of life elsewhere in the Pacific due to 
this tsunami, in contrast to the many deaths caused in Hawaii, Japan and elsewhere in the Pacific by 
the tsunami generated by the giant 1960 Chilean earthquake (Mw=9.5) when the warning system was 
still in its infancy.  
 
    Comparison of the 2010 and 1960 Chilean tsunamis indicated substantial differences in source 
mechanisms, energy release, ruptures, spatial clustering and distributions of aftershocks, as well as in 
geometry of subduction and extent of crustal displacements on land and in the ocean – which could 
also account for energy trapping and differences in far-field effects (Pararas-Carayannis, 2010).   
 
    Shortly after the earthquake the U.S.  National Oceanic and Atmospheric Administration (NOAA) 
issued the map shown in Fig. 1, which shows the tsunami’s propagation and arrival times in hourly 
increments as well as estimated wave amplitudes in centimeters. As shown, the tsunami’s travel time 
to the Galapagos was 6 hours with estimated height of 40 cm and for the coast of Ecuador about 5 
hours with a height estimated at 20 cm.  
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Fig. 1 Propagation map of the Chilean tsunami of 27 February 2010 across the Pacific Basin issued by U.S. - NOAA. The brown lines 
are travel times and the colors show energy focusing and estimated tsunami wave amplitudes. 

 
 

2. OBJECTIVE 

    Given this background of the tsunami, the objective of the present study was to analyze the tide 
gauge records at five coastal ports along Ecuador and of two more records from the Galapagos Island 
in order to understand the behavior of the tsunami in both geographical areas and particularly for each 
port in order to arrive at conclusions that would allow the National Secretary for Risk Management 
(SNGR Spanish acronyms), the local governments and local universities to adopt prevention, and 
mitigation measures that would help reduce future casualties and property damage. 
 
3.   DATA COLLECTION AND FILTERING 

    The Instituto Oceanográfico de la Armada (INOCAR) of Ecuador maintains a network of tide 
gauges along its continental coast and in the Galapagos Islands. Specifically tide gauges exist at ports 
in Esmeraldas, Manta and La Libertad, as well at Bahia de Caraquez at the Chone River estuary and 
Puerto Bolivar at the Jambeli Archipelago. Tide stations in the Galapagos Islands are located at the 
Aeolian Inlet (Baltra Island) and at Academy Bay of Puerto Ayora  (Santa Cruz Islands). Sea level 
records of the already mentioned ports are included in the present paper. Table 1 shows details on the 
locations of all these gauges that recorded the 27 February 2010 Chile tsunami. 
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Table 1. Tide gauges locations on the continental coast of Ecuador and at the Galapagos Archipelago 

 

PORT LATITUDE LONGITUDE CHARD/EDITION COMMENTS 

Esmeraldas 00-57-29   N. 079-38-46  W. IOA-10010/2010 Main Pier (APE). 

Bahía de Caráquez 
Chone Estuary 00-36-26  S. 080-25-22  W. IOA-1031/2007  Río Chone Estuary  

County Pier 

Manta 00-55-53  S. 080-43-18  W. IOA-10401/2008 Main Pier (APM). 

La  Libertad 02-13-04  S. 080-54-23  W. IOA.10520/2008 Main Pier (SUINLI). 

Puerto Bolívar 
Jambeli Estuary 03-15-35  S. 080-00-05  W. IOA-10811/2006  Jambelí Estuary, Estero Santa 

Rosa, Main Pier (APPB). 

 Baltra Island 
Galapagos. 00-26-06  S. 090-17-06  W. IOA. 20213/2011  Aeolian Inlet, Navy Pier 

 Santa Cruz Island 
Galapagos. 00-44-48  S. 090-19-00 W. IOA-20310/2009 Academy Bay, Navy Pier 

 

 
	
  	
  	
  	
  Each	
   record	
   was	
   statistically	
   filtered	
   and	
   an	
   assessment	
   was	
   made	
   on	
   astronomical	
   effects,	
  
atmospheric	
   pressure,	
   Kelvin	
   and	
   storms	
  waves	
   that	
  may	
   have	
   affected	
   the	
   recordings.	
   Based	
   on	
   this	
  
assessment	
   it	
   was	
   concluded	
   that	
   these	
   had	
  minimal	
   or	
   no	
   effect.	
   Neither	
   the	
   Chone	
   estuary	
   nor	
   the	
  
Estero	
  Santa	
  Rosa	
  had	
  any	
  significant	
  inflow	
  of	
  fresh	
  water	
  to	
  influence	
  the	
  recording.	
  Furthermore	
  there	
  
was	
  no	
  impact	
  of	
  spring	
  tide	
  such	
  as	
  the	
  one	
  which	
  occurred	
  a	
  month	
  later	
  on	
  March	
  28	
  when	
  the	
  moon	
  
was	
   full.	
   	
   Therefore,	
   the	
   records	
   of	
   the	
   above	
   mentioned	
   tide	
   stations	
   represented	
   almost	
   pure	
  
oscillations	
  generated	
  by	
  the	
  tsunami.	
  
 
4. ANALYSIS 

     Table 2 shows the arrival time of the first tsunami crest at each tide gauge station and the time of 
low water for Saturday, 27 February 2012 for each of the seven ports - as predicted by the tide table 
issued by INOCAR. Also, the same table includes the amplitudes and periods of the tsunami 
generated oscillations as recorded by the mareographs (Figures 2 and 3).  From the analysis of the 
records, it is established that the first tsunami wave crest at three stations along the Ecuadorian coast 
arrived after low water, while at Bahía de Caraquez and Puerto Bolívar; the first oscillation enters 
both estuaries before low tide.  The time delay in arrival may be the result of natural hydraulic 
estuarine conditions.  
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Table 2.  Details of the tsunami arrival. LW: Low water (Tide table 2010) R: Zone Time 5   S:  Zone 
time 6. 

 
PORT ARRIVAL TIME TIME LW AMPLITUDE (cm.) PERIOD (min.) 

Esmeraldas 09H30 R 08H28R 20-30 120 

Bahía de Caráquez 08H30 R 08H56R 30-50 60-120 

Manta 10H00 R 08H35R 25-30 90-120 

La  Libertad 08H50 R 08H38R 35-70 120-150 

Puerto Bolívar 09H00 R O9H24R 35-50 60-110 

Isla Baltra 07H00 S 07H28S 25-35 30-60 

Isla Santa Cruz 07H00 S 07H28S 25-35 30-60 

 
The first wave recorded at the port of Manta (located between Esmeraldas and La Libertad) shows 
arrival at 10:00, almost an hour later than at La Libertad to the south and half an hour later than at 
Esmeraldas to the north. However, all tide gauges at all ports recorded oscillations with periods 
ranging from 90 to 150 minutes and amplitudes ranging from 20 to 70 cm. The inconsistency in 
arrival times could be due to effects of refraction and diffraction, which can be attributed to local 
bathymetry and coastal geomorphology.  Manta is located on an east – west trending coastline and 
faces north, while La Libertad is located in the interior of Santa Elena Bay.  Therefore, waves coming 
from the south would have to refract considerably before arriving at both ports. Also, it should be 
noted that the tide gauge record at La Libertad of the 1960 Chilean tsunami showed amplitudes and 
periods of 1.54 m. and 36 minutes respectively (Rizzo 1977) and it also occurred at low water. 
      
    At Puerto Bolívar, the tsunami crest arrived at 09:00, before low water and had periods of 120 
minutes and amplitudes of 35 cm. After mid-day, three additional peaks with shorter periods and 
amplitudes were recorded but it appears that these were in response to local conditions – since the 
estuary has a west and north mouth and waves can enter in and out from both sides.  At Bahía de 
Caráquez, the initial crest is recorded at 08:30 with similar periods and amplitudes as in Puerto 
Bolivar, but they both decreases as the day goes on and this behavior may respond to the own 
estuarine hydraulics and morphology.  
 
     At the Galápagos Islands, the first tsunami peak occurred at 07:00, half an hour before low water. 
The oscillations were of shorter periods and amplitudes than those recorded along the coasts of  
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Continental Ecuador. However, at Academy Bay at Puerto Ayora on Santa Cruz Island in the 
Galapagos, in the next hour after the first tsunami wave arrived, there were sea level oscillations, 
which caused yachts and small boats to seat on the rocky bottom of the harbor (Tagle, 2010). When 
the third wave arrived at this port in the subsequent hour, all boats were once again floated and by 
09:00 sea level oscillations were of shorter amplitudes and periods - probably due to the tsunami or to 
local resonance response of the bay or perhaps to both. By midnight sea level activity returned to 
normal at Academy Bay.  

 

   
   
   
   
 
 
 
 
 
 

Figure 2. Mareograms from the continental ports of Ecuador where the astronomical tide has been 
filtered, thus records show tsunami oscillations only. Amplitudes and periods differ because of each 

port’s geometry and morphology (for details see text). 
 
 
    From what is known, trained tsunami observes along coastal areas of continental Ecuador reported 
fairly accurately on the stage of the astronomical tide and distinguished the subsequent superimposed 
sea level variations after tsunami arrival. However, such superimposition on sea level by the tsunami 
may have gone unnoticed by amateur observers. This was not the case in ports of the Galapagos 
Islands, such as Academy Bay in Puerto Ayora, where shorter tsunami periods and wave amplitudes 
allowed better observations of strong incoming and outgoing currents to the extend that anchored 
boats just seated for a while on the rocky bottom. Fortunately, the prevailing low tide at the time 
prevented major flooding or property damage of the coastal zone. Also, proper evacuation of the 
people to higher ground ensured their safety.  
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Figure 3: Mareogram of the Baltra Island tide gauge (at the Aeolian Inlet) in the Galapagos with 

astronomical tide filtered out. Note that amplitudes and periods are shorter from those recorded by 
tide stations on the continent. Stability of sea level was attained near midnight. For details see text. 

 
5.  DISCUSSION 

     Fortunately, the tsunami of 27 February 2010 generated in Chile did not have a major impact along 
the coasts of continental Ecuador and of the Galapagos Islands for the following reasons: 
 

Because of the great distance from the source region, it took from 5 to 6 hours for the tsunami to 
reach the mainland Ecuadorian coast and the Galapagos Islands. Thus, there was sufficient time 
for officials of the National Secretary for Risk Management to adopt the necessary safety 
measures and issue a warning for evacuation of the people at Puerto Ayora (Santa Cruz Island in 
the Galapagos) to higher ground, while at the country’s continental coast, the Comités de 
Operaciones de Emergencia (COE) kept a close watch as the event was evolving.  
 
The timely regional tsunami warning issued by the Pacific Tsunami Warning Center (PTWC) 
based on data from coastal stations and DART buoys, helped the National Agencies for Risk 
Management to act promptly and effectively in Ecuador.  
 
The United States Geological Survey (USGS) provided at its web page reliable data and seismic 
records that were useful in assessing the tsunami risk.   
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The fact that the tsunami struck the continentals Ecuadorian coast and the Galapagos Islands just 
before or after low water, limited damage to only a few boats at Academy Bay but no major 
damage or loss of life were reported anywhere. 

 
 In evaluating tsunami vulnerability, a point of concern is that water masses in bays, estuaries and 
inlets can be affected by tsunami oscillations, thus resulting in secondary undulations and energy 
trapping based on natural modes of oscillation (resonance effects), local bathymetry and coastal 
configuration in each case. Such interaction in enclosed or semi-enclosed bodies of water could have 
significant impact on run-up, particularly if the tsunami occurred during high tide.  For such occasions 
where such interaction occurs, the risk of flooding and damage increases and a numerical simulation 
model may help understand wave behavior and potential impact – thus help in taking better mitigation 
measures. Such study showing tsunami transformation into a resonant oscillation or seiche was 
carried out for Monterey Bay (Breaker et al, 2011).  
 
The tsunami of 27 February 2010 confirmed a conclusion by another study (Espinoza1990) that less 
dangerous tsunamis to the Ecuadorian maritime zone are those from distant sources and that the more 
dangerous are local tsunamis - such as the one generated by the great 31 January 1906 earthquake 
along the Esmeraldas coast near the Yaquina Transform Fault or the Manglares Basin (Collot, et al., 
2009). Until recently the 1906 event was considered to be one of the six strongest earthquakes of the 
last century. 
 
Great tsunamigenic earthquakes usually occur along certain regions along active subduction zones, 
characterized by great trenches. The tsunamis that are generated can have a destructive far-field 
impact in the entire Pacific Basin. Examples of such great tsunamigenic earthquakes are those of 1960 
(Mw=9.5) and of 2010 (Mw=8.8) along the southern segment of the Perú-Chile trench, and of the 
1964 Alaska earthquake (Mw=9.2) along the eastern end of the Aleutians trench (Ryan, Huene & 
Kirby. 2012).  Other active subduction zones along the Japanese coast and the Mariana Islands are 
known to generate tsunamigenic earthquakes of varied magnitude. Ecuador is vulnerable to such great 
tsunamis of distant origin – particularly if they arrive during high tide or in conjunction with in-situ 
storm waves. In such cases, flooding and destruction would be much greater. Also, Ecuador 
vulnerable to local destructive tsunamis generated from earthquakes sources mostly located along the 
Peru-Chile trench, the Yaquina Transform Fault, the submarine canyons on the continental margin 
and at the Galapagos Hot spot.  
 
    The ocean bottom morphology of Ecuador’s continental margin, the Galapagos Hot Spot and 
Platform and the Carnegie Ridge and their potential for the generation of tsunamigenic earthquakes 
have been reviewed and assessed (Goyes, 2009; Collot, et al., 2009). There is also the potential for 
tsunami generation from collapse such as that of the submarine volcano Roca Redonda near Isabela 
Island. Tsunami waves from such volcanic sources in the Galapagos Archipelago could reach coastal 
region within an hour or less after generation and may be more destructive to the islands than those 
generated from distant events along Ecuador’s maritime zone. Obviously, there is a need to research 
to a greater extend such tsunami source areas and develop guidelines for warning as well as for 
educational programs of preparedness.   

 
Science of Tsunami Hazards, Vol. 31, No. 3, page 206 (2012) 



 
6. CONCLUSIONS 

     Earthquake epicenter, magnitude, tsunami propagation map and geometry of ports are parameters 
that determine tsunami wave periods and amplitudes recorded by tide gauges. Fortunately, both the 
1960 and 2010 Chilean tsunamis occurred at low tide along the Ecuadorian coast and the Galapagos 
Islands. However, it is possible that the next tsunami from Chile or anywhere else may arrive at high 
tide or perhaps coincide with a higher sea level associated with the El Niño phenomenon. Therefore, it 
is important that a proper assessment is made for each port using detailed topographic data to evaluate 
under different scenarios, tsunami run-up/backwash and consequent collateral impacts.   
     For such assessment, it would be helpful to study tsunami wave behavior in enclosed water bodies 
using mathematical model simulation under different tide conditions. Such studies could help 
determine if the tsunami excites each particular basin – thus causing seiches, greater inundation and 
higher run-up. This is a challenge for researchers to undertake with the support of SNGR and local 
governments.  
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