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“Any sufficiently advanced technology is indistinguishable from magic” (Clarke’s third law) 

Abstract: Very recent publications draw the attention to a possible revolution that nanotechnology can 

cause in aviation. The effervescence in the peak field of nanomaterials is remarkable, as evidenced by 

the number of Nobel prizes recently awarded. A class of nanomaterials, the nanosensors, whose object 

of study is the present work, represents a special interest in space applications. More specifically, this 

article proposes the synthesis of a nanosensor based on active control and manipulation of spin degrees 

of freedom in the graphene nanoribbons (GNR), the strongest known substance. Thus, the physical 

model, a GNR, is electrically connected to two electrodes. Different variations of Mn (Manganese) 

impurities in graphene, with the spins having preset configurations, are considered. When a magnetic 

field is detected, their spin change causing changes in the total energy and hence the variation of 

transmission function. Therefore, the concept of active control, which originated in the flight control 

and structural vibration problems, is naturally extended herein to the nanosensors synthesis. The used 

physico-mathematical model to determine the spin transport and the transmission function is based on 

density functional theory, Kohn-Sham equations and the SIESTA package. The differences between 

distinct GNR excited states were determined and it was established that the energy range overlaps the 

mid-infrared wavelengths. Therefore, structures of this kind may serve in spatial applications which 

exploit the infrared atmospheric window. 

Key Words: nanomaterials, nanosensors, graphene nanoribbons (GNR), spintronics, active control, 

Schrödinger equation, density functional theory (DFT), SIESTA package. 

1. INTRODUCTION 

In the recent years, the materials science in top areas such as nanoscience and nanotechnology, 

witnessed a frenetic development. The Greek word nanos means “dwarf”. In the context, 

“nano” refers to 
910
physical dimension of length   the nanometer (nm), which is on the 

scale of atomic diameters. Thus, the nanoscience is in fact the study of atoms and molecules, 

whose size is on the nanometer scale (1  100 nm). Therefore, these fields of theoretical and 

applied research intersect the quantum mechanics. Without excluding adjacent areas, INCAS 

Bulletin is programmatically quartered in the aerospace field. It is thus the purpose of this 

paper to draw the reader's attention to unexpected, at first sight, connections. Here's an article 
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published several years ago in a prestigious journal, [1], which refers to a new direction of 

research launched by European Space Agency (ESA) and lead by Office National d'Études et 

de Recherches Aérospatiales (ONERA): the Space study using the quantum mechanics. 

The following five relevant fields were selected: 1) atomic clocks; 2) atomic inertial sensors; 

3) detectors of law temperature and magnetic flux with an energy sensitivity unequalled by 

any other device; 4) superfluidity or quantum transition; 5) advanced nanodevices based using 

state-of-the-art semiconductor technology. At least two of the listed objectives come in touch 

with topics such as nanomaterials and spintronics. 

We introduce two notions included in the title of the article: graphene nanoribbons (GNR) 

and spintronic devices. 

 

Fig. 1 Carbon materials   graphitic forms  of various dimensionalities: wrapped up into 0D buckyballs, rolled 

into 1D nanotubes, stacked into 3D graphite. Graphene is the 2D building material [2], [3]. 

In 2010, the winners of the Nobel Prize in Physics“for groundbreaking experiments 

regarding the two-dimensional material graphene” became two researchers from the 

University of Manchester (UK), Andre Geim and Konstantin Novoselov. The graphene is a 

downright miraculous material, the thinnest of all materials in the Universe. The carbon atoms 

of graphene are arranged in two dimensional “nanoribbons”, making them the strongest 

substance known so far: it is 100 times tougher than the strongest steel and several times stiffer 

than diamond. 

Such a ribbon could support the weight of an elephant, even even if it pressed the foil 

from an area equal to a pencil. Despite its strength, the graphene is extremely flexible and can 

be stretched to 120% of the surface without damaging it. Other graphene’s superlatives [2]: 

record thermal conductivity (outperforming diamond); highest current density ar room 

temperature (106 times of copper); completely impermeable (even he cannot squeeze 

through); highest intrinsic mobility (100 times more than in Si); conducts electricity in the 

limit of no electrons; lightest charge carriers (zero rest mass). 

As for natural resources, the raw material (the graphite) is found in abundance in the mines 

in Chile, India and Canada. 

Technically, the graphene nanoribbon (GNR) is “a flat monolayer of carbon atoms tightly 

packed into a two-dimensional (2D graphite) honeycomb lattice, and is a basic building block 

for graphitic materials of all other dimensionalities. It can be wrapped up into 0D fullerenes, 

rolled into 1D nanotubes or stacked into 3D graphite” [2] (Fig. 1). It should be added that in 

1985 the fullerenes have been discovered, the third allotrope of carbon (after diamond and 

graphite), in which the atoms form C60 molecules in the shape of a football. This led to the 
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award of the 1996 Nobel Prize in Chemistry to Harry Kroto (University of Sussex, Brighton, 

UK), Robert Curl and Richard Smalley (Rice University, Houston, USA), “for their discovery 

of fullerenes”. Currently, the fullerenes are seen as promising components of micro-

electromechanical systems (MEMS) and, generally, in nanotechnology applications. 

The technologies of manufacturing the graphenes, based on physics and chemistry [2], 

are put in place since 2004. 

The potential applications of GNR relates to: integrated circuits, chemistry (redox), 

energy storage, thermal management, piezoelectricity, quantum dots, spintronics, medicine, 

biodevices, aerospace [4], [5]. 

Spintronics, or spin transport electronics, means the active control and manipulation of 

spin degrees of freedom in solid-state systems. The term transport refers to the transport of 

electrons in crystalline materials. Transport (or kinetic) phenomena are the orderly movement 

of charge carriers in response to the application of an electric field E (a current occurs), the 

application of a magnetic field B (Hall’s effect) or a temperature gradient ∇T (Seebeck effect). 

Herein, the concept of transport involves properties such as electrical conductivity, energy 

band etc. In spin-polarized metals, various characteristics remain to be tuned, as will be seen 

in Section 5, using the spin as key element. 

It is known that the experiment conducted in 1922 by Stern and Gerlach has founded the 

principles of quantum mechanics, and led to the Pauli’s theory of electron spin as a tiny 

intrinsic discrete amount of angular momentum, equal to 1/ 2.  

The magnetic properties of GNR with certain edge geometries have received much 

attention due to possible applications [6], [7], as magnetic nanosensors, for example. The 

studies show, however, that the magnetic properties of a pristine GNR are not robust in the 

presence of edge disorder. These properties have become more interesting and more robust in 

the case of some metal impurities properly distributed in GNR with various geometries edge; 

armchair and zigzag types are taken in [8]. In the present paper, as in most recent works in the 

field, an efficient mathematical approach to the Schrödinger equation is used, Density 

Functional Theory (DFT), having as precursor Thomas-Fermi approximation [9] and whose 

foundations are given in [10], [11]. The DFT technique, which includes specific procedures, 

for example Kohn-Sham band structures [10], is implemented in the free specialized package 

SIESTA [12], [13], a code for ab-initio electronic structure and molecular dynamics 

simulations [13]. SIESTA is the acronym for the Spanish Initiative for Electronic Simulations 

with Thousands of Atoms. We add that Walter Kohn was awarded with the Nobel Prize in 

Chemistry in 1998 for his development of DFT. 

In this paper, a GNR is electrically connected to two electrodes. Different variations of 

Mn (Manganese) impurities in graphene, with the spins having preset configurations, are 

considered. When a magnetic field is detected, their spin change causing changes in the total 

energy and hence the variation of transmission function. Therefore, the concept of active 

control, which originated in the flight control and structural vibration problems [14], [15], 

herein is naturally extended to the nanosensors synthesis. The used physico-mathematical 

model to determine the spin transport and the transmission function is based on DFT, Kohn-

Sham equations [11] and the SIESTA package. 

The article is organized as follows. The physical model of a magnetic nanosensor based 

on spin filtering in GNR with Mn impurities is presented in Section 2. The associated 

mathematical model is briefly described in Section 3. The presentation reviews the transition 

from the Schrödinger equation model, unrealistic in computer applications, to the DFT 

methodology. This mathematical construction served as theoretical framework for a computer 

program, the SIESTA package, detailed in Section 4. Based on various runs on SIESTA 

http://searchcio-midmarket.techtarget.com/definition/micro-electromechanical-systems
http://whatis.techtarget.com/definition/nanotechnology-molecular-manufacturing
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package, Section 5 discusses the results of active control and spin manipulation in view of 

GNR nanosensor synthesis. Concluding remarks of the work are presented in Section 6. 

2. DEVELOPING A NANOSENSOR BASED ON SPIN FILTERING 

IN GNR WITH Mn IMPURITIES 

The origins of the nanostructures are found in the allotropes of carbon: graphite, C60 or 

Buckminsterfullerene, single-walled carbon nanotubes. The graphite is made by many layers 

of graphene which is a two-dimensional honeycomb grid formed with carbon atoms in the sp2 

hybridization form (the chemical bonds between carbon atoms are situated in plan and the 

angle between two carbon-carbon bonds is equal to 120º) [16]. The graphene represents a 

promising material for spintronics applications due to the low spin-orbital interactions [17, 

18]. To use it in technology, this is cut in a quasi-one-dimensional structure with a width 

smaller than 10 nm [19]. The structure is labeled as graphene nanoribbon (GNR). 

For a better understanding of the notions that will be presented, it is necessary to make a 

brief overview of the spin. In quantum mechanics, the spin is defined as the intrinsic form of 

the angular momentum for an elementary particle (which cannot be divided in smaller unities). 

The spin has a direction (a little different from an ordinary vector) and a magnitude. An 

elementary particle cannot be made to spin slower or faster. The SI unit of the spin is the joule-

second. The spin is independent of the particle spatial degrees of freedom [20]. 

Every elementary particle has a given spin quantum number. Mathematically, the spin 

quantum number is described by the formula 2s n , with n non-negative integer. The 

particles with half-integer spins are known as fermions. Fermions include electrons and 

protons. The bosons are those particles with integer spin. Hence, the phonons (quarks, leptons 

etc.) are part of this class. It can be seen that the value of the spin gives different properties 

[21]. The electrons are fermions with spin 1/2. For this reason they obey the Pauli’s exclusion 

principle: a particle can be found in a spin-up state or a spin-down state, it cannot exist in both 

spin-up-spin-down states simultaneously. That means the wave function for fermions is anti-

symmetric [22]. 

Spatial distribution of particles by spin orientation can be ferromagnetic (FM) or 

antiferromagnetic (AFM). A FM structure refers to the fact that all particles have the same 

spin direction: spin-up or spin-down. In the AFM distribution, the direction of spin varies: 

spin-up followed by spin-down, than spin-up again and so on as can be seen in Fig. 2. 

Geometrically, there are only two possible nanoribbons categories: those with zigzag edge 

(zGNR) or an armchair edge (aGNR) [23, 24, 6]. The edge and the width of the graphene have 

a significantly impact on the electronic properties of the nanoribbon [25]. The ground state of 

a quantum mechanical system is its lowest-energy state. An excited state is any state with 

energy greater than the ground state. At the ground state all graphene nanoribbons are 

semiconductors [26]. All zigzag GNRs with the two edges coupled FM are metallic, while the 

conductor character of armchair GNRs depends on its width [8]. 

Pristine graphene is nonmagnetic. Graphene nanoribbon presents spin polarization on the 

two edges. Based on spin polarization control on the edges by applying an electric field [25] 

or a magnetic field [6], the nanoribbons can be used for spintronics applications. To induce 

magnetism in a nonmagnetic material like the graphene, a method of doping with transition 

metals (elements located in d-block of the periodic table with partially filled d sub-shell) is 

used [27]. These are adsorbed as interstitial impurities or are embedded in vacancies [7]. The 

http://en.wikipedia.org/wiki/Quantum_mechanics
http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Stationary_state
http://en.wikipedia.org/wiki/Excited_state
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electric and magnetic properties of the nanoribbon are affected by the direction of spin from 

the edges (FM or AFM). 

Also, the impurities in the scattering area influence the current flow through the 

nanodevices; so, the nanoribbon can be used as a tunnable spin filter, which is the basic 

building block for the nanosensor. 

 
Fig. 2 Spatial distribution of particles by spin orientation: a) ferromagnetic (FM); b) antiferromagnetic (AFM).  

In our setup spin filtering effects of Mn-doped zigzag graphene nanoribbon was analyzed. 

The scattering region is made of four unit cells with 50 carbon atoms and 10 hydrogen atoms 

and is connected to zigzag graphene nanoribbon electrodes as can be seen in Fig. 3. The 

scattering region and the electrodes have the same structure. The zGNR in the FM edge 

configuration was used due to its metallic character. Four Mn atoms as magnetic impurities 

were introduced. 

The impurities substitute carbon atoms localized at the hydrogen passivated edges. The 

ground state density and total energy are calculated using the density functional theory (DFT) 

included in the SIESTA package using Ceperly-Alder parametrization in the local spin density 

approximation (LSDA). 

The transmission functions are calculated using the non-equilibrium Green’s functions 

(NEGF) formalism included in TranSIESTA [28]. The total transmission function 

corresponding to a total energy E is given by T(E)=Tr[ΓLGr ΓRGa], where Gr, Ga are the 

advanced, respectively retarded, Green’s functions and ΓL, ΓR are the self-energies 

corresponding to the coupling between the scattering region and the two electrodes [29]. 

The polarization of the spin current gives the efficiency of our spin-filtering nanosensor 

using the relation: p = (T↑−T↓)/(T↑+T↓) [30]. 

 

Fig. 3 The device structure: graphene nanoribbon with hydrogen passivated edges and four Mn impurities. 
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3. MATHEMATICAL MODELING 

As stated in Section 1, the mathematical model for the spin transport and the transmission 

function of GNR physical models considered in Section 2 is based on DFT and Kohn-Sham 

equations. These are efficient approaches for the solutions of the Schrödinger equation, which 

is far from a realistic model in solving practical problems. To be herein a self-contained text, 

remember that any problem of quantum mechanics starts with the necessity of solving the 

Schrödinger equation, which gives the ground state and excited states of a collection of atoms. 

In the time independent, nonrelativistic framework, the Born-Oppenheimer approximation of 

the Schrödinger equation is 

   1 2 1 2
ˆ , ,..., , ,...,N NH r r r E r r r    (1) 

The Hamiltonian Ĥ is a notation for the system’s energy operator, and consists of the 

kinetic energy, the interaction with the external potential (Vext) and the electron-electron 

interaction (Vee) (
ir  is the coordinate of the electron i) 

2
ext

1 1ˆ ˆ
2

N N

i

i i j i j

H V


    


 
r r

 (2) 

  is the notation the state function, also called the wave function of the considered quantum 

mechanical system, in fact an eigenfunction or solution of the equation (1). This function 

depending on the coordinates of the particle(s) and on the time, is subject to the constraint to 

be an antisymmetric function (it changes sign if the coordinates of two electrons are 

interchanged). 

In the Born interpretation,   is the probability density    * *, ,r t r t d    to find the 

particle in the volume element d drdt   located at r at time t. The average total energy for a 

state   is given as  

  ˆE d    H r  (3) 

A variational theorem shows that the system’s energy, a functional of  , is higher than 

that of the ground state 0 ,   0E E  . This was used as searching criterion for approximate 

solutions 
app . Such methods for molecular calculations, developed until the early 1980s, have 

been shown unrealistic [31]. The initiatives to find other approaches led to the famous DFT. 

The main idea of DFT is to describe an interacting system of fermions [32] via its density 

and not via its many-body wave function  . For N electrons in a solid, which obey the Pauli 

principle and repulse each other via the Coulomb potential, this means that the basic variable 

of the system depends only on three – the spatial coordinates x, y, and z – rather than 3N 

degrees of freedom [33]. 

The density matrix is the quantum-mechanical analogue to a phase-space probability 

measure (probability distribution of position and momentum) in classical statistical mechanics. 

Thus, suppose a quantum system may be found in state 
1  (for simplicity of writting, we 

evade the Dirac notation for ket vectors) of with probability p1, or it may be found in state 
2  

with probability p2, and so on. The density for this system is [34]  

http://en.wikipedia.org/wiki/Phase_space
http://en.wikipedia.org/wiki/Probability_measure
http://en.wikipedia.org/wiki/Probability_measure
http://en.wikipedia.org/wiki/Statistical_mechanics
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   
2

i i

i

p  r r   (4) 

In the terminology of the field, 
ip  is also called occupation numbers of the orbital

1 . Also, 

the electron density is an observable, and the orbitals are just mathematical, but very efficient 

constructions.  

The first Hohenberg-Kohn theorem [10] asserts that the density of any system determines 

all ground-state properties of the system, that is, E = E[ρ], where ρ is the ground-state density 

of the system. The second Hohenberg-Kohn theorem shows that there exists a variational 

principle for the above energy density functional E[ρ]. Namely, if ρ' is not the ground state 

density of the above system, then E[ρ'] > E[ρ]. As shown, the theoretical results of DFT 

represent a mechanism parallel to that of the classical theory based on wave functions. 

It should be added that in Kohn-Sham (KS) approach, the electrons are treated as N 

fictitious non-interacting particles moving in an effective potential. Consider 
i  independent 

particle wave functions. 

One can show that the 
KS  density is equal to the true system density. Thus, the obtained 

Kohn-Sham (KS) equation (Fig. 4) is finally the Schrödinger equation of a fictitious KS system 

of non-interacting particles (typically electrons) that generate the same density as any given 

system of interacting particles.  

4. SHORT DESCRIPTION OF THE SIESTA PACKAGE 

In our experimental simulation on the nanosensor consisting in a GNR with manganese 

impurities we used SIESTA package. This is a computer program based on a self-consistent 

density functional theory (DFT) method which calculates the electronic structure and is able 

to simulate molecular dynamics. 

This method uses a standard norm-conserving pseudo potentials and a numerical linear 

combination of atomic orbitals basis set [35]. 

The Kohn-Sham equations are numerically solved for all the electrons in the system in an 

iterative mode. Every iteration changes the electronic configuration. 

For optimizing the program, the deep core electrons are eliminated while the valence 

electrons are included [35]. 

SIESTA is an N-order method, which means that the computational time scales linearly 

with the size of the system. For calculating the Hartree and exchange-correlation potentials 

and matrix elements, a localized basis is chosen. 

SIESTA makes use of pseudo potentials that replace the potentials due to nuclei and core 

electrons. It uses a supercell setup, where periodic boundary conditions are imposed on all 

three directions. 

Using the SIESTA program one can calculate: total and partial energy, electron density, 

atomic forces, stress tensor and one can perform spin polarized calculations [36]. Also, 

SIESTA contains a module named TranSIESTA which implements ballistic transport of 

electrons [28]. 

The method is based on non-equilibrium Green’s functions (NEGF). Starting from a given 

electron density and using density functional theory in a self-consistent algorithm the non-

equilibrium Green’s functions are obtained and the transmission functions are determined [30]. 

The self-consistent algorithm of DFT consists in finding the solution of Kohn-Sham 

equation in an iterative mode. Starting from an initial density ρi (see the relation (4)), the 

http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
http://en.wikipedia.org/wiki/Electronic_density
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effective potential formed by the external, Hartree and exchange-correlation potentials is 

calculated [37]. 

The next step is to introduce the new potential in the Kohn-Sham equation and to find the 

solution which will give a new density ρf. 

The difference between the two densities is calculated. If the maximum of the difference 

is smaller than a tolerance parameter, the other properties of the nanostructure like energy, 

charge density and so on can be determined, else the self-consistent algorithm is reiterated, 

mixing the density matrices as presented in Fig. 4. 

 

Fig. 4. Proposed in the paper self-consistent algorithm in the framework of DFT. 

5. RESULTS AND DISCUSSION 

The active element of the spintronic device is a zig-zag graphene nanoribbon (GNR) with four 

substitutional Mn impurities, placed near the edges, as depicted in Fig. 3. The transition metal 

impurities have incomplete d-shells and therefore possess net magnetic moment. 

Similar devices based on hybrid BNC materials [17, 30], with one or two transition metal 

impurities indicate enhanced spin filtering properties. The transport in these devices is largely 

influenced by the edge states, which are spin polarized. In the case of pristine graphene 

nanoribbons the spin polarization of the two edges is anti-ferromagnetic in the ground state. 

However, it is also possible to change the relative polarization of the edges by applying 

in-plane electric fields or by defect engineering. A GNR with ferromagnetic configuration of 

the two edges is metallic. 

A first step of the numerical study was to evaluate the GNR the changes in the 

transmission functions introduced by different spin configurations of the Mn impurities. 

The ab initio calculations are performed using the density functional theory (DFT) in the 

local density approximation (LDA) proposed by Ceperley and Alder [38], implemented by 

SIESTA [13]. It uses localized basis sets, which is key to obtain a linear scaling of the 

computational time with the problem size. 

The GNR with ferromagnetic spin ordering at the edges is metallic as shown above. The 

difference obtained between the FM and AFM configurations is rather small, at about ~56 
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meV. The total energies – extracted for each spin configuration, with respect to the ground 

state – are indicated in Table 1. 

Due to symmetry reasons one should notice that some of the spin configurations are 

equivalent. The ground-state of the system is obtained for the “+−+−” configuration or, 

equivalently, “−+−+” configuration, i.e. the Mn atoms are coupled ferromagnetically at short 

distance at each edge. 

Between the two edges, the pairs of spins are coupled anti-ferromagnetically. The all-

spins-up configuration “++++” as well as the all-spins-down configuration “−−−−” have the 

closest energies to the ground state at ~110 meV and ~102 meV, respectively. This is due to 

the fact that the interactions between spins 1 and 3, on one hand and 2 and 4 on the other hand, 

are dominant. 

The other configurations assume at least one pair of spins at a certain edge with AFM 

coupling, which raises the energy of the system. The largest energy difference compared to 

the ground state, ~505 meV, is found for the “++−−”, “−−++” configurations, for which both 

pairs of spins at the two edges are coupled AFM. 

A second step of the numerical study was to analyze a typical spin-transfer characteristics 

that presented in Fig. 5. The transmission functions for each spin component are calculated 

within the non-equilibrium Green's functions formalism. In the case of pristine GNR, the 

transmission functions indicate a series of steps, which correspond to individual channels 

which propagate with nearly perfect transmission. By contrast, introducing the Mn impurities 

one obtains typically lower transmission functions due to increased scattering induced by 

impurities. 

For the all-spins-down configuration presented in Fig. 2, we observe that the up-spin is 

poorly transmitted, while the down-spin transmission around the Fermi energy is significant. 

In this configuration, the Mn impurities scatter the conduction electron spins from the up-spin 

state to the down spin-state. Therefore, instead of the two peaks, which are visible for the 

pristine GNR, for each spin component, one obtains at roughly the same energies two peaks 

for the down-spin transmission. 

This has another important consequence, namely, the spin current polarization approaches 

100% in this case. The polarization of the Mn atoms and their neighbors is responsible for the 

spin scattering. Therefore, we plotted in Fig. 6 the pseudo-spin density in comparison with the 

pristine GNR. 

For the other spin configurations, the transmissions at the Fermi energy are indicated in 

Table 1. One can make a mapping between the energies of spin configurations and the spin 

up/down transmissions. The spin current polarization may also be associated with a certain 

spin configuration. In this way one can detect and quantify the size of the perturbation. There 

are 7 non-equivalent spin states and, in this set of configurations, transitions may occur. The 

energy differences range between 100-500 meV, which corresponds to the mid-wavelength 

infrared range (2.5-12 µm). 

This range overlaps well with the infrared atmospheric window, which is exploited in 

aviation for the detection of the aircraft infrared signature. Moreover, the infrared radiation in 

this range is able to pass directly to space without intermediate absorption and re-emission. 

This is very important from the point of view of remote sensing on satellites since these 

windows occur at the same wavelength as the Earth's radiation output. 
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Fig. 5. Spin up/down transmission functions versus energy, for the pristine GNR (thick lines/black) and for the 

system with all-spins-down configuration (thin lines/red). The Fermi energy is marked by the vertical dashed line. 

6. CONCLUSIONS 

Spintronic devices based on graphene nanoribbons with transition metal impurities, with 

potential applications in mid-infrared sensing, were analyzed in the framework of spin 

constrained density functional theory calculations. The different spin configurations of the 

magnetic impurities were analyzed and their correspondence with the transmission coefficients 

was ascertained. The differences between different excited states were determined and it was 

established that the energy range overlaps the mid-infrared wavelengths. 

 

 
Fig. 6 Pseudo-spin density for the pristine GNR (a) and for the system with Mn impurities, in the all-spins-down 

configuration (b) 

a) b) 
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Table 1 Total energies [meV] with respect to the ground states “+−+−”, “−+−+”, transmission coefficients at the 

Fermi energy for up/down spin components and spin current polarization for different spin configurations. 

Spin 

configuration 

+++− 

++−+ 

+−++ 

−+++ 

+−−− 

−+−− 

−−+− 

−−−+ 

++−− 

−−++ 

+−+− 

−+−+ 

+−−+ 

−++− 
++++ −−−− 

Energy 244 251 505 0 439 110 102 

T↑ 0.53 0.25 0.16 0.80 0.51 0.17 <0.01 

T↓ 0.11 0.13 0.60 0.22 0.66 0.04 0.24 

p 0.65 0.31 −0.60 0.56 −0.13 0.61 <−0.92 

Therefore, structures of this kind may serve in spatial applications which exploit the infrared 

atmospheric window. 
This paper continues the research directions of the authors, focusing on areas such as the 

nanomaterials [39], the spintronics devices and the nanosensors [8], [17], [30], or belonging 

to interdisciplinary research directions, as the active control and the smart materials [14], [15]. 
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