# Analysis for a wing nacelle configuration

\*Marwan ISPER, \*\*Mihai Victor PRICOP, \*\*\*Daniel CRUNTEANU

\*\*\*\*\*Aerospace Engineering Faculty, UPB, Str. Gheorghe Polizu, NR. 1, 011061, Bucharest, Romania, marwan\_jb@yahoo.com \*\*Corresponding author, INCAS - National Institute For Aerospace Research "Elie Carafoli" Bdul Iuliu Maniu 220, Bucharest 061136, Romania vpricop@incas.ro DOI: 10.13111/2066-8201.2010.2.2.12

Abstract: The paper presents CFD results for a wing-nacelle configuration, in order to be tested against an analytic solution considering nacelles as chord discontinuities.

Key Words: Aerodynamics, CFD, wing nacelle

### **1. INTRODUCTION**

The paper presents CFD results (RANS) for the case of a wing-nacelle configuration. The flow regime corresponds to Mach 0.3 and Reynolds 30 million. The flow-field is analyzed with Fluent. Pressure profiles are presented both transversal and longitudinal, in order to be further compared against analytical results. Spalart-Allmaras turbulence model has been used.

### 2. MODEL

The reference model is resembling the B-57 wing. The airfoil is RAE 103(symmetric), scaled to 12% relative thickness for the inner wing panel, and 9% for the wing tip (-0.5 deg twisted). Three configurations were prepared, empty nacelle, corresponding to an engine and fuel tank nacelle.

| Fig. 1 First configuration with jet-<br>engine nacelles | Fig. 2 Second configuration with under wing nacelles | Fig. 3 Second configuration, with tank-like nacelles |
|---------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|

Geometrical models were built in CATIA V5. The RAE 103 airfoil is least squares reconstructed using a trailing edge constraint: a thickness of 0.3% is imposed, by a linear increment along the chord line. The interpolation basis is:

 $F(x)^{T} = \begin{pmatrix} \sqrt{x} & x & x^{2} & x^{3} & x^{4} & x^{5} \end{pmatrix}^{T}.$ 

The airfoil thickness is  $t(x) = F(x)^T \cdot C$ , where

$$C^{T} = (0.12238 - 0.07333 0.21645 - 0.7334 0.66822 - 0.19882)^{T}$$

Unstructured tetrahedral meshes have been used, to save preparation time. SIMPLE second order scheme was used.

A FORTRAN routine has been written to extract Cp or other wall values along constant chord percentage lines, since this capability is not available in the code we have used.



# **3. NUMERICAL RESULTS**





## 4. CONCLUSION

Chord-wise and span-wise Cp profiles are consistent. When the Angle of Attack is zero, there is a small difference between upper and lower surfaces. In this respect, the first configuration is the most accurate. Outer wing twisting creates a slight asymmetry in pressure, even at 0 deg. While the first two configurations are clearly similar, the third configuration is different. Here we have a clear effect of the nacelle onto the lower side and an influence in zero lift axis/pitching moment.

Pressure oscillations are visible, but we suppose their effect is not important for global force/pitching moment. They are related to the unstructured mesh numerical effect, or solver parameters.

Pressure profiles will be compared with the results from an analytical method, as future work.

### REFERENCES

[1] ANSYS FLUENT 12.0 Theory Guide, 2009

[2] ANSYS ICEM CFD/AI\*Environment 10.0 User Manual, 2005