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 Hsu and Hsu (2013a) established a closed-form solution for an EOQ model with imperfect 
quality items, inspection errors, shortage backordering, and sales returns, where the customers 
who return the defective items will receive full price refunds; i.e., the returned items are not 
replaced with good items. In this note, we extend Hsu and Hsu's (2013a) work to consider the 
case that returned items are replaced with good items. A closed-form solution is developed for 
the optimal order size and the maximum shortage level. Numerical examples are provided to 
show the differences in the optimal solutions when returned items are replaced, and when they 
are not. 
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1. Introduction  
 

Ever since Harris (1913) presented the famous economic order quantity (EOQ) formula, which is 
known as the basic EOQ model that appears in every basic textbook covering inventory management, 
many researchers have extensively studied the economic lot size problems by relaxing some of the 
assumptions of the basic EOQ model. One of the key assumptions of the basic EOQ model is that the 
items received are of perfect quality, which is not true in the real industry. Salameh and Jaber (2000) 
developed an economic order quantity model for the case where a random proportion of the items in a 
lot are defective. Cárdenas-Barrón (2000) corrected an error in Salameh and Jaber (2000). Goyal and 
Cárdenas-Barrón (2002) presented a simple approach for determining the economic production quantity 
of an item with imperfect quality. Papachristos and Konstantaras (2006) discussed the issue of non- 
shortages in inventory models where the proportion of defective items was a random variable. Eroglu 
and Ozdemir (2007) extended the model of Salameh and Jaber (2000) by allowing shortages to be fully 
backordered. Maddah and Jaber (2008) corrected a flaw in the model of Salameh and Jaber (2000) by 
using the renewal reward theory. Yoo et al. (2009) proposed a profit-maximizing EPQ model that 
incorporated both imperfect production quality and Type I and Type II inspection errors. Cárdenas-
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Barrón (2009) developed an EPQ inventory model with planned backorders for determining the 
economic production quantity and the size of backorders for a single product, which was made in a 
single-stage manufacturing process that generated imperfect quality products and required that all 
defective products be reworked in the same cycle. Liao and Sheu (2011) described an integrated 
economic production quantity (EPQ) model that incorporated EPQ and maintenance programs. Khan et 
al. (2011a) reviewed the studies that have extended the EOQ model for imperfect items set forth by 
Salameh and Jaber (2000).  
 
Khan et al. (2011b) used the models of Salameh and Jaber (2000) and Raouf et al. (1983) to determine 
an inventory policy for imperfect items subject to Type I and Type II inspection errors. The defective 
items classified by the inspector and those returned from the market are accumulated and sold at a 
discounted price at the end of the 100% screening process. Yassine et al. (2012) extended the basic 
EPQ with imperfect quality to allow for disaggregation and consolidation of imperfect quality 
shipments during a single production run and over multiple production runs. Rezari and Salimi (2012) 
formulated and solved a problem to determine the maximum purchasing price a buyer is willing to pay 
to a supplier to avoid receiving imperfect items. Yoo et al. (2012) investigated an imperfect quality 
inventory problem in which imperfect production and inspection processes cause a firm to take actions 
of internal prevention and external reverse logistics of returns of defective items. They examined and 
compared the optimal solutions among the basic model and the models with various investment 
decisions in production and/or inspection processes. Hsu (2012) pointed out a contradiction in Khan et 
al.’s (2011b) paper; i.e., to obtain the cycle length, the authors assumed that the returned items from the 
market were replaced with good quality items. However, for the holding cost per cycle, the authors 
implicitly assumed that the returned items were not replaced with good quality items. Hsu and Hsu 
(2013a) then extended Khan et al.’s (2011b) model by allowing shortages to be backordered, where 
they assumed that customers who bought defective items would detect the quality problems and return 
them to get full price refunds. Chang (2013) corrected some typos that appeared in Yassine et al.’s 
(2012) consolidating shipments model and presented a heuristic approach to find a good solution of the 
model. Ouang and Chang (2013) formulated a mathematical model to study the optimal production 
policy for an EPQ inventory system with imperfect production processes under permissible delay in 
payments and complete backlogging. Hsu and Hsu (2013b) developed two economic production 
quantity models with imperfect production processes, inspection errors, planned backorders, and sales 
returns. In this note, we extend Hsu and Hsu's (2013a) work by assuming that returned items are 
replaced with good quality items. We develop a closed-form solution for the optimal order size and the 
maximum shortage level under the situation that returned items are replaced with good ones, and 
provide numerical examples to show the differences in the optimal solutions of these two models. 

2. Model development 

We use the same assumptions and notation as in Hsu and Hsu (2013a), except for the assumption that 
instead of giving full price refunds to the customers, the returned items will be replaced with good 
quality items. The behavior of the inventory level over time is illustrated in Fig.1. By definition, the 
number of items that are classified as defective include those that are non-defective, ),1( pQ  and 

incorrectly classified as defective (with probability 1m ), and those that are defective, ,Qp and classified 

as defective (with probability 21 m ); thus, we have 

 

).1()1( 211 mQpmpQB   

(1) 

 
The number of defective items returned from the market are those that are defective, ,Qp  and 

incorrectly classified as non-defective (with probability 2m ); thus  

.22 QpmB   (2) 
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Since we assume that the defective items returned from the market are replaced with good items, the 

inventory will be depleted at a rate of TBDD /2
'  . By definition, the cycle length './)( 1 DBQT   

Substituting TBDD /2
'   yields 
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Fig. 1. Behavior of the inventory level over time 

 
Note that in the beginning of each cycle, the inventory level begins with the order quantity Q. The B 
items intended to satisfy the backorders in each cycle will be filled at a rate of

.})1)(1{(}(1{ 21211 DpmmpxDmmpmpx    Specifically, we have  
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After 3t , the time needed to fill B, the maximum shortage level per cycle, the inventory level will be 

reduced by
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The total cost per cycle is 
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Note that the defective items returned from the market will first be sold at the selling price of s per unit; 
however, when the items are returned from the market they will be replaced with good items and the 
returned items will be sold at the price of v per unit. Therefore, the total profit per cycle is 
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From Eq.(3), the expected cycle length is 
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By taking the first derivative of )],([ BQTPUE  with respect to Q and B, we have 
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Taking the second derivative, we have 
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values of Q and B that maximize Eq. (12). The optimal solution can be obtained by setting Eq.(13) and 
Eq. (14) to zero, which lead to 
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For the derivations of the expected values of 1A , 2A , 3A , 4A , and 5A , please see the Appendix. 
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3. Numerical examples and sensitivity analysis 

We use the same parameters as in Hsu and Hsu (2013a): 
 
Demand rate, D     = 50,000 units/year 
Inspection rate, x     = 175,200 units/year 
Ordering cost, K     =$100/order 
Holding cost, h      =$5/unit/year 
Backordering cost, b     =$10/unit/year 
Inspection cost, d     = $0.5/unit 
Variable cost, c     =$25/unit 
Selling price of a non-defective item, s  =$50/unit 
Selling price of a defective item, v   =$20/unit 
The cost of accepting a defective item, ac   =$500/unit 

The cost of rejecting a non-defective item, rc  =$100/unit 

 
If the defective percentage and inspections errors follow a uniform distribution with 
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Specifically, if ,04.0  we have ][ 1AE 0.999581, ][ 2AE 1.481661, ][ 3AE 1.423028, 

][ 4AE 1.3665158,  ][ 5AE  1.4224298, and we obtain the expected annual profit as a function of Q 

and B given in Fig. 2.  

 
Fig. 2. The expected annual profit 
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The three dimensional graph shows that the expected annual profit is concave, and there exist unique 
solutions of Q and B that maximize the expected annual profit. The optimal solution for the given 
parameter set is Q* = 1656, B* = 373, and the expected annual profit is $1,094,918.86. Note that if the 
returned items from the market are not replaced with good items, but the customers get full price 
refunds, then the optimal solution is Q* = 1656, B* = 373, and the expected annual profit is 
$1,094,461.93. Thus, the decision whether or not to replace the returned items with good quality items 
will not change the decision on the order size and the maximum shortage level for the given parameter 
set, and the only difference will be in the company's expected annual profit, which will be increased by 
0.0417% if the returned items are replaced with good quality items. 

Tables 1 - 5 show the numerical examples for different parameters. It is interesting to note that when 
the probability of a Type I error is large (e.g.,  is greater than or equal to 0.04), the expected annual 
profit becomes negative. This is because in additional to the $30 (s–v) per unit loss of incorrectly 
selling a good item at a defective selling price, there is a penalty cost of rc =$100 per unit of incorrectly 

classifying a non-defective item as defective. From Tables 1 – 5 one can see that for all the examples, 
the expected annual profits (or losses) are slightly larger when the returned items are replaced with 
good items than when the customers receive a full price refund. The percentage increase in the 
company’s expected annual profit (or loss) is insignificant. For example, it ranges from 0.0207% to 
0.682% in Table 1; 0.0413% to 0.0553% in Table 2; 0.0209% to 0.5221% in Table 3; 0.04170% to 
0.04175% in Table4; and 0.04173% to 0.041782% in Table 5.  

Table 1  
Optimal solutions when the defective probability p is uniformly distributed between 0 and β. D = 50,000, x 

=175,200, K =100, h = 5, b = 10, d = 0.5, c = 25, s = 50, v = 20, ac = 500, rc = 100,λ= 0.04; η = 0.04. 

 
β 

Without replacement  With replacement 
Q* B* ETPU(Q*,B*)  Q* B* ETPU(Q*,B*) Percentage 

increase of 
ETPU(Q*,B*) 

0.02 1,646.92 376.02 1,102,873.10  1,647.06 376.02 1,103,101.00 0.0207% 
0.04 1,655.36 372.62 1,094,461.93  1,655.65 372.62 1,094,918.86 0.0417% 
0.06 1,663.72 369.14 1,085,880.33  1,664.15 369.14 1,086,567.36 0.0633% 
0.08 1,671.98 365.57 1,077,123.07  1,672.56 365.56 1,078,041.18 0.0852% 
0.10 1,680.15 361.90 1,068,184.70  1,680.87 361.88 1,069,334.80 0.108% 
0.20 1,719.20 342.05 1,020,569.38  1,720.63 341.97 1,022,889.08 0.227% 
0.30 1,754.55 319.44 967,464.75  1,756.64 319.20 970,957.14 0.361% 
0.40 1,785.10 293.59 907,865.56  1,787.73 293.06 912,508.07 0.511% 
0.50 1,809.60 263.74 840,505.31  1,812.62 262.71 846,235.54 0.682% 

 
Table 2  
Optimal solutions when the probability of Type I error is uniformly distributed between 0 and λ. D = 50,000, x 

=175,200, K =100, h = 5, b = 10, d = 0.5, c = 25, s = 50, v = 20, ac = 500, rc = 100, β= 0.04; η = 0.04 

 
λ 

Without replacement                       With replacement 
Q* B* ETPU(Q*,B*)  Q* B* ETPU(Q*,B*) Percentage 

increase of 
ETPU(Q*,B*) 

0.02 1,646.53 376.04 1,149,007.43  1,646.81 376.04 1,149,482.24 0.0413% 
0.04 1,655.36 372.62 1,094,461.93  1,655.65 372.62 1,094,918.86 0.0417% 
0.06 1,664.11 369.11 1,038,791.56  1,664.40 369.11 1,039,229.78 0.0422% 
0.08 1,672.76 365.51 981,961.17  1,673.05 365.51 982,379.78 0.0426% 
0.10 1,681.31 361.80 923,934.12  1,681.60 361.80 924,332.20 0.0431% 
0.20 1,722.17 341.68 614,453.06  1,722.47 341.67 614,732.86 0.0455% 
0.30 1,759.10 318.62 268,556.84  1,759.40 318.59 268,686.96 0.0485% 
0.40 1,790.85 292.08 -120,581.26  1,791.14 292.04 -120,641.61 (0.0500%) 
0.50 1,816.05 261.25 -561,601.91  1,816.33 261.18 -561,912.37 (0.0553%) 
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In terms of the two decision variables (i.e., the order size and the maximum shortage level), the optimal 
solutions are almost the same whether the customers who return the defective items get full price 
refunds or good quality items in return. The optimal solutions will be different only if the defective 
probability p or the probability of a Type II inspection error 2m  is large. This can be explained 

intuitively, since the number of items returned from the market is a function of both p and 2m . From 

Tables 1 and 3, one can see that there are only slight differences in the optimal order size for the two 
cases when the defective probability or the probability of Type II inspection error is large. In both 
cases, the maximum shortage level remains the same. 
 
Table 3  
Optimal solutions when the probability of Type II error is uniformly distributed between 0 and η. D = 50,000, x 

=175,200, K =100, h = 5, b = 10, d = 0.5, c = 25, s = 50, v = 20, ac = 500, rc = 100, β= 0.04, λ= 0.04 

 
η 

Without replacement                  With replacement 
Q* B* ETPU(Q*,B*)  Q* B* ETPU(Q*,B*) Percentage 

increase of 
ETPU(Q*,B*) 

0.02 1,655.76 372.60 1,099,896.39  1,655.90 372.60 1,100,125.99 0.0209% 
0.04 1,655.36 372.62 1,094,461.93  1,655.65 372.62 1,094,918.86 0.0417% 
0.06 1,654.97 372.64 1,089,029.74  1,655.40 372.64 1,089,711.74 0.0626% 
0.08 1,654.57 372.67 1,083,599.81  1,655.15 372.67 1,084,504.62 0.0835% 
0.10 1,654.17 372.69 1,078,172.13  1,654.90 372.69 1,079,297.50 0.1044% 
0.20 1,652.19 372.80 1,051,067.58  1,653.64 372.79 1,053,261.90 0.2088% 
0.30 1,650.21 372.90 1,024,019.28  1,652.38 372.90 1,027,226.30 0.3132% 
0.40 1,648.23 373.00 997,027.05  1,651.13 373.01 1,001,190.70 0.4176% 
0.50 1,646.25 373.11 970,090.72  1,649.88 373.11 975,155.11 0.5221% 

 
Table 4  

Optimal solutions for different holding cost, D = 50,000, x =175,200, K =100, b = 10, d = 0.5, c = 25, s = 50, v = 20, ac = 

500, rc = 100, β= 0.04, λ= 0.04, η = 0.04 

 
h 

Without replacement  With replacement 
Q* B* ETPU(Q*,B*)  Q* B* ETPU(Q*,B*) Percentage 

increase of 
ETPU(Q*,B*) 

1 3,357.37 206.11 1,097,649.33  3,358.02 206.12 1,098,107.10 0.04170% 
2 2,442.65 274.92 1,096,488.43  2,443.12 274.92 1,096,945.92 0.04172% 
3 2,045.83 318.82 1,095,661.96  2,046.21 318.82 1,096,119.23 0.04173% 
4 1,812.78 349.76 1,095,007.92  1,813.10 349.76 1,095,465.01 0.04174% 
5 1,655.36 372.62 1,094,461.93  1,655.65 372.62 1,094,918.86 0.04175% 

 
Table 5  
Optimal solutions for different backordering cost, D = 50,000, x =175,200, K =100, h = 5, d = 0.5, c = 

25, s = 50, v = 20, ac = 500, rc = 100, β= 0.04, λ= 0.04, η = 0.04 

 
b 

Without replacement                    With replacement 
Q* B* ETPU(Q*,B*)  Q* B* ETPU(Q*,B*) Percentage 

increase of 
ETPU(Q*,B*) 

5 1,793.55 605.59 1,094,946.38  1,793.83 605.58 1,095,403.30 0.041730% 
10 1,655.36 372.62 1,094,461.93  1,655.65 372.62 1,094,918.86 0.041749% 
15 1,597.26 269.66 1,094,233.20  1,597.55 269.66 1,094,690.14 0.041759% 
20 1,565.20 211.40 1,094,099.74  1,565.49 211.40 1,094,556.67 0.041763% 
∞ 1,453.91 0 1,093,590.73  1,454.20 0 1,094,047.65 0.041782% 

In the real world, we know that some of the customers who return a defective item will ask for a full 
price refund, while others are willing to exchange their defective item for a good one. The numerical 
examples show that there is no significant difference in terms of the optimal order size and the 
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maximum shortage level for the two cases. Thus, no matter what the percentages of customers who 
return the items and ask for a refund or an exchange are, the management can use one of the two 
models to decide the order size and the maximum shortage level as long as the defective probability 
and the probability of a Type II inspection error are small.  

4. Summary and conclusion 

In this note, we extend Hsu and Hsu's (2013a) work by assuming that returned items are replaced with 
good quality items. We develop a closed-form solution for the optimal order size and the maximum 
shortage level under the situation that returned items are replaced with good ones. Numerical examples 
show that although the expected annual profit is always slightly higher for the case when customers 
who return items receive replacement items rather than full price refunds, the solutions are almost the 
same for the two cases in terms of the optimal order size and the maximum shortage level.  

In the real world, some customers who bought defective items will ask for a full price refund, while 
others are willing to exchange their defective item for a good item. It may be difficult to know in 
advance if a customer who returns the item will ask for a full price refund or an exchange. Since our 
numerical analysis shows that there is no significant difference in terms of the optimal order size and 
the maximum shortage level, the management can just use one of the two models to make a decision. 

Appendix: Gaussian Quadrature in two dimensions (Hughes 1987) 
 
Gaussian rules for integrals in several dimensions are constructed by employing one-dimensional 
Gaussian rules on each coordinate separately. For example, in two dimensions: 
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Therefore, the expected value of A4 can be expressed as 
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