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ABSTRACT 

Equations for long period and secular perturbations due to the Moon, Sun and the 

Earth potential field are applied to equations expressing the influence of both the 

Moon and Sun long period and secular perturbations on the secular rates due to the 

Earth potential field. Usual Keplerian elements are used. No singularities are 

present in the equations neither in the final integrated variables. 

INTRODUCTION 

Lagrange Equations for the non singular variables have been given in several papers by Giacaglia 

(Reference 1) and by these authors (References 2, 3, 4, 5, 6). The variables used in these works were: the 

semi-major axis (a) and the mean longitude (λ); the products (ξ and η) of the eccentricity (e) times the cosine 

and sine of the longitude of perigee ( ); the products (P and Q) of sine of half the inclination (I) times the 

cosine and sine of the longitude of the ascending node (Ω). Complete equations for all perturbations have 

been developed in a paper to be presented at DINAME 2011 (Reference 5) 

The following notations are used through out this work: R is disturbing function due to any gravitational 

influence and n is the mean motion in longitude of the satellite. Also 

2 21 e             (1) 
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MOON DISTURBING FUNCTION 

The main part of the disturbing function in a primitive form is 
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 In a related work (Reference 7) Kaula represented the disturbing function by considering the Moon 

moving on the ecliptic. Here, considering the Moon in its real orbit, a transformation to orbital elements and 

rotation of the lunar coordinates to an ecliptic frame of reference gives  
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where summations in m, m´, p, p´ are from 0 to 2 and the value of q gives the maximum power of the 

eccentricity. Moreover 2,2 2
2 2 2( ) ( )p

pq p qH e X e
   are Hansen Coefficients given by Plummer (Reference 8) and  

2 (2 2 ) ( 2 2)mpq p q q m p           

         (5) 

 2' 2 2 ( ) ( / 2)pm M M Mp f m           

 2mpF   are the usual inclination functions given by Kaula (Reference 9) and for 0,m m   
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and, for 0,m m   
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 In the above relations, F is the hyper geometric series 1 2F , defined by 
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where 
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In both cases, 2, ,m m  is a polynomial in sin( 2) , cos ( 2)  since at least one of the parameters a, b is 

negative, and the above series terminate, i.e., when n 1 a 1 a     or n 1 b 1 b    . 

DISTURBING FUNCTION FOR SECULAR AND LONG-PERIOD PERTURBATIONS 

In case of no resonances between the motion of the satellite and that of the Moon, the elimination of 

short period terms (depending on the mean anomaly M of the satellite), uses the following definite integrals 
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The H functions may be represented, for 1p  , by  
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and for 1p  , by 
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In both cases, they are polynomials in . Long period and secular part of the function R  is 
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where 
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where 2 2m p    . D´Alembert Characteristics imply that the function  2mpF I  is factored by 

sin ( I / 2 )
 and the functions    2, , 2p pL  are factored by |2 2|pe  . 

LONG-PERIOD PERTURBATIONS 

Moon perturbations are factored by: 
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2 5 2 21.59 10M rev day           (19) 

We note that for the solar perturbations these quantities are: 
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2 5 2 20.75 15N rev day           (21) 

which is about half the value for the Moon 

The satellite Keplerian negative energy is 

2 2
0 / 2F n a            (22) 

The relative size of the perturbing force function wrt the main Keplerian central attraction is given by 

2 2
0 2 Mv R F n            (23) 

For low satellites (   90 min), 71.2 10v   . 

For high satellites ( 24   h), 53.18 10v   . 

In the above range of periods, with low values of the eccentricity, the dominant part of the disturbing 

function of a satellite is due to the Earth oblateness  20C , and lunar (and solar) perturbations are about 

second order with respect to this. In cases of higher satellites, depending on the values of semi-major axis 

and eccentricity, the situation might even be reverted, so that for a full evaluation of the lunar perturbations, 

truncation of the corresponding disturbing function may not be advisable. 

The integration of the pertinent equations can be performed numerically by using as input lunar ecliptic 

coordinates – or, for that matter, equatorial coordinates, in which case the theory is greatly simplified – 

stored in memory. This will produce precise evaluation of the true lunar motion. However, such a method can 

be very expensive in time. A good approximation can be obtained by considering , ,M M MI e a , and   fixed 
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values and ,M MM   and M  linear functions of time, neglecting accelerations of these elements. Also, an 

expansion in power series of Me  will converge rapidly owing to the small value of the eccentricity of the 

Moon orbit. 

 The frequencies involved are 
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for  m = 0,1,2; m´= 0,1,2; p = 0,1,2; p´= 0,1,2; q´=…-2,-1,0,1,2,… 

The denominators (no resonances considered) are given by 
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Resonances will occur if one can find 7 integers , 1, 2,...,7ia i , not “too large”, with at most five of 

them being zeroes, satisfying the condition 
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should remember that one of the results in Kolmogorov (Reference 10) celebrated work on quasi periodic 

motions, is that for large enough integers the denominator above can become smaller than  any given 

quantity, which the basis for showing that perturbations techniques based on successive approximations, as 

for instance, Canonical Methods or Lie Series Methods, cannot converge to the true solution. In this respect, 

we must rely on Poincaré (Reference 11) statement about asymptotic series “stop the series at a low degree 

of approximation”.  

Approximate values for the Moon are 13.126 /MM degree day , 0.113 /M degree day  , 

0.053 /M degree day   , 0.985609 /M degree day
 , 0.985609 /-610  degree day   . For a 

satellite with eccentricity 0.007, inclination 60o and semi-major axis of 26.750 km we have 

3
sec 24.85 10 /degree day    , 3

sec 33.26 10 /degree day     so we can estimate the amplitude 

associated  to any given set of integers , , , , , ,p m p m q p q      by adding the solar perturbations. Exact 

evaluation of the integral leading to the mean eccentricity and mean inclination should be from an initial time 

of observation up to any given successive time, and this requires a transformation from osculating to mean 

elements, a task to be developed in a future work. 

EARTH GRAVITY PERTURBATIONS 

Consider only the lowest degree harmonic of the Earth potential 

20 p| | |q|
20 pq 20 p 2 pq 20 20 pq 20 20 pq3

b
R s e J ( c )K ( e )( A cos B sin )

a
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where the coefficients A and B are related to the harmonic coefficients of the Earth Potential Field and 
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20 pq ( 2 2 p q ) q p               (28) 

where we have set 

20 p p            (29) 

       It is noted that the absolute value of the coefficient of   is the power of sine of half of the inclination in 

a particular term of the Disturbing Function, as well as the absolute value of the coefficient of   is the least 

power  of the eccentricity. The functions 20 pJ ( c )  are polynomials in the cosine of half the inclination and 

the functions 2 pqK ( )  are power series in the eccentricity and will be written as 2 pqK ( e ) . In case of long 

period terms, corresponding to 2 2 p q 0   , in absence of resonance of any kind, these functions are 

polynomial in β. 

SECULAR PERTURBATIONS DUE TO THE EARTH GRAVITY 

For a real analysis of perturbations of an artificial satellite we must consider perturbations due to the 

Earth gravity field, noting that up to geosynchronous heights the dominant term is due the Earth oblateness. 

The disturbing function for secular perturbations due to the Earth is given by the well known expression 
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and for  2, 0q   it follows that 2,1,0 2,1,0G K . 

The J functions are simply derived from Kaula (1966) inclination functions by setting 2, 0m  and 

by considering the condition 201 0   it is found that 
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As a first approximation, the secular rates may be computed by a simple quadrature, by keeping constant 

the right-hand members of the pertinent differential equations. These secular rates are affected by short and 

long period perturbations, through a, e and I, a task to be undertaken in a future work. In order to simplify 

matters and give a preliminary example, we shall consider the Moon to move on the ecliptic and, therefore 

neglect the longitude of the ascending node of the lunar orbit, keeping only the argument of perigee. Under 

these hypotheses a direct addition of secular rates due to the Moon, Sun and the geopotential gives 
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where /( )M M MGm m m    and /( )Gm m m      

The long period perturbations due to the Moon and Sun are given by 
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Integration , keeping constant the metric variables on the right hand side yields 
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15
sin 2 cos2

32
M M

lp

n n e
I I

n

 
 

 


    

                      (44) 

                       
 2 2

2 2 2
1 2

sec

15
(1 5 cos cos )sin 2

16
M M

lp

n n
e e I I

n

 
  

 


     


         (45) 

                                       
 2 2 2

1
sec

15 cos
sin 2

16
M M

lp

n n e I

n

 
 

 


    


          (46) 

  
 2 2

2 2 2 4 2
1

sec

15
[1 5 cos cos (1 )sin ]sin 2

16
M M

lp

n n
e e I I e I

n

 
  

 


       

         (47) 

The numerator in these perturbations is of the order of 10-5 and will over come the value of the 

numerator. 
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INFLUENCE OF LUNI-SOLAR PERTURBATIONS ON SECULAR RATES DUE TO THE EARTH 

GRAVITY FIELD 

The task is to take into consideration the influence of the third body on the secular rates resulting from 

the Earth potential field. Taking into account variational equations the second order perturbations in secular 

rates are obtained from  

                                    sec sec
2 sec 1 1( ) p p

d
e I

dt e I

     
 

  

                         (48) 

                                   sec sec
2 sec 1 1( ) p p

d
e I

dt e I
   
  

  

 
                                          (49) 

                                    sec sec
2 sec 1 1( ) p p

d
e I

dt e I

     
 

  

 
                                   (50) 

where 1 1,p pe I    are perturbations due to a third body while 2 sec  , 2 sec  , 2 sec   are clearly second 

order perturbations on secular motions induced by the geopotential. We initially consider just third body long 

period perturbations. In order to do this we consider the above variational equations where the secular 

variations on the right hand side are given by Eqs. (35), (36) and (37)  

By considering the major terms already computed for the above quantities, we find from Eqs. 86 to 88 

the following partials 

                           

 
2

220
sec 6 2

2 2
2 2 2

3

3
1 2cos 5cos

3 ( )
5cos (3 8)cos

8
M M

nC b e
I I

e a

e n n
I e I

n




 





   




     

 


                    (51) 

                            

 
2

20
sec 4 2

2 2
2

3
2sin 5sin 2

4

3( )
5sin 2 (3 2)sin

8
M M

nC b
I I

I a

n n
I e I

n




 



  




     

 


                                   (52) 

                
2 22

220
sec 6 2 3

3( ) cos6
cos (9 4)

8
M Mn n e InC b e

I e
e a n

 
 


   


            (53) 

                 
2 22

220
sec 4 2

3( )sin3
sin (3 2)

2 8
M Mn n InC b

I e
I a n

 
 


    


                            (54) 

                  

 
2

20
sec 4 2

2 2
2 2

3
(3 5)sin 2 2sin

4

3(5 7 3 )sin 2 3(3 2)sin
8

M M

nC b
I I

I a

n n
e I e I

n

 


 
 




   




      

 



          (55) 

     

2 22
2 2 220

sec 7 2 3

3 2 2 2 2 3 2 2

3
( ) (5 3 3 )cos 2cos

4 8

3 5 6 cos 18 6 9 6 cos 2 3

M Mn nneC b
e I I

e a n

e e I e e e I e e

 
   

 

     

          

         

 
        (56) 
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       Recalling Equations (48), (49) and (50), we find the influence of long period perturbations due to the 

Moon and Sun on the secular rates due to the Earth gravity field 

                                        

2 2

2 sec
sec

2sec sec

15( ) sin
( )

16

(1 )sin cos cos2

M Mn n e Id
dt n

e I e I
e I

 
 



  


  

  
     

  
   

                                   (57) 

                                 

2 2

2 sec
sec

2sec sec

15( )
( )

16

(1 )sin cos cos2

M Mn n ed

dt n

e I e I
e I

 







   

  
     

 


 


                                  (58) 

     
2 2

sec sec
2 sec

sec

15( ) sin
( ) sin cos cos2

16
M Mn n e Id

I e I
dt e In

      


   
     

 
 


          (59) 

Integration of these equations may be performed by keeping constant all metric elements since they are 

not affected by secular perturbations. The result is given as follows: 

           
2 2

2sec sec
2 sec 2

sec

15( ) sin
(1 )sin cos sin 2

32
M Mn n e I

e I e I
e In

     


   
      

 
   

       (60) 

               
2 2

2sec sec
2 sec 2

sec

15( )
(1 )sin cos sin 2

32
M Mn n

e I e I
e In

 
 


   

       
 

 


           (61) 

                   
2 2

sec sec
2 sec 2

sec

15( )sin
sin cos sin 2

32
M Mn n I

I e I
e In

      


   
     

 
 


             (62) 

These equations give the major coupling between the secular rates due to the Earth flattening and the 

long term influence of the Moon and Sun.  The period of these perturbations relates to the secular rate of the 

longitude of perigee, given by 

                       

 
2

220
sec 4 2

2 2
2 2 2

3
1 2cos 5cos

4

3( )
5cos (3 2)cos (1 )

8
M M

nC b
I I

a

n n
I e I e

n




 


   


      

 


                          (63) 

We may consider a good approximation to set the eccentricity equal to zero, so that 

          
2 22

2 220
sec 2

3( )3
1 2cos 5cos (5cos 2cos 1)

4 8
M Mn nnC b

I I I I
a n

 



               (64) 

We assume the values  

0.498634 , 12.5944 / , 26560 , 6378 , 0.006, 54oT day n rd day a km b km e I       

For the Moon and Sun we have 

                             
2 5 2 2 4 2 2

2 5 2 2 4 2 2

1.59 10 6.2707 10

0.75 15 2.9579 10
M Mn rev day rd day

n rev day rd day





   

   

   

    

                      (65) 
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and the Earth flattening coefficient is 3
20 1.083 10C    . 

Introducing these values for the secular rate of the longitude of perigee we find 

                                     
2

2 420
4 2

3
1 2cos 5cos 5.968 10

4

nC b
I I

a
                (66) 

                             
2 2

2 43( )
(5cos 2cos 1) 0.1231 10

8
M Mn n

I I
n

  
                               (67) 

                                                      4
sec 6.0911 10 /rd day                                                  (68) 

 

The corresponding period is 10 310T days   which agrees very closely with the observed values 

as shown in Figure 1 through Figure 4. 

 

DISCUSSION 

As given by Schutz (Reference 6) the evolution of the longitude of the perigee and of the longitude 

of the ascending node, over a decade, of a selected GP satellite are shown in the Fig. 1 and Fig. 2, 

respectively, while long terms variations in eccentricity and inclination are given in Fig. 3 and Fig.4. We can 

observe three basic periods in the eccentricity (a period of about 365 days or 0.986 degree/day, a period of 27 

days or 13.3 degree per day and a very long period) and three basic periods in the inclination (a periods of 

about 180 days or 2.0 degree/day, a period of 14 days or 25.7 degree/day and a very long period). The long 

periods are not well defined but, in any event, they are at least 10,000 days.  

 

 

Figure 1. – Long term evolution of the longitude of perigee 

 

Figure 2. – Long term evolution of the longitude of ascending node 
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Figure 3. – Long term evolution of the eccentricity 

 

 

 

 

Figure 4. Long term evolution of the Inclination  

Now, the possible frequencies due to earth oblateness, lunar and solar perturbations are given by  

                
   

     
sec sec2 ( 2 ) 2

2 2 2

mpp m q p q M

M M

f p m p p

p q M m p p q M

 




            

              


 

    
    

                  (69)    

 

Introducing the approximate values for each secular motion, it follows that all possible frequencies in 

degree per day are given by 

          

 
   
   

3 3

-8

2 24.85 10 ( 2 )33.26 10

2 0.113 2 13.126 0.053

2 0.4707 10 2 0.985627

mpp m q p qf p m p

p p q m

p p q

  
             

        

       

  

  

 

                       (70)    

It is obvious that one can choose integers involved in Eq. (70) and match very closely the observed 
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frequencies of 0.986, 13.3, 2.0 and 25.7 degree/day. But the point is, for reasonable large amplitudes, as 

observed in Fig. 1 through Fig.4, only small integers should be considered. It should be remembered that the 

GPS satellites are in resonance with the following harmonics degrees and orders 

Table 1 – Relevant harmonics for the GPS satellites 

ℓ m p q 

2 2 1 1 

2 2 2 1 

2 2 0 -1 

3 2 1 0 

 

and a deep resonance is observed for the 3-2 harmonic, producing a frozen orbit 

If we consider that the eccentricities of the Moon and Sun are very small, then we should start by setting 

q´ and q” equal zero. The resulting frequencies in degrees per day are 

          
 

   

3 3
0 0 24.85 10 2 33.26 10 ( 2 )

13.239 2 0.053 0.985627 2

mpp m pf p m p

p m p

  
           

     
  

  
                        (71)    

Consider the small degree harmonics defined in table 149. We shall compute the frequencies associated 

with the resonance harmonics, that is  

                    
 

 

3
221 0 0 2 33.26 10 2 13.239 1

0.053 2 0.985627 1

p m pf p

m p

 
          

    
                                   (72)   

                        
 

 

3
222 0 0 83.34 10 2 13.239 1

0.053 2 0.985627 1

p m pf p

m p

 
         

    
                                    (73)    

                       
 

 

3
220 0 0 2 24.85 10 2 13.239 1

0.053 2 0.985627 1

p m pf p

m p

 
         

   




                               (74)    

                             
 

 

3
321 0 0 58.11 10 13.239 3 2

0.053 0.985627 3 2

p m pf p

m p

 
       

  




                                   (75)    

We shall take m’ = 0,  p´= 0 and p” = 0 corresponding to the largest amplitudes. 

The resulting frequencies, in degree per day, and the corresponding periods in days are given in Table 2 

Table 2- Frequencies, in degree per day, and the corresponding periods in days 

m p p m q p q      f 
 f 

 PERIOD + PERIOD - 

2 2 1 0 0 0 0 0  28.383 -28.516 10,507 10,556 

2 2 2 0 0 0 0 0  28.366 -28.533 10,501 10,562 

2 2 0 0 0 0 0 0  28.400 -28.499 10,513 10,550 

3 2 1 0 0 0 0 0  42.616 -42.732 15,776 15,819 

 

These values would correspond to the largest amplitudes, due to the chosen harmonics, in the absence of 
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resonances. It is seen that the very long periods are in agreement with those shown in Figures 1 through 4.  

Periods associated with the period of the Sun and Moon as well half of these periods, as observed in these 

figures, are easily obtained by proper choice of the degrees and orders involved in Table 1. 

 

CONCLUSIONS 

Notwithstanding the necessity of detailed numerical calculations, the theory described in this paper is be 

able to explain some of the observed behavior in the motion of high altitude satellites with small eccentricity, 

which is the case of GPS satellites. The drawback is that no resonances have been assumed in the 

development of the theory, a question to be resolved in a future research paper. 
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