
doi.org/10.32426/engresv10n1-001 

Engineering Research 

Technical Reports 

Volume 10 – Issue 1 – Article 1 

ISSN 2179-7625 (online) 

 

PERTURBATION METHODS IN NON-LINEAR SYSTEMS: 

Part I 

 

Giorgio Eugenio Oscare Giacaglia0F

1 

 

 

JANUARY / 2019 

 

Taubaté, São Paulo, Brazil

                                                 
1  Department of Mechanical Engineering, University of Taubate, giacaglia@gmail.com. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Engineering Research: technical reports (E-Journal - Universidade de Taubaté)

https://core.ac.uk/display/267886924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Eng Res, v. 10, n. 1, p. 1-145, January / 2019. doi.org/10.32426/engresv10n1-001 2 

Engineering Research: Technical Reports 
 
 
Editor-in-Chief 
Wendell de Queiróz Lamas, Universidade de São Paulo at Lorena, Brazil 
 
Executive Editor 
Eduardo Hidenori Enari, Universidade de Taubaté, Brazil 
 
Associate Executive Editor 
Luís Fernando de Almeida, Universidade de Taubaté, Brazil 
 
Editorial Board 
Arcione Ferreira Viagi, Universidade de Taubaté, Brazil 
Asfaw Beyene, San Diego State University, USA 
Bilal M. Ayyub, University of Maryland, USA 
Ciro Morlino, Università degli Studi di Pisa, Italy 
Epaminondas Rosa Junior, Illinois State University, USA 
Evandro Luís Nohara, Universidade de Taubaté, Brazil 
Fernando Manuel Ferreira Lobo Pereira, Universidade do Porto, Portugal 
Francisco Carlos Parquet Bizarria, Universidade de Taubaté, Brazil 
Francisco José Grandinetti, Universidade de Taubaté, Brazil 
Giorgio Eugenio Oscare Giacaglia, Universidade de Taubaté, Brazil 
Hubertus F. von Bremen, California State Polytechnic University Pomona, USA 
Jorge Muniz Júnior, Universidade Estadual Paulista at Guaratinguetá, Brazil 
José Luz Silveira, Universidade Estadual Paulista at Guaratinguetá, Brazil 
José Rubens de Camargo, Universidade de Taubaté, Brazil 
José Rui Camargo, Universidade de Taubaté, Brazil 
José Walter Paquet Bizarria, Universidade de Taubaté, Brazil 
María Isabel Sosa, Universidad Nacional de La Plata, Argentina 
Miroslava Hamzagic, Universidade de Taubaté, Brazil 
Ogbonnaya Inya Okoro, University of Nigeria at Nsukka, Nigeria 
Paolo Laranci, Università degli Studi di Perugia, Italy 
Rolando A. Zanzi Vigouroux, Kungliga Tekniska högskolan, Sweden 
Sanaul Huq Chowdhury, Griffith University, Australia 
Tomasz Kapitaniak, Politechnika Lódzka, Poland 
Valesca Alves Corrêa, Universidade de Taubaté, Brazil 
Valter Bruno Silva, Instituto Politécnico de Portalegre, Portugal 
 
 
The “Engineering Research” is a publication with purpose of technical and academic knowledge dissemination. 
 

 



Eng Res, v. 10, n. 1, p. 1-145, January / 2019. doi.org/10.32426/engresv10n1-001 3 

PREFACE 

 

This volume is an on-line reprint of the original book published 1972 by Springer-Verlag 

which was intended to provide a comprehensive treatment of contemporary developments in 

methods of perturbation for nonlinear systems of ordinary differential equations. In this respect, it 

appeared to be a unique work, with hundreds of citations. 

Even today is a basic reference in the approximate solution of non-linear differential 

equations, specially appearing in problems of Celestial Mechanics. 

The original goal was to describe perturbation techniques, discuss their advantages and 

limitations and give some examples. The approach was founded on analytical and numerical 

methods of nonlinear mechanics. 

Attention had been given to the extension of methods to high orders of approximation, 

required now by the increased accuracy of measurements in all fields of science and technology. 

The main theorems relevant to each perturbation technique were outlined, but they only 

provided a foundation and were not the objective of the original book. 

Each chapter concluded with a detailed survey of the contemporary literature, supplemental 

information and more examples to complement the text, when necessary, for better comprehension. 

The references were intended to provide a basic guide for background information and for 

the reader who wished to analyze any particular point in more detail. The main sources referenced 

were in the fields of differential equations, nonlinear oscillations and celestial mechanics. 

Partial support from the Mathematics Program of the Office of Naval Research is gratefully 

acknowledged. 

 

 

July 2016 

 

Giorgio E. O. Giacaglia 

 

Sao Paulo, Brazil 
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INTRODUCTION 

 

In what follows we are going to describe in short the basic problem of perturbations the way 

it is to be developed in these notes. We shall here make free and simple statements without entering 

mathematical details on the functions involved. The necessary hypotheses will be made in the 

subsequent chapters. Historically we consider Lindstedt’s (1882) problem of obtaining a series 

solution, free from secular and / or mixed secular terms, of the equation. 

 

 2
0 f , , tx x x x    

 

Where 0 1  is a parameter. The possibility of obtaining a solution. 

 

     

   

2
0 1 2

2
0 2

t t t ...

t t ...

x x x x

x x x

   

    
 

 

of the above equation, with    ,j jx t x t bounded functions for all t R was found to depend 

essentially on the nature of f and its derivatives up to some order. The reference solution introduced 

by Lindstedt, that is,     0 0,x t x t was given by 

 

 0 a cos t+x    

 

 -a sinx t      

 

Where   is a priori unknown but, by assumption, developable in a power series 

 

2 3
1 2 3 ...          

 

Where 1 2, ,...  are constants depending on  , a and f. Strictly speaking the very first 

attempt of dealing with perturbed oscillatory systems had been made by Euler (1772) in his 

researches on the motion of the Moon. Delaunay was the second in line to recognize that the major 
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difficulty in the avoidance of unbounded terms in the series solution of such systems was the choice 

of a reference frequency, a fact which lead him to produce perhaps the first systematic series 

process of determining what are today called Floquet’s characteristic exponents (Delaunay, 1860). 

The transformation of Delaunay’s method of successive canonical transformation to a method 

utilizing a generating function was first foreseen by Tisserand (1868). After some time, the work of 

Lindstedt was published (1882) and, right after, reduced to a systematic averaging procedure by 

Poincaré (1886) for Hamiltonian, but not necessarily conservative, systems. In essence, the whole 

second volume of his “Mécanique Célèste” is devoted to this method and related questions, among 

the most important, the problem of resonance, in the nonlinear sense. He accomplished a great deal 

of unification of all previous works including the milestone works of Bohlin and Gyldèn. In 

chronological order it is again in Celestial Mechanics that new efforts were made on the problem by 

von Zeipel (1911), by generalizing Poincaré’s ideas. We shall not endeavor into details along these 

works and refer to several surveys on the subject (Cesari, 1959; Giacaglia, 1965; Kyner, 1967). It 

was only at least a decade later that similar problems and questions arose in nonlinear circuit theory 

leading to the averaging methods of Krylov and Bogoliubov (1942) made available to the western 

mathematicians by the efforts of Lefschetz. The work by Brown (1931) on nonlinear resonance 

came well after Poincaré’s dealing with the problem and it is actually based on the examples he 

produced to illustrate Bohlin’s method. Modern literature on perturbation methods and averaging 

procedures becomes highly dense after about 1950 and specific reference on these will be done 

along the work, at the proper moment. So far for purely analytic works which aimed the quantitive 

approach, typical of the classical analysis of last century and beginning of this, of obtaining an 

explicit time solution for a System of differential equations. 

Along different lines, it was Poincaré (1952) who tried to understand, for the first time, the 

geometry of a differential system. His conjecture on the existence of fixed points for area preserving 

mapping, associated to the solution of a conservative system, was proved to be right by Birkhoff 

(1915) whose work is to be considered as one of the deepest changes ever introduced in the concept 

of solution important concepts like invariant sets, wandering points, etc., all related to the geometric 

behavior of the integral curves of a system. Along these lines the basic approach is probably best 

explained by Moser’s celebrated work on the area preserving mapping of a circle into itself (1962), 

by Hale’s work on integral manifolds of perturbed systems (1961) and by the work of Krylov and 

Bogoliubov (1934). Again we shall more specifically to the current literature when dealing with 

perturbations of invariant sets. 

The classical and perhaps the oldest methods of perturbations are of the Euler-Lagrange 

type, generalized by Poisson. Their conservative analogues are condensed in Jacobi’s Theorem on 

the variation of canonical variables. Since Poisson’s method is the most general, it is worth 
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mentioning here, but it will be done in a heuristic manner. We consider a differential system 

 

 f x, tx       (1) 

 

where x, f are n-vectors. For simplicity we assume f to be analytic in a certain domain D of the 

vector space x and for t R . Let, in D,  

 

 x,t       (2) 

 

be a first uniform integral of (1). It follows that, along any solution of (1) in D, we have 

 

x 0
x t

   
  
 

   

 

where   is an m-vector  m n , so that / x   is a rectangular Jacobian matrix (m x n). We 

have, for every x D , the identity 

 

 f x,t 0.
x t

  
 

 
     (3) 

 

Consider now the perturbed system 

 

   f x,t x,tx g       (4) 

 

where, again, g (x, t) is supposed analytical in D X R. We consider the variation of (2) along system 

(4), that is, 

 

   f x, t g x, t
x t

   
     
  

 

or, in view of (3), 

 

 g x,t .
x

 



      (5) 
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Equation (5) is generally credited to Poisson (1956) and contains as particular examples 

Lagrange’s Equations for the variation of arbitrary constants and Jacobi’s theorem. In the particular 

case of a dynamical system 

 

   x f x,x,t g x,x,t    

 

Poisson’s equation becomes 

 

 g x,x,t
x

 



 


     (6) 

 

where   is an integral for g 0 . Interestingly enough, all basic theorems of Classical Mechanics 

are immediately derivable from (6). In fact, if  is the Energy Integral 

 

 21
Ε x V x,t

2
   

 

it follows that, xΕ =x  and 

 

 TΕ=x g x,x,t    

 

which is the basic law of energy and work. If   is the Angular Momentum Integral 

 

L = x × x  

 

it follows that xL x   and 

 

 L x g x,x,t    

 

which is the basic law of angular momentum and torque. 

If (1) is a Hamiltonian system (x is a 2n-vector), that is, 

 

T
xx MH      (7) 
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where  x,t  and M is the canonical matrix 2n 2n , 

 

n n

n n

0
M

-I 0

 
  
 

 

 

and we let 

 

0 1     

 

if   is a first integral of (7), in involution with 0 , for 0   , it follows that 

 

1 .
x x


      

      (8) 

 

If, furthermore, the Jacobian matrix j
x





 is symplectic (that is, the transformation is 

canonical) it follows that 

 

1

x x

 


               
      (9) 

 

which is Jacobi’s theorem. We observe that if  is a 2n-vector, (8) are Lagrange’s equations for the 

variation of arbitrary constants in case of conservative forces. 

The classical approach to (9) is to assume for  a power series in a small parameter and 

reduce the problem to a method of successive approximations. In most cases this procedure leads to 

secular and mixed secular terms and therefore the series cannot converge for all time. If we limit the 

time, convergence can eventually be obtained and the earliest reference to this question is probably 

the work by MacMillan (1910). We refer to this work since it is simple yet quite rigorous. 

In the more sophisticated methods of averaging it is generally assumed (Hamiltonian 

system) that the Hamiltonian function is 2 periodic in every angular variable 1, 2 nY Y ,...,Y  and 

representable in a convergent Fourier series 
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   A x expi -1 j.Yj
j

        (10) 

where  1 2 nj j , j , ... , j  is an “integer” vector. 

The equations generated by (10) are 

 

x
Y

    
      (11) 

 

Y=+
x

 
  

  

 

If we consider only the part of H corresponding to j = 0, 

 

 0 0 x    

 

system (11) is obviously integrable and 

 

0x x  

 

 0 0y x t y       (12) 

 

where 

 

  000 xxHx xjj   

 

If in a certain region, the  xj  for j 0 , are such that their derivatives are small (in some 

sense) with respect to the  xj , then we can treat 0   as a perturbation. Classically it was 

assumed that if this situation occurs, than the solution of (11) never departs too much from the 

solution (12). Such supposition is evidently false and seldom verified, even considering “orbital 

proximity” regard-less of the time. It is actually the “time proximity” of corresponding points which 

is the most affected by the perturbation, and such phenomenon is well known as the “in-track 

error”. The analogy with the concept of stability is that it is easier to have orbital than Lyapunov 

stability. 
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In any event, using (12) as a reference solution with modified frequency vector  0xv and 

iterating, we obtain formal series 

 
   0

0
0

x
x x exp i j. t

j. x
j

j

C
v

v
      

 

   
   0

0 0
0

D
y t y exp i j.v t

j.
j

j

x
v x

v x
           (13) 

 

where 2
0 1 2 ...v        . It is evident that the products 1 1 2 2j. j j ... jn nv v v v     present in 

the denominators may become arbitrarily small for 1 2j , j ,..., jn  covering the all set of integers. In this 

form, Poincaré concluded that such series were therefore divergent for a set of frequency 

everywhere dense, which is in fact the case. Nevertheless, as Kolmogorov (1954) suggested, there 

exists a set of frequencies, of non-zero measure (density as close to one as is close to zero), where 

the series converge. This is basically due to the fact that it is possible, for all integers 1 2j , j ,..., jn  to 

set a lower bound on the numbers 1 1j ... jn nv v  , as shown by the diophantive approximation. The 

way one can arrive at the series will be shown, in a pure formal fashion, in Chapter II, while the 

subsequent chapters will be devoted to the problem of convergence of the methods introduced. 

Chapter I is devoted to the introduction of a basic back-ground and terminology to be used 

throughout these notes. The last chapter will be devoted to the question of nonlinear resonance. 
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CHAPTER I 

CANONICAL TRANSFORMATION THEORY AND GENERALIZATIONS 

 

1. Introduction. 

In this chapter we deal with the terminology and basic well known results, which are 

necessary to the development of the subsequent chapters. It is not the scope of this chapter to 

describe Hamiltonian Systems and their general properties. They are found in several books and 

monographs, among which we wish to mention the classics of Birkhoff (1927), Siegel (1956), 

Wintner (1947), Abraham (1966), Moser (1968). We avoid any and every sophistication in arriving 

at intrinsic representations and definitions of Hamiltonian systems on manifolds, not because they 

are not important, but because they are of no essential necessity in what has to follow. 

Initially, we remember the definitions of Lagrange’s and Poisson’s matrices. They arise 

naturally from the method of variation of arbitrary constants. We consider the 

transformation    y,x ,   to be 2C and invertible in some domain of a 2n-dimensional space. 

The vectors y, x are n-dimensional as well as the vectors ,  . Also, let  z y,xcol  and 

 ,col    be 2n-dimensional vectors. The Lagrange Matrix is defined as 

 

  ΤJ ΜJ L       (1.1.1) 

 

where M is the 2n x 2n canonical matrix 

 

0 I

-I 0

 
   

 
 

 

and J the Jacobian matrix of the transformation    , that is  

 

z
J .







     (1.1.2) 

 

It is easily verified that 
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  y yx x
   

 
          

                  
L      (1.1.3) 

and, therefore, 

 

  1
1 1 1

, .
n

k k k k
ij j

k j j

y x x y  
   

               
L      (1.1.4) 

 

The following properties are obvious 

 

,J J J J         L L  

 

where det ,A A  for any square matrix A. 

The Poisson matrix P(z) is defined by 

 

 z J J        (1.1.5) 

 

and one verifies that 

 

  z z z z
z

   

 
          

                   
     (1.1.6) 

 

so that 

 

    1

1

, .
n

j ji
ij i j

k k k k k

z zzz
z z z

   

  
        

      (1.1.7) 

 

Also, 

 

       

2 2-1

11 1 1 1 1

-Ρ,

J 1/ J

.J J J J 



      

 

  

     L

 

 

The expressions (1.1.4) and (1.1.7) are called Lagrange’s Brackets and Poisson’s 
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Parentheses, respectively. 

If one considers the system of n second order ordinary differential equations 

 y f y,y,t       (1.1.8) 

 

and a solution 

 

 0y y t; ,   

 

 
0

0 y
y x t; ,

t
  

 


       (1.1.9) 

 

corresponding to the initial conditions 

 

 0
0y 0; , y    

 

 0
0x 0; , y ,         (1.1.10) 

 

one verifies 

 

 
0x

f y,y,t .
t





  

 

For a perturbed system (1.1.8) one has 

 

   y f y,y,t g y,y,t         (1.1.11) 

 

and assumes the solutions to be of the same form as (1.1.9), where, of course, ,   are now in 

general variable. It follows that 

 

 
0 0 0

0 , ,
dy y y y

x t
dt t

   
 

  
   
  

  

 

and, therefore, 
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0 0

0
y y 
 
 

 
 

      (1.1.12) 

 

where  ,   are, evidently, n-vectors. Moreover 

 

   
0 0 0

, , , ,
dy x x x

f y y t g y y t
dt t

 
 

  
    
  

     

 

and, therefore, 

 

    
0 0

0 0; , , ; , , .
x x

g y t x t t     
 
 

 
 

      (1.1.13) 

 

The system of 2n first order ordinary differential equations (1.1.12) and (1.1.13) are 

Lagrange’s equations for the variation of arbitrary constants. They can be written in terms of a 

unique system using, for example, Lagrange’s matrix  L where  ,column   . The result is 

 

      
0

0 0; , ; , .
x

g y t x t t   



 

   
L      (1.1.14) 

 

Evidently, equation (1.1.14) defines   under the standard condition 

 

  0 L  

 

that is, 

 

 
 

0 0,
0

,

y x

 





 

 

which is met by the fact we assumed  0 0,y x  to be the general solution of (1.1.8) under arbitrary 

initial conditions  0 0,y x or constants of integration  ,  . Moreover, we require that 
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0

0 0, ,
y

g y x t



 

   
 

 

is Lipschitzian in some domain of the space  . Strictly speaking all of the above statements have 

a local character, but it is important, as far as applications are concerned, that they extend to some 

domain of the variables. Also, the functions we are dealing with are assumed to be continuously 

differentiable in t, generally for any real t. 

Lagrange’s and Poisson’s matrices satisfy an ordinary differential equation with some 

remarkable properties. In fact, consider the system of 2n differential equations 

 

 ;z z t  

 

and a solution   2;   Cz t   in the 2n integration constants  , and t, in some domain of the   space 

and for all t . Let /J z     be the non-singular Jacobian matrix of the transformation 

z  , which, by hypothesis, is 2C . Thus 

 

   ; ;
d z z

J t z t
dt t

 
  
   

  
   

   

 

  ; ;z t t J
z

 

 

 
 

 

 

or 

 

J=GJ      (1.1.15) 

 

where is a 2n x 2n non-singular matrix. Let us now consider 

 

 ;t J J  L  

 

so that, making use of (1.1.15), one finds 
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  .J G G J   L      (1.1.16) 

Lemma. The Lagrange matrix  ;tL  of the transformation z   is constant if, and only if, the 

matrix MG is symmetric. 

In fact, suppose MG is symmetric, that is 

 

 G= G -G .
      

 

Then G G 0     and 0L . Reciprocally let 0L . Under the foregoing hypotheses, it 

follows that 

 

G G 0     

 

or 

 

 G G G G
          

 

which completes the proof. From (1.1.16) and the above Lemma it follows that the flow of a 

Hamiltonian system is conservative. (Liouville’s Theorem). In fact, in this case, if  z is the 

Hamiltonian, one has 

 

T
zz MH  

 

so that 

 

  zz
T
zz

MHMHG 



  

 

and 

 

G zz   

 

is therefore symmetric. It follows that L=0  or  
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  0MJJ
dt

d T  

 

or constantMJJ T  If   is the vector of initial conditions 0 0,J   (the identity matrix), and 

therefore 

 

MM JJ T      (1.1.17) 

 

and also, in particular, 

 

J . 1const   

 

which proves the theorem. (The case 1J  is discarded for reasons of continuity.) If the 2n-vector 

z is composed by the n-vectors y and x (coordinates and momenta), one can, more precisely, write 

 

0 0

0 0

   

   

y y

y x
J

x x

y x

  
   
  
   

 

 

and at 0t  , 

 

0 2
0

0
.

0
n

nJ
 

    
 

 

It follows that the mapping 0   can be represented by 

 

 
 

0 0 0

0 0 0

, ;

, ;

y y Y x y t

x x X x y t

 

 



      (1.1.18) 

 

where    0 0 0 0, ;0 , ;0 0Y x y X x y   , so that, for t sufficiently small, 
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   0 0 0 0, ;  , ;Y x y t t Y x y t  

and 

 

   0 0 0 0, ;  , ; .X x y t t X x y t  

 

The situation can also be viewed from another point. Since at 0t   the mapping 0z z  is 

the identity, there exists a generating function 

 

 0 0; ;S x y tW x y t        (1.1.19) 

 

such that 

 

T
y

T
y WtxSx  0   

 

and 

 

T
x

T
x WtySy

00
 0   

 

which should be equivalent to (1.1.18). 

 

 

2. Canonical Transformations. 

A transformation z  , non-singular and 2C  is canonical if it transforms every 

Hamiltonian system 
T
zz MH  into a Hamiltonian system T

 MK . The property is purely local, 

but, again, the usefulness of such definition and what follows relies on the possible global extension 

into some domain of the phase space. We consider    ; ,  ;z col y x col    , to be 2n-

dimensional vector. The invariance of the Hamiltonian Form implies that the transformation is 

canonical if and only if the form 

 

   
1

n

k k k k
k

    


         (1.2.1) 
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is an exact differential, for all H. 

From (1.2.1) we shall derive the necessary and sufficient condition for the transformation to 

be canonical (Breves, 1972). We observe that (1,2, 1) can be written 

 

   MTH      (1.2.2) 

 

Moreover, given the transformation 

 

 ;z t       (1.2.3) 

 

we have 

 

TzJ         (1.2.4) 

 

where J is the Jacobian matrix 

 

.J
z





 

 

It follows that 

 

t
T
zHJ    M   

 

and, from (1.2.2), 

 

      MMHH T
t

T
z J   

 

or, with ,J z   

 

      MMHH T
t

T
z J   

 

or 
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      zztzzz  ,LMLHH *      (1.2.5) 

 

where 

 

  




















zz

z
T 

ML*  

 

and 

 

  




















zt

zt
T 

M,L*  

 

The quantity  zt,L*
 is, evidently, a row vector, whose elements are the Lagrange brackets 

 , kt z . 

The conditions of integrability of    , for all H, can be translated into conditions of 

integrability for 

 

     

     

     

      

0 , , ,

, 0 ,

, 0

, , 0 .

k k
k

k k

k k

k j j k k j

t z z t z z

y x z z

x y z z

y x y z y x z x z

  

  

  

  

 

  

 

    









 


 


  


L

 

 

It follows that 
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, , ,

, , ,

, , ,

k
j k

k k j
j

k k j
j

t z t z
z z

x z x z
z z

y z y z
z z

 


 

      

      







 

and 

 

 

, 0 for z ,

, 0 for ,

j j

k k

y z x

x z z y

    

 

 

 

     (1.2.6) 

 

and 

 

   , , . .k ky x x y const      

 

The last relation is obtained in view of the first three from where we conclude, using 

Jacobi’s identity, that 

 

, 0,  and

, 0.

k j

k j

z z
t

z z
z

    

     

 

 

In matrix notation, conditions (1.2.6) can be written as 

 

  MML  JJz T
     (1.2.7) 

 

and since, by hypothesis, 0J  , the constant  cannot be zero. Equation (1.2.7) is the necessary 

and sufficient condition for a transformation to be canonical. On the other hand, since 

   z z  L , such condition can also be expressed in terms of Poisson’s Matrix 
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  MJJz T  MP  

 

That the condition is sufficient follows immediately from the substitution of (1.2.7) into 

(1.2.5) which gives 

 

     Wzztzz  H,LHH *       (1.2.9) 

where  ;W z t is a function such that 

 

   0 ,L*   zztzWz      (1.2.10) 

 

an exact differential form. Under the circumstance, one can easily conclude the following result. 

 

Theorem (Jacobi–Poincaré). “A necessary and sufficient condition that a transformation and 

non-singular z   be canonical and the new Hamiltonian be 

 

W         (1.2.11) 

 

is that the form 

 

x dy d Wdt            (1.2.12) 

 

be an exact differential.” 

 

In fact, 

 

x dy dx W dt
y x t

                        
 

 

and the integrability conditions for   are 

 



Eng Res, v. 10, n. 1, p. 1-145, January / 2019. doi.org/10.32426/engresv10n1-001 23 

x
x y y x

x W
t y y t

W
t x x t

   

   

  

  

  

 

               

               

                 

 

 

or, in component form, 

   

 

 

k k, 0           z x ,z x ,

, ,

, ,

k

k k

k
k

z z

y x

W
t z

z



  







  

 

 

which completes the proof. We finally arrive at the Jacobi-Poincaré relation. From (1.2. 12), 

 

 x dy d dt           

 

and, therefore, “the necessary and sufficient condition for a transformation to be canonical can be 

expressed by the fact that   has to be an exact differential, that is, 

 

 x dy d dt dF              (1.2.13) 

 

when expressed in terms of the variables ,   .” 

The set of all matrices A satisfying the condition 

 

     

 

constitutes a group (with respect to matrix multiplication), which is called the Symplectic Group. 

The case 1   is generally excluded from the definition. 

Canonical (and therefore, Symplectic) transformations with 1   are also usually excluded 

since they are the product of a canonical transformation 1   and the trivial canonical 
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transformation 1   given by 

 

x

y

 



 



 

 

for, in this case, 

 

 
 0

0,

0,

I
J

Iy x

 


  
     

 

 

and it is easily seen that 

 

MM 00 JJ T
 

 

as discussed by Siegel (1956). 

Excluded such case, the necessary and sufficient condition for a canonical transformation is 

 

  MM L  JJz T
     (1.2.14) 

 

or 

 

  ,z J J     

 

where 

 

 ;
.

z t
J

z





 

 

The Jacobi-Poincaré condition is reduced to 

 

  dFdtddyx TT  HK      (1.2.15) 

 

and if the transformation does not depend explicitly of t is called completely canonical and if dF = 
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0, homogeneous. 

From the results obtained in Section 1, we also conclude that the transformation defined by 

the solution of a Hamiltonian system, mapping the phase space into itself, is canonical. The volume 

preserving property was already established. In more precise form: 

“Let T
zz MH be a Hamiltonian system of differential equations and let there exist a unique 

solution  ,z z t  going through the point z   at 0t t , and assume  ,z t  to be  2C with 

respect to the 2n + 1 variables (z; t) in a neighborhood of z   and for 0t t sufficiently small. 

Then the mapping z  defined by  ,z z t  is volume preserving and canonical.” 

 

 

3. Hamilton – Jacobi Equation. Generalizations. 

Consider the non-singular 2C  transformation 

 

 

 

; ;

; ;

y y t

x x t

 

 





     (1.3.1) 

 

and suppose the particular situation 

 

00, ,
y   



  


     (1.3.2) 

 

so that, locally, one can solve the first system for , 

 

 ; ;y t    

 

and, therefore 

 

 ; ; .x x y t  

 

If there exists a function  ; ;S y t such that 
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2

0,
S

y 



 

 

 

and S is 2C   , the transformation defined by 

 

yx S

S









 

is canonical, and the new Hamiltonian is given by 

 

      

  

; ; ; ; ; ; ; ;

                   + ; ; ; ;

t y t x t t

S
y t t

t

     

  

  




 

 

In fact, let us write, in (1.2.15), 

 

 d d d          

 

and we have 

 

   .x dy d dt d F                (1.3.3) 

 

If we let 

 

 ; ;S F S y t      

 

then 

 

,
S S S

dS dy d dt
y t




  
  
  

 

 

and from (1.3.3), 
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; ; ,

; ; ,

t

S
x x y t

y

S
y t

S



  


 

 


 



 


   

     (1.3.4) 

 

For the transformation to be written in explicit form we require that 

2

0,
S

y 



 

 

 

in which case one obtains 

 

 ; ;y x t   

 

and therefore 

 

 ; ; ,y x t   

 

with the evident condition that / 0y   . Since S   is supposed to be 2C , this implies / 0y     

and therefore, through (1.3.2), the recovery of (1.3.1). 

The important result, to our purposes, is the last of equations (1.3.4), which we write 

explicitly, 

 

  

    

; ; ; ;

        = y;x y; ;t ; ; ; .

y t t

S
t y t

t

  

 




 



     (1.3.5) 

 

If the transformation is time independent, that is, 0tS  , the new Hamiltonian is simply the 

image of the old one through the mapping .z   

The basic problem of Hamiltonian-Jacobi is whether there exists a transformation, generated 
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by S, and such that the new Hamiltonian reduces to an absolute constant, or, which is equivalent, to 

a function identically zero. In other words, we seek the solution of the partial differential equation 

 

 ; ; 0y ty S t S        (1.3.6) 

 

with  ; ;S S y t . As is well known, Jacobi has shown that a general solution is not needed but 

only a complete solution, in the sense of a function  ; ;S y t depending on n arbitrary constants   

and such that / 0S    . In such case the new variables are constants and the relations 

 

 

; ; ,

; ; ,

y x t

y x t

 

 





 

 

which are obtained from (1.3.4) are 2  integrals of motion. Obviously, if the original Hamiltonian 

system is integrable in the sense of existence and uniqueness of solution of the equations 

 

T
zz MH  

 

a generating function  ; ;S y t must exist (which might not be expressible in terms of elementary 

functions). In fact, since the solution defines a canonical mapping  ,z z t  where   is the 

vector of initial conditions, and since for 0t t , /y     (the identity matrix), then for 0t t  

sufficiently small / 0y    , and therefore 

 

   0 ; ;S y t t F y t         (1.3.7) 

 

for 0t t  sufficiently small, in agreement with (1.1.19). 

The problem of Hamilton-Jacobi can be generalized by relaxing the condition that the new 

Hamiltonian be an absolute constant. As far as canonical perturbation methods are concerned the 

following generalized problem is of great relevance. 

We ask if there exists a canonical transformation generated by  ; ;S y t , such that the new 

Hamiltonian has fewer degrees of freedom than the old one. One of that ways to translate this, is to 
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produce a Hamiltonian 

 

     ; ; ; ; ; ;tt y x t S y t      

 

such that 

 

0
k





     (1.3.8) 

 

for 1, 2, ..., .k p n   The resulting system is obviously reduced to quadratures in the cases p = n or p 

= n-1. This is the least one require from the transformation, but still it is a much weaker requirement 

than that proposed by Jacobi. One may also require that the new Hamiltonian does not depend on 

time proposed by Jacobi. One may also require that the new Hamiltonian does not depend on time 

explicitly. This process of elimination is generally called an averaging method (Burstein and 

Solovev, 1961) and is usually applied when H is a periodic function of t. One can also easily 

generalize the concept for the case of almost period functions of t. If H depends on a small 

parameter say , and admits a Taylor series about 0 , it can be shown that there is a formal 

series in  which solves S up to any desired power. The convergence properties of such series are 

not known in general. The problem of existence of such series and its convergence is strictly related 

to the theory of periodic surfaces (Diliberto, 1961; Diliberto et. al., 1961) and to the theory of 

Moser (1962) on invariant curves of area preserving mapping. This last subject will be dealt with in 

some detail in chapter IV. A qualitative description of these problems are described by Kyner (1964) 

in relation to the motion of a satellite in the oblate field of a planet. We shall not dealt with 

Diliberto’s theory. Such approach is indeed relevant to the subject, but it is dealt in details elsewhere 

(e.g. Diliberto, 1961; Hale; 1961). 

A new approach to canonical transformations can be viewed by introducing a theory 

formulated by Lie (1888). Lie Series in problems of dynamics have been used in several occasions 

and a good reference to the subject, as a general background, is the work by Leimanis (1965). Quite 

recently they have been introduced as a mean to perturbation methods in non-linear Hamiltonian 

systems and also have been extended to systems of ordinary differential equations with few 

restrictions and no requirement for such systems to have a Hamiltonian form. Such applications will 

be discussed in Chapters II and V. Here, we wish to describe whatever is necessary for 

understanding of such applications. The motivation for such series is the simple fact that given a 

system depending on a parameter, one usually knows the solutions when that parameter is set equal 
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to zero. A series solution is then constructed as a power series of the parameter, or, in conservative 

systems, it can be generated by a canonical transformation which, again, is given by power series on 

the parameter. Generally speaking, little is known about the convergence of such series, but in many 

applications they have proved invaluable. Such applicability has been actually checked against 

precise numerical integrations or observations of the system. At this moment, it is perhaps 

appropriate to repeat some of the words of Professor Siegel (1941), about the normalization of 

Hamilton functions. “On account of the small divisors appearing in the coefficients of the 

transformation, it seemed to be probable that the series would diverge in general, but no single 

example had hitherto been found. From Poincaré’s well known theorem on the analytic integrals of 

canonical differential equations we can only infer that those series do not uniformly converge… 

whereas this theorem cannot be applied to a fixed function H.” Later, about a specific problem he 

says “In particular, it would be interesting to decide, whether H is regular or singular (i.e., reducible 

or not to normal form by convergent series) in the special case… But this seems to be beyond the 

power of the known methods of analysis.” Moser (1955) analyzed similar questions but could not, 

in essence, prove any general new theorem on denseness of regular Hamiltonians, beside the results 

of Siegel in 1954 (see Chap. IV, Notes). 

 

 

4. Lie Series and Lie Transforms. 

The subject to be dealt with in this section is related to the following fact (to be proved in 

the text). 

Let  ; ;S y x  and  f ; ;y x  be functions of the n-vectors y (coordinates) and x (conjugate 

momenta), and let  be a dimensionless parameter. We assume S and f to be real analytic functions 

of the 2n + 1 arguments. Let us define an operator 

 

 f f ,w

f
w


  


     (1.4.1) 

 

where (f, W) is Poison parenthesis. Finally, consider the operator 

 

 
0

f f 0
!

n
n

w w
n

E
n






        (1.4.2) 

 

where 
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0

1
w

1

f f

f f

f f 2,3,... .

w

w

n n
w w w n

 

  

    

 

 

The main result is that, under the foregoing conditions, if the series (1.4.2) converges, the 

transformation 

 

k w k

k w k

y

x








     (1.4.3) 

is completely canonical. Moreover, any function g (y; x) real analytic is expressed in the new 

variables ( ;  ) by 

 

      ; ; , ; ; ; .wg y x g             (1.4.4) 

 

Lie’s Theorem (1888). The original application of Lie’s series to perturbations methods was 

introduced by Hori (1966). He considered the operator fn
SL  defined by 

 

 

0

1

1 1

f f

f f ,

f f

S

S

n n
S S S

L

L S

L L L 







     (1.4.5) 

 

where f, S are real analytic functions of 2n variables ( ;  ),  1,..., n   ,  1,..., n   , 

canonically conjugate, and wrote Lie’s theorem as follows: “A set of 2n variables (y; x) defined by 

the equation 

 

   
0

f ; f ;
!

n
n

S
n

y x D
n

 





      (1.4.6) 

 

is canonical if the series converges for  sufficiently small and independent of ( ;  ).” The proof of 



Eng Res, v. 10, n. 1, p. 1-145, January / 2019. doi.org/10.32426/engresv10n1-001 32 

such theorem is quite elementary. One introduces the canonical system of different equations (j = 1, 

2, …, n): 

 

,j j

j j

d dS S

d d

 
   

 
  
 

     (1.4.7) 

 

where  is any parameter, and let    ,j j     be the solution of the system which is unique in the 

region where S is real analytic. It follows that, from (1.4.6) 

 

      
0

f
f ; 0 f ;

!

n n

n
n

d
y x

n d
   








      

or, since f (y; x) is analytic 

 

   ,j j j jy x             (1.4.8) 

 

for j = 1, 2, …, n and  sufficiently small. Since (1.4.8) are solutions of the Hamiltonian system 

(1.4.7), it follows that (y; x) are canonical, because the mapping (1.4.8) is canonical. 

If the “generator” S is given, the transformation has the explicit form 

 

1

1

1

1

!

!

n
n

j j S
n j

n
n

j j S
n j

S
y D

n

S
x D

n

















 
 



 
 







     (1.4.9) 

 

which follow from (1.4.6). The apparent incongruence in the application of such theory to a 

perturbation method is that the functions f and S are to be considered power series in  and such 

dependence is not taken care in the formulation. A modified approach to the question was 

introduced by Deprit (1969) and later was shown to be equivalent to Hori’s formulation by several 

authors (e.g., Mersman, 1970). The equivalence of the generalized Hamilton-Jacobi transformation 

theory and Lie’s transformations as used by Poincaré, Hori and Deprit, will be dealt with at the end 

of Chapter II. Here, we limit the presentation to the basic theorems involved in Lie’s series 

transformation in the case when f and / or S are functions of . The main purpose is to establish 

(1.4.3) and (1.4.4). The exposition follows the lines of Deprit’s (1969) work. 
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Consider f and S to be real analytic functions of 2n canonically conjugate variables (y; x). 

The Poisson’s parenthesis (f, S) may be written 

 

  f f
f ,

S S
S

y x x y

                
     (1.4.10) 

 

where, as usual, the derivative of a scalar function with respect to a vector is supposed to be a row 

matrix. One can define the 2n-vector Z = (y; x) and the 2-vector (f, S) and write the Poisson’s 2 x 2 

matrix 

 

 f ,z z zS J J         (1.4.11) 

where 
 f ,

z

S
J

z





 is a 2 x 2n matrix and M is the 2n x 2n canonical matrix. Then 

 

   
0 1

f , f , .
-1 0z z

S S
 

   
 

 

 

For a nontrivial canonical transformation z = z ( ) one has 

 

J J    

 

where /J z    . Then  

 

.zJ J J       (1.4.12) 

 

Now one has 

 

 

 

f ,

             f ,

z z

z z z

S J J J J J J

J J S

  
  



    

   

 

 

which shows the invariance of P with respect to a canonical transformation. 

The Lie Derivative of f generated S is simply 
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 f f , ,SL S      (1.4.13) 

 

and the following properties follows from the fact that fsL is a bilinear form in f, S ( ,  are 

constants): 

 

 

 

     

 , , '

. f f

. f . f . . f

c. f, f, , f ,

. , f f f .

S S S

S S S

S S S

S S S S S S

a L g L L g

b L g L g g L

L g L g L g

d L L L L L

     

 

 

 

     (1.4.14) 

 

Defining 
0f fSL  , the n iterate of the Lie Derivative is 

 

1f f.n n
S S SL L L   

 

For this n iterative, the following properties are easily verified: 

 

 

 

   

0

0

a. f

b. f.  f .

c. f ,   f, .

n n
S S

n n
n m n m

S S S
m

n n
n m n m

S S S
m

L g L g

L g m L L g

L g m L L g

  









 

   
 

   
 





     (1.4.15) 

 

If the function S is real analytic one may choose sufficiently small so that the series 

 

 
0

f exp f
!

n
n

S S
n

L L
n






       (1.4.16) 

 

converges when applied to an analytic function f. Again, one can easily verify that 
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a. exp f exp

b. exp f. exp  f. exp 

c. exp f , exp f ,exp .

S S

S S

S S S

L g L g

L g L g

L g L L g

     

  

   

     (1.4.17) 

 

From the last of the above relations one concludes the Theorem: “Let  be a constant 

parameter and consider the transformation  z z   from the 2n-vector z = (y; x) where y, x are 

canonically conjugate, to the 2n-vector  ;z y x . If there exists a real analytic function S (z) such 

that the series 

 

 exp SL z        (1.4.18) 

 

converges in some domain of the z-space, the transformation is canonical.” 

Note that is essentially Lie’s Theorem as stated before. The proof, under the present 

approach, follows immediately by considering  

 

 

 

exp

exp

i S i

j S j

L z

L z





 

 

 

 

and from (1.4.17) e, 

 

      

   

, exp , exp

             = exp .

i j S i S j

S

L z L z

L z

    

 

 

 

or 

 

     exp SL z     

 

From the fact the z is a canonical set, P (z) = M and, therefore 
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so that  is canonical 

Another important result gives the transformation law for any function of z into a function of 

 . Theorem: “The image of every real analytic function f (z) under the transformation 

 

 Sz exp L        (1.4.19) 

 

is 

 

        f ; f exp exp f ".S SL L           (1.4.20) 

 

In fact, 

 

  f
f ;S SL L z

z
 
 


      (1.4.21) 

 

where f / z  is the row matrix  f / kz   and SL z  is the column matrix  , .kz S    

Differentiating (1.4.19) with respect to , 

 

1

0

,
!

m
m

S S
m

z
L L z

m







 
 

   

 

so that 

 

  f f
f ; .S

z
L

z
   
  

  

  

 

The n-th iterate of such an operation gives 

 

n
n f
f=S n

L
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or 

 

   n

0

f
f ;0 f

n
n

SL  



 

 

   

 

from (1.4.20). Hence, the Taylor’s expansion of  f ;   is given by 

 

     

0 0

0

f
f ;

!

            = f exp f
!

n n

n
n

n
n

S S
n

n

L L
n



 



 





 
 




 







 

 

which completes the proof. 

From this last theorem we conclude a corollary which, ultimately, will establish the validity 

of Hori’s approach who considered S an explicit function of . Corollary: “If the function   f ,z   

admits a Taylor series in the neighborhood of  0 , that is, 

 

   
0

f ; f
!

n

n
n

z z
n






       (1.4.23) 

 

then, under the canonical mapping (1.4.19), 

 

    
0 0

f ; ; f
!

n n
m

S n mm
n m

z L
n

 
 


 

      
 

       (1.4.24) 

 

In fact, from (1.4.20), 

 

    1
f ; f

!
m m

n S nz L
m

 


    

 

which substituted into (1.4.23) gives the desired result, upon collection of like powers of . 

Finally, we prove the following theorem about the inverse of a canonical transformation 

defined by Lie’s Series: 
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Theorem: “The inverse of the canonical transformation 

 

 exp Sz L    

 

is given by 

 exp ."SL z        (1.4.25) 

 

In fact  

      

  S

exp , exp , exp

   = exp L , .

S S S

S

L z L L

L

 



    

 

 

 

The operator 

 

  exp ,S SL L   

 

must reduce to the identity transformation, that is, , 0S SL L  , and, therefore, S’ = -S, necessarily. 

 

 

5. Lie Transform Depending on a Parameter. 

 As was stated earlier, canonical transformations associated with perturbation methods are 

necessarily functions of a parameter, generally small, for the solution is known such parameter is set 

equal to zero (or any fixed numerical value). In terms of the Lie Transformation Theory presented 

in the previous section, this means that one should allow for the Generator to depend explicitly on 

the parameter . This can be accomplished by defining (Deprit, 1969) the operator 

      
S SL


  

 
                                                 (1.5.1) 

with the obvious properties: 
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 f   +  L

a. f f

b. f. f . g . f

c. , f f , f ,

d. , f , f ', '

S S S

S S S

S S S S

S S S S

g g

g g

g g

L S S S S

   

 

     

    

     

      

                                                             (1.5.2) 

where 

      

 ; ,

.

S S z

S
S

 





 

It is also legitimate to define the n iterate of fS by 

      

 1

0

f f

f f

n n
S S S

S

   

 

 

and easily obtain the relations corresponding to (1.5.2). 

 We also define 

      
 

 
 ; 0

f ;0 f ;
S

n
n 
 

 

                                          (1.5.3) 

and the new operator  

       
0

f f ;0 .
!

n

S n
n n







                                        (1.5.4) 

Evidently, if there exist a finite quantity A such that 

       f ;0 n
n    

for  in some neighborhood of a point 0 , the series (1.5.4) certainly converges. 

 The following relations are easily verified: 

     

 

 

   

a. f  f  

b. f . f . 

c. f , f, .

S S S

S S S

S S S

g g

g g

g g

        

   

   

                             (1.5.5) 

As done previously with operator SL , one shows that the transformation  ; z         defined by 
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0

;0 .
!

n

S n
n

z z
n

 





                                          (1.5.6) 

is canonical provided the series converges. In order to establish a Lie Generator for the above 

transformation, we prove the following theorem. 

 

Theorem: “The transformation  Sz   is the solution of the Hamiltonian system  

      
T

dz S

d z

      
                                              (1.5.7) 

corresponding to the initial conditions z   at 0 and where  ;S z   is related to      through 

(1.5.4) and (1.5.3).” 

  In fact, considering (1.5.1), 

     

   ; ;

z
    = ,

y

S S

TT

z
z L z

S z S z

x x y

  
    



                 

 

where z = col (y; x). From (1.5.7), with  ;S S   , 

      
T

S dy

x d

     
 

and 

      ,
T

S dx

y d

 
    

 

so that 

     ; .S

z dy z x z dz
z

y d x d d
    

     
     

 

The transformation  ;z    being supposed real analytic, we obtain 

       ; ,
n

n
S n

d z
z

d
  


                                      (1. 5. 9) 

and for 0 there results 

        
0

0

; 0; n

n
n

z
S n

d z
z

d






  


 

so that, using (1.5.6) 
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0

;0 .

0 !
S

n n

z z
n

n

d z

n d
 




   







 

which completes the proof. 

 The transformation of a real analytic function  f ;z  under the canonical mapping  

   ; Sz z      defined by (1.5.6), is simply obtained as  

         f ; f ; .S S                                            (1.5.11) 

In fact, along the solution  ;z z   , going through at 0z   , of system (1.5.7), 

        ;; f z  

      



























0 0
0

0

f
!

f

!n n

n
S

n

n

nn

nd

d

n
 

as shown by (1.5.10). Therefore, by definition of S , 

         f ; ; f ; .Sz       

which is (1.5.11). 

 A particular case of interest for the transformation rule (1.5.11) is when both  ;S    and 

 f ;   are power series in , that is, 
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n
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                                             (1.5.12) 

and 
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                                               (1.5.13) 

In this case, let us define 
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PS PL L p   

so that, from the results of the previous section, one finds 
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Thus, representing fS  by the series 
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one finds 
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and therefore 
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In the same manner, introducing the series 
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we find  
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and therefore 

            2 1 1

10 1 0
,f f fL    

or, using the expression for    1 1

0 1
,  f f , it follows that 

              2

2 1 1 0 2 0 1 10
f 2 f , f , f , , .f S S S S      

A general recurrence algorithm is thus obtained for the transformation of  f z;  under a Lie Series 

Transform generated by  ;S z   when both functions are real analytic in all variables and for  in 

the neighborhood of 0 : 
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This is represented in the following triangular map: 
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A particular case of interest is the transformation of the vector z = col (x; y). The canonical 

transformation is 
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                                  (1.5.15) 

and the recurrence procedure above described gives the coefficients 
   
0 0

;0
n n

  and 

     
0 0

;0
n n

  . In (1.5.15) it is worth noting that, obviously, 
 0

0
   and 

 0

0
  . The all 

procedure can be extend to the case in which the canonical transformation depends explicitly on 

time. One way to produce the corresponding result is by simply taking the time as an additional 

canonical coordinate, the conjugate momentum being the Hamiltonian itself. This leads directly to 

the algorithm described in detail by Deprit (1969). 

 

 

6. Equivalence Relations 

 In previous sections we have described ways of producing canonical transformations as power 

series of a parameter . Such transformations are written  

     

 

 

; ;

; ;

y y

x x

 

 

 

 

                                                            (1.6.1) 

or 

      ; ,z z    
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where , , ,x y   are n-vectors and z,  are 2n-vectors, In terms of a generator satisfying Hamilton-

Jacobi’s equation, that is, the one required to develop Poincaré’s method of perturbations, the 

transformation (1.6.1) is produced by 

     

 

 

; ;

; ;

T

T

M
y y x

x

W
x x

 

  


      

 
     

                                      (1.6.3) 

Where  ; ;W W x  . The condition 

      ; ;0 0W x                                                              (1.6.4) 

indicates the fact that the transformation (1.6.1) is “near” the identity for  sufficiently small. 

 A transformation of the same character is produced, as was seen, by a generator  ; ;S S y x  , 

through the solution of the Hamiltonian system 

      

T

T

dy S

d x

dx S

d y

     

 
    

                                               (1.6.5) 

with the initial conditions ,y x   at 0 . We have the following basic equivalence statement: 

Theorem (Shniad, 1970): “The Generators W and S, satisfying the foregoing conditions, satisfy the 

relation 

        ; ; ; ;
W

S y x x
  

 
                                            (1.6.6) 

where 

      ; ; ."
T

W
y y x

x
       

                                    (1.6.7) 

In fact, applying the canonical transformation (1.6.3) to the system (1.6.5), the new Hamiltonian 

 ' ; ;S     is given, according to Hamilton-Jacobi theory, by 

           ' ; ; ; ; ; ; ; ; ; ; .
W

S x S y x x x    
      

 
        (1.6.8) 

on the other hand, by definition, and are constants and, therefore, the Hamiltonian  

 ' ; ;S    must be identically zero, which proves the theorem. 

 Now, both W and S are generally defined as power series in  and (1.6.6) provides the relations 

among the coefficients of these two series. In fact, since S’ is identically zero, the corresponding 
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relation 

     ; ; ; ; 0
T

W W
S x x

x
 
             

                                 (1.6.9) 

must be identically satisfied as a function of the 2n + 1 independent variables  ; ; .x   

Let us assume for S and W the series 
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                              (1.6.10) 

where y is defined by (1.6.7). 

 Substitution of (1.6.10) and (1.6.9) leads to the recurrence relations 

     

1 1

1 1
2 2

1 2 2 1
3 3

2
1 1 1

2

3

1
             =

2

T

T T

T

W S

S W
W S

x

S W S W
W S

x x

W S W

x x



 

 



          

                          

   
     

 

where nS





 and higher derivatives stand for .nS
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In general, Mersman (1971) finds that 
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where the second summation is over all sets of k + 1 positive integers  0 1 2, , ,..., k     such that 

0 1 2 ... 1.k n        Relation (1.6.11) is totally equivalent to the one originally obtained by 

Giacaglia (1964) in the development of explicit relations for the von Zeipel (Poincaré) method. The 

recurrence formula (1.6.11) can now be used to establish explicit relations among the generators 

defined in Poincaré’s method and those given by Hori and Deprit by means of Lie Series. These 



Eng Res, v. 10, n. 1, p. 1-145, January / 2019. doi.org/10.32426/engresv10n1-001 46 

relations are given in detail by Mersman (1971). The equivalence of Hori’s and Deprit’s 

formulations establishes, indirectly, a justification of the the fact that in Hori’s original approach the 

generator S could be considered a function of , although, apparently the proof of Lie’s Theorem 

falls short in such case. A discussion over the above question was originally presented by Campbell 

and Jefferys (1970) with respect to some negative remarks by Deprit (1969) about Hori’s Theory. 

Their argument is essentially the one of assuming the generator S imbedded on a one parameter 

family (parameter 0 ), constructing the transformation for a fixed value of the parameter and 

showing the validity for any value 0of .   An analogous reasoning was quite successfully 

applied by Poincaré (1892) in a problem where the same parameter is fictitiously labeled by two 

names are identified again. 

 As an example of Poincaré’s remark, consider 

      f sin
1


 


 

and the Taylor series of   f   about 0 . One can produce such series as follows. Let 

     sin sin
1 1 
 


 

 

and the Taylor series is 
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Identification of  and  gives 

       
0 0

1
sin 1 1 1

1 2 !

p n p n n p

p n
p n n

  


 

                
   

which in fact is the correct Taylor series of  f  as it is readily verified.  

 In the case under question, recalling the operator 

      
0

exp ,
!

n
n

S S
n

L L
n






   

the property 

           exp f , exp f , expS S SL g L L g     

does not depend on the fact that S is dependent or independent of . Therefore, since the above 

relation is basically the proof of the transformation 
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      exp Sz L    

to be canonical, it can likewise be applied to Hori’s development, as a proof independent of the 

Hamiltonian system of differential equations generated by S. 

 

 

7. General Transformations induced by Lie Series. 

 Consider an n-dimensional vector space and a non-singular real analytic transformation from a 

point x to a point y of this space, defined by 

      
1 !

m

m
m

y x y x
m






                                                     (1.7.1) 

where my  are n-vectors, and  a parameter independent of x. For 0 , (1.7.1) reduces to the 

identity transformation and for  small (1.7.1) is “near” the identity if the series converges. We shall 

however consider (1.7.1) as a formal series and apply the rules of operations with convergent series 

(e.g. Cartan, 1963). 

 One of the goals of the following discussion is to construct a simple algorithm for the 

transformation, under (1.7.1), of a vector function  ;F y  . We wish the result to be a power series 

in , that is, we wish to find the coefficients  nF x  in the expansion 

         
0

; ; .
!

n

n
n

F y x F x
n






                                        (1.7.2) 

Obviously, the vector function F should be real analytic in at =0   so that the series (1.7.2) 

exists. We shall also assume it is real analytic in y. 

Two different algorithms were developed independently by Hori (1970) and Kamel (1970), having 

as major goal the solution by formal series of problem in nonlinear oscillations. The description of 

such applications will be given in the next chapter. Here, we limit ourselves to the description of the 

formal expansion discussed above. 

 By hypothesis, one can expand  ;F x   as 
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                   (1.7.3) 

and also, 
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                                      (1.7.4) 

where 
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and 

       ;x x y   

is the inverse of (1.7.1) which we suppose exists. 

 We also have, writing the inverse of (1.7.1) as 
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                                                  (1.7.5) 

that 
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                                                  (1.7.6) 

The expansion /x clearly indicates that y is kept fixed. From (1.7.6) we can write 
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x
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Where 
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                               (1.7.8) 

We have that 

     ;
d x

x L
d x x 

     
       

          
                  (1.7.9) 

where the operator L  is defined by 

       ;L x
x


  


                                            (1.7.10) 

acting on a real analytic function  f ;x . In the above relations we have assumed  ;x   to be an 

n-dimensional row vector and 
x




 an n-dimensional column vector. Now we have 
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where 
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In general, we obtain 
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where 
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                        (1.7.14) 

for 1 and 0k n  , where 

                    0
0, k k k

n nF x F x F x F x F y y x                          (1.7.15) 

The equation (1.7.14) is a recursive algorithm to construct the coefficients    nF x  from  nF x  of 

the series (1.7.4) and (1.7.3). The variable’s name is, obviously, dummy. The corresponding formula 

to construct the coefficients  nF x  from    nF x is 
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Successive substitution of (1.7.16) into itself from n = 1 up, gives  
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k k n j

n j
j

j

F F  



   
 

                                        (1.7.17) 

where  j1,  0 and 0n k j     is a linear operator given by 
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for 1j  , and where 
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For instance, the first few operators j  are 
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In particular, for k = 0, Eq. (1.7.17) yields 

       
0

n n
n j

n j
j

j

F F 



   
 

  

which may be written as  
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where 
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and, by definition 

       
0, .k

kF F  

Formula (1.7.20) gives the  nF  recursively in terms of the nF or the nF  recursively in terms of the 

 nF . This is the simplest possible form, as derived by Kamel.  

 

Vector Transformation. 

 The coefficients  ny x in (1.7.1) are easily obtained now from (1.7.16) for the special case of 
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(1.7.3) when one takes 
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In fact, (1.7.16) gives, in this case 
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The inverse transformation follows from (1.7.14) or, more directly, from (1.7.21).  

 In fact, in notation of (1.7.4), 
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The recurrence relation (1.7.21) gives, together with (1.7.8) 
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                             (1.7.23) 

with 

         0, .k
k y    

Applications of the above results will be given, explicitly in the next chapter, when the problem of 
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integration of non-linear systems will be dealt with. 

 

 

 

 

 

 

 

 

 

NOTES 

 Lindstedt has been given credit for developing a perturbation method which avoids secular and 

mixed secular terms in the perturbed harmonic oscillators. He described such a method on several 

occasions but always thought that the perturbing forces ought to be either odd or even functions of 

the angle variable involved. Such restriction was shortly after shown not to be necessary by 

Poincaré. In his celebrated “Méthodes Nouvelles”, vol. 2, he developed a canonical analog of 

Lindstedt method which, even after a superficial look, proves to be a very elaborate generalization. 

However, it is obvious that the main idea of Poincaré’s development comes from Delaunay and 

some remarks of Tisserand on Delaunay’s Lunar Theory. One might in fact go back to Euler’s 

second lunar theory. He obviously had learned a great deal, in between his Lunar Theories, about 

the development of frequencies of a perturbed system in power series of the small parameter of the 

problem. Such theories clearly had a great influence in Poincaré’s work. The merit of von Zeipel 

was mainly the application of Poincaré’s method to the theory of motion of a well defined system, 

although the systematic separation of terms of different period, in the development of perturbations, 

is an important point. Especially when one considers the fact that on several occasions short period 

phenomena are of no interest, but only long period or secular ones. The Averaging Methods in 

general, say as discussed by Cesari in his book, had been quite popular in Celestial Mechanics but 

with no mention to the convergence problem. Perhaps, a big hangover from Poincaré’s definite 

statements on the divergence problem. Perhaps, a big hangover from Poincaré’s definite statements 

on the divergence of Lindstedt’s series. Such series were, and still are, used to produce quite 

accurate prediction of the position of Celestial bodies. Krylov and Bogoliubov did give some 

bounds in the truncation errors which, as a consequence of new efforts in celestial mechanics, in the 

sixties, were reviewed by Kyner. Strangely enough there is a great gap in the western literature in 

problems related to linear and nonlinear oscillations, a field very rich of references in the Soviet 

literature essentially from Liapunov until about 1950. Celestial Mechanics had been worked down 
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to the bones by means of the available tools of classical analysis by the end of the last century and 

nonlinear circuit theory and mechanical systems did not seem to be palatable to western 

mathematicians. The masterpiece work of Cesari in 1940 e was not immediately recognized, but 

there stood the first proof of convergence of an averaging method for a large variety of problems. 

Important works followed more than a decade after, by Gambill and Hale. The works of Birkhoff, 

Siegel and Wintner were more mathematically oriented toward qualitative properties of Dynamical 

Systems. The simultaneous analysis of Birkhoff’s extensive analysis on the restricted problem of 

there bodies and of Strömgren’s numerical experiments was undertaken only recently and 

summarized in the master work of Szebehely. Moulton and MacMillan should be considered among 

the scientists who had such capability of analysis of association between theories and numbers. And 

also Adams and Darwin. The method of Poisson for the variation of integrals of motion is 

something else that was overlooked for a long time. In the modern literature it is revived again by 

Kurth in 1959 and mentioned, under different names and aspects, by Danby and Brouwer-

Clemence. Lately, stemming from nowhere, it produced a great deal of papers under the name of 

Universal Variables in the Newtonian problem of two bodies. The use of vector and matrix algebra 

and calculus is also still very rare, in books written basically more than a century after such tools 

were given a final form. Siegel’s and Abraham’s book show the process of evolution from classical 

to modern mathematical representation of exactly the same things. The definition of Lagrange’s and 

Poisson’s matrices is seldom found anywhere, and one has to refer to works on Quantum Mechanics 

and Field Theory. The proof of the symplectic condition for a canonical transformation is greatly 

simplified by the use of matrix notation. The connection between nonlinear circuit analysis and 

nonlinear mechanics methods and the classical averaging methods of Celestial Mechanics was 

clearly by Cesari in 1959. Equivalence statements between the KBM and von Zeipel’s methods 

were first given in 1961 by Burstein and Sovolev. The efforts for a better theory of artificial 

satellites were certainly responsible for new researches in analytic and theories. After 1960 it is 

obvious that a two way flux was established between researches in nonlinear oscillations and in 

Celestial Mechanics. Milestones were set by Moser, Hale and Diliberto and, in the Soviet Union, by 

Kolmogorov, Arnol’d and Merman. A true departure from elaborations on works by Poincaré and 

Birkhoff was introduced by Hori with the application of Lie’s Canonical Mappings. Lie’s series 

appeared only one year before in Leimanis’ book on Rigid Bodies Motion, but with no reference to 

perturbation techniques. The extension to non-canonical systems was presented by Hori at a 

Summer Institute in 1970 and, independently worked out by Kamel. The extension is, nevertheless, 

not essential since any system can be written in Hamiltonian form as first shown by Dirac. The fact 

had been long known to researchers in Optimization and Control, although the great majority of 

Applied Mathematicians in other fields had and have not been aware of this important fact. Earliest 
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references, to our Knowledge, are the works of Miner, Tapley and Powers in 1967 and 1969. 

Finally, the operations with formal series as it is done with convergent series is well justified, e.g. 

the work of Cartan. This is not the earliest reference, but is surely one of the best. 
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CHAPTER II 

 

PERTURBATION METHODS FOR HAMILTONIAN 

SYSTEMS. GENERALIZATIONS 

 

1. Introduction. 

 This chapter is devoted to two main goals. First introduce the reader to known methods of 

canonical perturbations, describe them in a heuristic way and give examples so as to motivate the 

theorems presented in Chapters III and IV. Second, present some basic results about iterative 

procedures of fundamental importance on methods of averaging. Major contributors to this area are 

Lindstedt (1884), Poincaré (1893), Whittaker (1916), Siegel (1941), Krylov (1947), Bogoliubov 

(1945), Kolmogorov (1953), Arnol’d (1963), Diliberto (1961), Pliss (1966), Kyner (1961), Moser 

(1962), Hale (1961) with several overlappings in results. Many of these results have been unified 

and consolidated in celebrated books by Siegel (1956), Wintner (1947), Newytskii-Stepanov (1960), 

Cesari (1963), Hale (1969), Abraham (1967), Birkhoff (1927), Bogoliubov-Mitropolskii (1961), 

Lefschetz (1959), Minorsky (1962), Sansone-Conti (1964), Sternberg (1970). 

 It is a recognized fact, although several times not mentioned, that the averaging methods were 

introduced by Lindstedt (1882), though it is not clear whether his ideas stemmed from the efforts of 

Euler (1750) in the solution of the problem of motion of the moon. In linear periodic systems, an 

averaging method leads directly and essentially to the determination of Floquet’s characteristic 

exponents. In non-linear systems, when they posses a Hamiltonian character, to the separation of the 

associate Hamilton-Jacobi equation and therefore the specification of the action and angle variables. 

In general non-linear and non-Hamiltonian systems, an averaging method leads to separability in an 

extended space, which can be called the contangent space of the original system space. In regard to 

Hamiltonian systems, it has been an accepted and recognized result the fact that in general, they are 

not integrable. Nevertheless, such notion should be considered with care, depending on the 

definition of integrability. In fact, if the Hamiltonian is at least C² in a certain open region D of the 

phase space, there exists and is unique a solution corresponding to any initial point in D. In this 

respect, the system is certainly integrable. On the other hand, the word integrability is, in 

Hamiltonian systems, often associated with the idea of separability, so that an integrable system is a 

Stäckel’s (or in particular, Liouville’s) system. The two concepts can be associated by recalling the 

fact that if a solution exists and is unique for a time 0 t   , them the motion in phase space is 

area preserving (or, the divergent of a Hamiltonian flow is zero). It is also true that such flow is 

canonical so that any point P(t) of the solution  0 t  is related to the initial point P(0) by a 
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canonical transformation, which for t sufficiently small is C² and invertible. It follows that, in terms 

of the initial conditions, taken as a particular set of canonical variables, the system must necessarily 

be separable, for the Hamiltonian is reduced to a constant. Of course, such type of separability can 

only be achieved after the solution is known explicitly as a function of time and of the initial 

conditions, so that no help can come from such results. However, it serves to indicate the 

connection between the two concepts of integrability mentioned above. 

 As far as periodic linear systems are concerned we know, under quite general conditions, that 

the solution exists and has a well defined form as given by Floquet’s theory. 

 For non-linear in general, integrability can only be understood as existence and uniqueness of 

solution. However, a connection with the idea of separability can be established by the 

“Hamiltonianization” of the system in the cotangent space, as will be shown later. 

 Most of the results concerning non-integrability are based on the existence of integrals in the 

vicinity of singular points (Siegel, 1941) or on the reducibility to Birkhoff’s normal form by power 

series or on the convergence of iterative procedures. The negation of the above results does not 

evidently  imply non-integrability. It was proved by Birkhoff that a normal form for Hamiltonian 

systems obtained by means of a series cannot in general be achieved. If the averaging methods are a 

translation, into some different language, of Birkhoff’s normalization, them we cannot, in general, 

conclude on the divergence of these since we know that manipulation of a series does change its 

convergence character. Indeed, we shall formulate, as an example, an averaging method equivalent 

to a normalization and we shall expect divergence in general. On the other hand, averaging methods 

can be generalized, redefined, restated, and the perturbations subjected to such conditions that, such 

methods may converge at least for a certain set of initial conditions. In specific examples, adelphic 

integrals defined by formal series (Contopoulos, 1966, 1967) have shown remarkable character of 

true integrals of motion when submitted to a numerical verification for very long periods of time. 

The method of surface of section (Poincaré, 1893) has served an invaluable service in the search of 

possible  integrals and has shown that integrals (not necessarily uniform or globally valid) may exist 

for systems notably defined as non-integrable (Bozis, 1970). 

 

 

2. Convergence of a Classical Method of Iteration. 

 If one limits the time interval properly, it can be shown that under quite general conditions, the 

simplest method of successive approximation of solution by series, converges. In fact, we have the 

following results (MacMillan, 1912). 

 

 Let us initially consider a system of n equations in 1, 2, n,x x ...,x  depending on a parameter, 
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iF(x; ) 0;        i=1,2,...,n,                                                                                   (2.2.1) 

where x is the set 1, 2, n(x x ...,x ).  Further, suppose 

a) 1(0;0) 0;F     1, 2, ..., .i n  
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for some i, at 0x   

It follows that the functions iF  can be developed about the point 0,x  0, in powers of x and . 

Then, one can easily prove that, if the iF  are analytic in their argument in a certain region ( ; )x  , 

the serie 
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obtained by successive approximations converge uniformly (in ). The a js  are obtained by 

substituting the jx  into the expansions of iF  and equating coefficients of the same powers in. The 

proof of this can be found in any standard book of Analysis (e. g. Goursat, 1959). For the purpose of 

later use some details are needed. The expansion of ( ; )iF x gives  
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where, for uniformity of notation 0x . The above expansion can be written 
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If the series (2.2.2) are substituted into (2.2.3), the comparison of coefficients of same powers in  

(or 0x ) gives 
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Therefore, at every step, the ajpare computed from a given system of n equations whose right-hand 

sides are known if all previous approximations 1 2 , 1a ,a ,...,aj j j p are known. The determinant of the 

system is not zero by hypothesis (b). From a formal point of view, equations (2.2.4) are totally 

similar to the sequence of linear inhomogeneous partial differential equations one encounters in the 

averaging method of Lindstedt-Poincaré or else in Lie’s series asymptotic solutions. 

 Now consider the case in which J = 0 and assume at least one of its first minors is not zero. For 

instance, suppose 1/ 0iF x   . Then, (n – 1) of the equations (2.2.4) can be solved in terms of 

2 3, ,..., ,nx x x  as power series in 0x  and 1x . If the results are substituted in the n – th of the equations 

(2.2.4), an equation in 0x  and 1x  will then result. Since the coefficient of the first power of 1x  will 

be zero, then the solution of 1x  in terms of power series of 0x  will necessarily contain fractional 

powers of this parameter. This is a direct consequence of Weierstrass theorem on the factorization of 

a power series. The use of the “eliminating determinants” defined by Caley (1848) allows the 

solution in the case where all the first minors are zero. MacMillan (1912) further developed the 

method. The appearance of fractional powers in these cases has a direct consequence on the 

appearance of fractional powers in asymptotic series solutions to be developed later in problem of 

resonance. 

 Next, consider a system of differential equations 

      f ; ;i ix x t                                                            (2.2.6) 

For 1, 2, ..., ,i n  where fi are analytic in  ; ;x t  for  x D ( a given open region of nR ), 

0 1, ,t R   and regular at  1 1,2,..., , 0,ix i n    for all values of  0,t  . The functions fi 

are developable in power series of and .i i ix     

 These series are convergent, provided in the interval [0, T]  

(2.2.4) 
 
 
 
(2.2.5) 
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      1,2,..., ,i i ix m i n    

and 00 1.  

 The expansion of (2.2.6) gives 
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Where 0 0 0, 0x     and the subscript zero means that ix  are replaced by the i . We can 

actually write 
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Where the ' s are functions of the 's  and t. The goal is to obtain the i  as power series in , 

with  coefficients functions of time and of the constants i , that is 
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Where 

          ; ,   1,2,..., .i i
k k t i n     

If (2.2.8) are substituted into (2.2.7) and coefficients of the same power of  compared in both 

sides, there results a system of differential equations 
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for   1,  2,  3,  .... . p  The functions  i
pF depend on the solution of all approximations up to 

stage  -  1p , so that at every stage of such sequence of approximations  
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The  i
p  are obtained by quadratures. The constants of integration   are not arbitrary. In fact, if 

one stops at the  -   p th stage included, the solutions will depend on the initial constants 

1 2, ,..., n   and on np constants  . One might prefer the choice of setting all the ' s  equal to zero 

or the choice of defining them in a convenient way. In the second case they will be functions of the 

's . If the constants k  are initial conditions, that is,  0

i
x , then the ' s  constants should be chosen 

so as to make all the  i
p  vanish at   0t  . We now show that the series i  obtained in this way are 

convergent in [0, T] provided  is sufficiently small. 

 Without loss of generality one can assume that the right members of (2.2.7) are convergent for 

1, 1i    in [0, T]. If this is not true, a change of scale for i  and  will always make this 

assumption possible. It follows that all coefficients    in the right members of (2.2.7) are bounded 

and less than a positive number M, i.e.. 
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for   1,  2, ...,   i n and  1,  2,  3,  .... . k  The concept of majorant series can now be used. In fact, 

consider the equations. 
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                               (2.2.10) 

The right-hand members can be expanded in power series of  and j , with 1, j   . Every 

coefficient is positive and greater than the corresponding coefficient in (2.2.7), in view of the 

foregoing hypotheses. Equations (2.2.10) can be solved by the method of successive 

approximations just described. It follows that the right- hand members of the equations (2.2.9) will 

be less than the corresponding ones for (2.2.10). Thus, if the solution of (2.2.10) converges, the 

solution of (2.2.9) also converges. But (2.2.10) can be integrated in closed form. If the initial values 

are all zero (as for the i  if the  i  are initial conditions), it must result that 

     1 2 ... n        

or 
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which satisfies the condition 0   for both  0 t  and 0 . The expansion of (2.2.11) in power 

series of  is convergent provided 
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in [0, T], that is, provided 
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                                                 (2.2.12) 

Since the method of successive approximations given is unique, it must coincide with the expansion 

of (2.2.11). Thus, the series for  1  are convergent in [0, T] if  0, where M is the upper bound 

for the coefficients of (2.2.7). It is seen that, for T large enough, the series only converges, in 

general, for 0.  The above estimate cannot be considered the best possible, so that the term “in 

general” is kept in for there are actual situations where the method described converges for  small 

enough, but not zero, as  .  

 Consider now the system of differential equations 

          1; f ; , ,    i=1,2,...,n .ix g x t x t                              (2.2.13) 

Substituting the i  of the previous method by the solutions  0ix t  of (2.2.13) for 0 , and 

defining 

      0,i i ix x    

in the same way it is found that the coefficients   i
p satisfy differential equations of the type 
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1
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ni

i j i
j p p k

p
j
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                                       (2.2.14) 

where   1,  2,  ...,   -  1;  1, 2, ... ;  1, 2, ..., ;  1, 2, 3, ...k p n i n p     . It is a remarkable property that the 

 i
j are independent of the particular p, as before, so that the homogeneous solutions of (2.2.14) are 

the same for any p. They are functions of the time explicitly and of  0ix t , these last being functions 

of a set of n integration constants. As far as the integration constants for (2.2.14) they can be chosen 

so as to make the    0 at 0,i
p t    at t = 0, and, using the terminology of Celestial Mechanics, in 
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this case the solutions i  and 0ix  are osculating at t = 0. There are other ways in which the 

constants of integration can be chosen, but this requires a modification due to the fact the 

expansions are not done in the neighborhood of   0 at 0i t   . 

 Picard’s classical method of approximations allows to show that the solution of a system 
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is dominated in the interval [0, T] by the solution of the system 
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where M is the upper bound of the  ij   and  ik t  in the interval [0, T]. Then, in a similar way as 

was done before, one proves that, by using the majorant functions defined by 
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the series i  are convergent in [ 0, T]  if 

      exp n                                                          (2.2.15) 

where M is the upper bound for the coefficients of (2.2.13) as power series of j and . The 

limitation one obtains in this case is much stronger, as T becomes large, than in the previous case. 

These cases have been discussed in details by Moulton and others (1920). However, as we shall see 

later, (2.2.15) may not be the best estimate for this case. 

 

 

3. Secular Terms. Lindstedt’s Device. 

 The above described methods have the classical characteristic of leading to secular terms, that 

is, series solutions where the  i
p contain terms which are linear (at least) in t. If such phenomenon 

could be avoided, and, more specifically, one could get    i
p t  bounded for all t (say, almost 

periodic or periodic) the rate of convergence would certainly be improved and in special situations, 

as will be seen in the next chapter, actual convergences for all t can be obtained for sufficiently 

small . 

 At this moment we apply the method described in the previous section to the simple pendulum, 

show the appearance of secular terms and introduce Lindstedt’s device in this particular application. 

For simplicity we shall assume that the initial conditions correspond to the libration case of the 

pendular motion, that is, oscillations of finite amplitude around the stable equilibrium solution. The 
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equation of motion can be written as 

     
2 sin                                                                (2.3.1) 

where 
2 /g   . Consider the convergent expansion of sin  in powers of  and the change of 

variable  x   , so that (2.3.1) becomes 
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For 0 (infinitesimal oscillations), the solution is 

        sinx t t                                                  (2.3.3) 

and let us consider the series 
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or, the solution in the vicinity of  x t , as given by 
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                                                (2.3.4) 

The method just described, substitutes (2.3.4) for x into (2.3.2) and equate coefficients of same 

powers of . As the first few approximations we find      

   

   

2 2 3
1 1

2 2 2 2 5
2 2 1

2 2 2 2 2 4 2 7
3 3 2 1 1

2 2 2 3 2 4 3 2
4 4 3 1 2 1 2 1

2 6 2 9
1

1

3!

1 1

2! 5!

1 1 1

2! 4! 7!

1 1
3 6 2

3! 4!

1 1
                     

6! 9!

x

x x

x x x x

x x x x

x x

  

   

       

      

   

   

     

        

          

  

 

  

    

     

 









                  

(2.3.5)               

Let us analyze the solution for 1  which makes 1 1 0 at 0.t     With a proper choice for the 

unit of time we shall consider 1   without loss in generality. We also have that the particular 

solution of 

       a sin p t+z z    
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is 

     

 

 

2

a
sin  p t ,p 1,

1

1
 a  t  sin t p 1,

2

z
p

z





  


   

 

and of 

      a cos p tz z     

is 

     

 

 

2
z  cos p t ,p 1,

1 p

1
z  a t sin t ,  p 1.

2

a 



  


  

 

It easily follows that 

         3 3
1

1 1
 sin t  t sin t  sin 3 t

16 192
                      (2.3.6) 

where  ,    are given by 

     

3

3 3

 sin  sin 3 ,
192

 cos  cos 3  sin .
64 16

 

  


 

 
   

 

In this particular example it is seen that a secular term appears in (2.3.6), that is, in the first 

approximation. (Actually, that is more often called a mixed secular term.) Evidently, the appearance 

of t outside trigonometric functions makes it quite difficult to have convergence of the above 

process for .t  The constants of integration , cannot in any way be used to cancel the 

troublesome term. The solution proposed by Lindstedt (1882) is to assume a reference solution, that 

is, a function  x t  which is a modification of the zero order solution as far as the frequency is 

concerned. In fact, we consider 

           sinx t t                                                 (2.3.7) 

where we assume 

      22 2
1 2 ...        

or, taking 1   as before, 
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2 2

1 21 ...                                                     (2.3.8) 

where 1 2, ,...   are constants (depending on , ) to be conveniently chosen. By writing the 

equation (2.3.2) as 

      
2 1

2 2
1 2

1

... 1
2 1 !

n n
n

n

x
x x x x

n
  





       
  

with the “zero” order solution 

        sinx t t     

where  is given by (2.3.8), and unknown a priori, we obtain, as before 

    

2 3
1 1 1

2 2 5
2 2 1 1 2 1

1
3!

1 1
2! 5!

x x

x x x x

 

  

   

     

  

    





 

or 

    

2 3
1 1 1

2 2 5
2 2 1 1 2 1

1
3!

1 1
2! 5!

x x

x x x x

 

  

   

     

  

    





 

and the right-hand members are evidently odd functions of  t  , that is, sine series in  t  . 

In the equation for p  the corresponding unknown approximation p  has to be determined so that 

secular (or mixed secular, in this case) terms should be avoided. The first order equation is 

    

   

 

2 3
1 1 1

3

1
sin sin

8

1
                         sin 3 3

24

t t

t

       

 

      

  



 

so that , defining 

       21
A

8
    

the resonant forcing term is eliminated and the solution is 

    3
1

1
sin  ( t + ) +  A  sin (3 t + 3 )

192
B           

where B,   can be defined by 

     31
 sin  +  A  sin 3  = 0

192
B    



Eng Res, v. 10, n. 1, p. 1-145, January / 2019. doi.org/10.32426/engresv10n1-001 71 

     31
 cos  +  A  cos 3  = 0

64
B    

that is, 

     011      at    0t  

It is easily seen that to any order of approximation the equation to be integrated is  

       2
0 1 1 2 1, , ,..., sinp

p p p px A A t             

        1 2 1
1

, , ,..., sin 2 1
pn

p
j p

j

A A j t    


      

and the solution is found by setting 

      1 1 2 1, , ,...,p
p pA A       

    
 

  22
1

sin 2 1
1 2 1

p pn
j

p
j

A
j t

j
  



       
  

It follows that the frequency  is determined step by step and the solution is expressed as a purely 

periodic function of t , that is, 

    
 

  22
1 1

sin 2 1 .
1 2 1

n pp
jp

p j

x x t j t
j

  




 


         

    

 In this specific example, since the original equation can be integrated exactly, the convergence 

of the above procedure can be proved directly as long as the initial conditions are such that an 

oscillatory motion is verified. The series above diverges in case where the actual motion is a 

circulation. The case of asymptotic motion cannot, as far as we know, be dealt with an 

approximation of series. The circulation case can be made convergent by assuming a different 

change or variable. In fact, in this case, the angle  increases steadily with time beside undergoing 

fluctuations. The steady increase with time must be taken care of by assuming 

     t x     

where 

      

 

2
1 2

2
1 2

...

...

 sin

x x t

x t







   

 

 

   

   

  

 

and 

     
2 2 2

1 2 ...        

 When dealing with the canonical equivalent of Lindstedt’s method we shall indicate as both 
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cases (libration and circulation) can be treated in a unique fashion. This is possible by introducing 

elliptic functions with modulus of any value. The asymptotic case, then, will be given by a limiting 

case of the global solution. The possibility of such global solutions has been studied in details by 

Garfinkel and others (1971). 

 

4. Poincaré’s Method (Lindstedt’s Method). 

  The method of successive adjustment of the frequencies of the system, for which we gave an 

example in the last section, applies to any system of ordinary differential equations which can be 

written in normal form and satisfies certain conditions of regularity at least locally. It is however 

desirable if such regularity extends over a certain domain. In this case we may assume the system to 

have the form 

        f ; ; , 1,2,3,...,i ix x t i n    

or, in vector form, 

                         f ; ; .x x t                                                    (2.4.1) 

By the well know transformation to Dirac’s cotangent space, system (2.4.1) can be brought into a 

canonical form, by defining the associate generalized momentum vector  ; 1,2,...,iy y i n   and the 

Hamiltonian 

      f ; ; .x t y                                                          (2.4.2) 

The equation of motion are 

       ;;fH txx T
y  

      ytxy x
T
x  ;;fH  

and we assume that the system 

     

 

 

f ; ; 0

f ; ; 0

t

t

 

  



 




 

is integrable in some domain D of the 2n- dimensional phase space ( ;  ) and for 0 .t   We 

assume  f ; ;x t   to be at least 2C  in D, continuous with respect to  in 0,t   and analytic in  for 

0 1.  The same properties are, therefore, also verified by the function H. 

 By these means, very little restriction is set by assuming a given system of equations to be 

Hamiltonian and, henceforth, the importance of perturbation methods in Hamiltonian systems. 

 With the above considerations it seems logical to ask whether a better estimate than (2.2.15) can 

be obtained. The Hamiltonian of the system under consideration (2.2.13) is 
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        1
1 1

; f ; ,
n n

i i i i
i i

y g x t y x t 
 

                           (2.4.3) 

and  the canonical conjugate equations  

     

f

f
.

i i i
i

j j
i j j

j ji i i

x g
y

g
y y y

x x x


  


 
    

   





                      (2.4.4) 

For 0 , we assume that the system 

      

 ;i i

j
i j

j i

x g x t

g
y y

x




 







                                               (2.4.5) 

is integrable. In fact, the first set is integrable by hypothesis and the solution is  .i ix x t  

Substitution of this solution into the second set gives a linear system 

       ai ij j
j

y t y  

which is, evidently, integrable, for t in the interval of definition of  .ix t  Let the solution of (2.4.5) 

be written as 

     

 

 

; ;

; ;

i i

i i

x x t

y y t





 

 





 

with 

     

 

 

; ;0

; ;0

i i

i i

x

y





  

  





 

for 1, 2, ..., .i n  It follows from Jacobi’s theorem that the solution of system (2.4.4) can be written 

as 

     

 

 

; ;

; ;

i i

i i

x x t

y y t





 

 





 

if  ,   are functions of t satisfying the equations 
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1

1

i
i

i
i













 







                                                              (2.4.6) 

for 1, 2, ..., .i n  But system (2.4.6) is of the type studied earlier [Equation (2.2.6)] and the 

application of the method of successive approximation will give the convergence criterion 

     1

1 4 'n
 

  
 

which, if  ' ,   is a better estimate than (2.2.15) for the system (2.2.13). 

 We now return to the main purpose of this section and outline the general principle and rationale 

of Lindstedt’s device as explained by Poincaré in canonical language. Let us consider a 

conservative dynamical system defined by the Hamiltonian 

      ; ;y x                                                             (2.4.7) 

where y, x are n-dimensional vectors defined in phase space of dimension 2n,  is a dimensionless 

constant parameter and H is real analytic in some domain D of the phase space and for   in [0,1]. 

We stress the fact that any analytic system  f ;z z   can be reduced to the Hamiltonian form 

above, by introducing the cotangent phase space. Hamilton’s principal function  ; ;W y    is 

defined by the partial differential equation 

      ; ; ;
W

y
y

 
       

    (2.4.8) 

where  ;   is obviously the Hamiltonian of the system written in terms of the new variables (Y; 

X) defined by 

     

 

 

; ; ,

; ; ,

k k
k

k k
k

W
Y Y y

W
x x y

W


   



   


                                            (2.4.9) 

for 1, 2,..., .k n Under the conditions specified for H, a function W satisfying Equation (2.4.8) 

certainly exists (in the Jacobi sense) since the system of differential equations generated by (2.4.7) 

has a unique solution in D. The solution is evidently an analytic function of  and the n constants of 

integration 1 2, ,..., ,  in D.n    We assume that the system of differential equations generated by 

   ; ;0 ;y x y x   is integrable in the Liouville sense, that is, there exist n first integrals of 
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motion in D, uniform and independent. If  1 2' , ' ,..., 'nx x x  are such integrals, that is,  

       ' ;k kx y x   

along the solutions of (2.4.7) for 0 and in D, in general, the angular variables       canonically 

associated to the action variables 'ky  have frequencies (in time) which are linearly independent 

over the set of integers and, therefore, the motion is quasiperiodic (almost periodicity would, this 

case, correspond to a system with an infinite number of basic frequencies). In terms of these action-

angle variables the Hamiltonian (2.4.7) can be written as   ' '; ';y x   with the obvious condition 

        xxy  0H0;;H  

It is therefore with no loss of generality that, under the assumption that  ;y x  leads to 

integrability (in the above specified sense), it can be trought as being a function of the momenta (x) 

only. It is also logical to expect that almost t everywhere in D the frequencies /k kx
    are 

linearly independent over the integers. This implies, in particular, that none of these frequencies are 

zero in D, or, more precisely, none of the         momenta are ignorable. The problem is now reduced 

to one for which  ; ;0y x  is independent of y and therefore Hamilton’s principal function 

 ; ;0W y   is a generator for the identity transformation, that is, 

      ; ;0 . .W y y    

We assume that W is analytic with respect to  at 0,  and therefore, for     sufficiently small, 

       ; ; . ; ; ,W y y S y                                             (2.4.10)      

with 

         1 2, ; ; ; ...S y S y S y                                     (2.4.11) 

a convergent power series in . 

 It follows that (2.4.9) can be written as 

     ; ;k k k k
k

S
Y y y F y


     


 

and 

     ; ;k k k k
k

S
x G y

y


       


                                  (2.4.12) 

for 1, 2, ...,k n  and  sufficiently small. Mappings of the sort (2.4.12) have been extensively 

studied principally by Moser (1955, 1961, 1962, 1967). 

 Under the above conditions, it is possible to show that there exists a formal series (2.4.11) which 
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solves (2.4.8) up to any order (power) of . We introduce the “average” value < f > of a quasi-

periodic function  1 2f , ,..., ,ny y y  with ,k k k ky t y    constant and linearly independent over 

the integers, by 

     
0

1
f   lim f .dt


   


                                             (2.4.13) 

In a generalized sense, a quasi-periodic function f with the property < f > = 0, will be said to be said 

to be purely quasi-periodic. Obviously, if f is a Fourier Series in the n angular variables 1 2, ,..., ,ny y y  

< f > is the constant term of the Fourier’s series. On the other hand, in general, if < f > = 0 then 

     
0

lim f finitedt



                                                      (2.4.14) 

which is an obvious consequence of (2.4.13) for f quasi-periodic and 2L  for .t R  A function  

 F t satisfying the condition  

      lim finiteF t


                                                     (2.4.15) 

will be said to be free from secular terms. Any primitive of an 2L  purely quasi-periodic function 

satisfies this properly. Under the integrability assumption of  , it follows that, in terms of the 

action-angle variables (y; x) the Hamiltonian  ; ;y x   is quasi-periodic if, for example, it has a 

convergent multi-dimensional Fourier series in 1 2, ,..., ,ny y y  for    in 0,1  and ;  in D.x y  

 The formal series S and K are now obtained by direct substitution of (2.4.10) and (2.4.11) into 

(2.4.8), that is,  

    

       

21 2

2
0 1 2

; ; ; ...;

; ...

S SW
y y

y y y

    
              

          
 

Expansion of the first of these by Taylor series (which by hypothesis converges) gives, 

symbolically, 



Eng Res, v. 10, n. 1, p. 1-145, January / 2019. doi.org/10.32426/engresv10n1-001 77 

   

21 2

0

21 2

0 0

22
0 01 1 1

0

2 0 2

1
; ; ...

!

1
    ...

!

    ...
2!

    

pp

p

S SW
y x

y x y y

S S
x

x y y

S S S

y y y

S

y






 


 

 

      
                 

    
           

         
                   

 
  



 

   

 

2 1 1
1

2
2

... ; ;

   ... ; ...          .

S
y y

y

y

 
   
         

    

                   (2.4.16) 

Expressions up to any order of approximation were first obtained by Giacaglia (1963). Equating 

coefficients of same powers in , one gets, to any order of approximation, an equation of the type 

         0

1

; ;
n

p
p p p

S
y y

y


  

      
                  (2.4.17) 

where /  stands for /
x 

  . For example, 

     

 

 

1

2
0 1 1 1 1

2
1 1 1

; 0

1
;

2!

n n n

k

y

S S S
y

y y y




     

 

     
  

      
  

 

and so on. In general,  ;p y  is a function of 1 2 1 1 2 1, ,..., , , ,..., ,p pS S S     so that the solutions 

of equations (2.4.17) can only be obtained in succession. One way of defining   p  is by the 

use of an averaging procedure 

         ; ;p p py y                                          (2.4.18) 

where y is supposed to be given by a linear function of time 
0 0 ,y t y     and all the 

0 

linearly independent over the set of integers (that is, rationally independent). The resulting  p    

is certainly independent of t. It follows that the function 

      ;p p p p pF F y                                     (2.4.19) 

is purely quasi-periodic in view of the hypotheses on  ; ; .y x   The p th  approximate to the 

generating function, pS , is obtained from the linear equation 
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      0

1

; 0
n

p
p

S
F y

y


 


  

  

where 
0

0 / .    It is now obvious that if every 0 0, pS   results to be a quasi-periodic 

function in   0 0
1 2, , ..., ny y y y t y    free from secular terms, that is, for linearly independent 

0   over the integers, 

         0
1

1
; ;

n

p p pS y F y dy G
 

 

                          (2.4.20) 

where  pG  is arbitrary. Obviously if one of the 
0 is zero the formula does not apply, unless 

 ;pF y   is such that 

      0pF

y





                                                       (2.4.21) 

for that particular y. It is easily seen that 

      lim ; finitept
S y


                                               (2.4.22) 

for 
0 0 .y t y     All these relations are easily shown and, by recurrence, it follows that one can 

determine the formal series 

     
2 3

1 2 3. ...y S S S     

and 

     
2

0 1 2 ...,      

where 
2 3

1 2 3, ...S S S    satisfies the property of being quasi-periodic and free from secular 

terms. The case where some 
0 0   or it is small, in some sense, will be studied in chapter 5, under 

the general problem of resonance. The system is formally solved up to any desired degree of 

approximation and the “solution”, in the new variables (Y; X) is 

     

0

0

Y t Y  

 

 

  
                                                         (2.4.23) 

where 
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0

0 1

10 1

const.

const. 0

... const. 0

p

pp p

Y











  



   

       
  

     (2.4.24) 

where  10 p  is the factor of the first term neglected after the last approximates pS  and p  have 

been obtained. By no means, it should be interpreted as the error or an approximation to the error 

bound of the solution. This might be so, eventually, only in the case of convergences of the method. 

The problem will be dealt with in the next two chapters. A rough estimate by Kyner (1963) shows 

that the error bound is equivalent to that obtained by Bogoliubov and Mitropolsky (1951) for the 

canonical averaging method of Krylov-Bogoliubov-Mitropolsky (KBM), and in fact, Poincaré’s 

Method was shown to be equivalent to that of KBM by Burstein and Solovev (1961). Such error 

bound is proportional to for t 1 / ,  at worst.   Convergence of the method, under particular 

circumstances, will be given in Chapter 3. 

From a purely formal point of view we obtain, from (2.4.21), 

   

 

 

0 0 0 0
1 2 1 2

0 0 0 0
1 2 1 2

, ,..., ; , ,..., ;

, ,..., ; , ,..., ;

n n

n n

y t Y N Y Y Y

x W Y Y Y

   

  

      

      

                  (2.4.25) 

where ,W   are quasi-periodic in 1 2, ,..., nY Y Y  and free from secular terms. It is obvious that one 

of the major causes of error is in the frequency  , since any error is linearly multiplied by time. 

In practical applications, the best way out, in lack of exact solution, is to use a numerical observed 

value of   from the average y with respect to t. Such average, if relations (2.4.25) hold, is 

obviously . This use of observational evidence eliminates the in-track error due to a 

miscalculation of the frequency  . 

 

 

5. Fast and Slow Variables. 

 The case of proper degeneracy (Arnold, 1963) is quite common in perturbation theory. 

Generally speaking, the problem is defined by non-independent frequencies of the unperturbed 

system. That is, given the Hamiltonian 

       0 0 x   
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and the frequencies 

     0 ; 1,2,...,j
j

j n
x

  


 

one has degeneracy if the matrix 

     ;    , 1, 2,...,j j k n
x





 
 
 





                                           (2.5.1) 

is singular. This definition includes cases of rational dependence and when some of the action 

variables are not present in  0 ,x  that is, at least one of the j  is identically zero. It also 

includes linear systems, that is, cases in which 

    0 1 1 2 2, ... .n nx x x                                                    (2.5.2) 

 Let us consider, here, the case where the matrix (2.5.1) has at least a minor of order 

 0m m n   which is not zero. The unperturbed system is nonlinear, integrable and defined by m 

independent frequencies, corresponding to a set of m independent angular variables 

  0 , 1,2,..., .y x t y m       There exists, in this case, a canonical transformation 

   , ', 'x y x y such that, at least locally, the Hamiltonian 0  is a function of only m momenta x’ 

and the corresponding matrix (2.5.1) is non-singular. It may be worth noting, however, that if none 

of the x are absent in 0 , one may perform a transformation to a new Hamiltonian whose Hessian 

matrix (2.5.1) is non-singular. In fact, consider in general the Hamiltonian 

         0 1; ; ; ...y x x y x      

and suppose 0 / 0, 1,2,..., .j jx j n      If a function  F    can be found such that 

        0 1 ; ...F F x F y x    

and such that, being 0 / ,j jF x    the matrix 

      j

kx

 
  

 

is non-singular, the apparent degeneracy is eliminated. The equations of motion are now 

      

1

1

j
j

j
j

F
y

x

F
x

y











 







 

where   is the constant defined in terms of the initial conditions by 
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          0 0; ;y x h            

and h is the energy integral corresponding to the initial conditions  0 0; .y x  Evidently     can be 

developed in a power series of  [we suppose H real analytic in all arguments] and if   is analytic, 

the power series 

           2
0 1 2; ; ...    .F x F y x F y x       

converges. This process does not apply in the linear case (2.5.2) since, as it is easily verified, 

whatever     is, the Hessian of  0F x  is zero. It does apply, however, in other cases. An 

important example is, for instance when 

      0 22
1

1
x

x
    

a case of many applications in celestial mechanics (two-body problem in rotating coordinates, 

restricted three-body problem in rotating coordinates, etc.). Although the Hessian of 0  is zero ( 0  

is linear in 2x ) one sees that there are several functions of  0  leading to an 0F  for which the 

Hessian is not zero (e.g.; Poincaré, 1893). Excluded the linear case we are therefore left with the 

case in which some of the momenta are not present in 0 . Let  1 2, ,...,p p nx x x  be the ignorable 

momenta and consider the equations generated by 

       0 1 2 1 1 2 1 2, ,..., , ,..., ; , ,..., ...p n nx x x x x x y y y      

that is, 

    

1

/

/ / .

y x

x y y

 

  

  

     




 

It follows that, as a “zero approximation”, the   are constant and the y are linear functions of 

time  1,2,...,k p  or are constant  1, 2,..., .k p p n   If these results are put back into the 

equations of motion and the average with respect to 1 2, ,..., py y y  is considered, to “first order” one 

obtains 

     

  0

0

k kk

k k

y x t y

x x

 



 

with 
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0 1

1

, 1, 2,..., ,

        , 1,..., .

k k k

j j

k p

j p n

  

 

  

  

 

This crude description motivates the fact the angular variables 1 2, ,..., py y y (whose associate 

momenta 1 2, ,..., px x x  are present in 0 ) are called fast and the angular variables 1 2, ,...,p p ny y y   

(whose associate momenta are absent in H) are called slow. As a consequence, any function 

containing at least a fast variable is said to be short periodic and any function containing none of the 

fast variable is said to be short periodic and any function containing none of the fast variable, long 

periodic. Obviously, we are not seeking here precise definitions, but only a traditional explanation 

of a terminology. 

 The problem now is to see whether there are formal series, in this case, which solve the 

generating function of Poincaré’s method. In general the answer is negative, unless a unique 

situation occurs. This is the subject of the present section. 

 The elimination of fast variables is accomplished by a generalization of Hamiltonian’s problem, 

where we require the new Hamiltonian to contain only slow variables. More precisely, we construct 

a generating function, as a formal series 

       1; ; . ; ...W y y S y      

as in (2.4.10), (2.4.11) and (2.4.12), and require the energy conservation law in the form 

       1 2; ; , , ; ;p p ny x Y Y Y                                                (2.5.3) 

so that the system reduces to one with a number of degrees of freedom equal to n-p. This is always 

possible since at any stage m of approximation the equation to be integrated is 

    

     

 

1

1 2

; ;

              , ,..., ; ;

p
m

k m m
k k

m p p n

S
F y y

y

y y y




 


    



  


 

and m  is defined by the average of m mF  over the fast variables. The new Hamiltonian is 

obtained as a formal series. Admitting such series to be convergent (at least over a finite interval of 

time) the problem is now reduced to the equations generated by the Hamiltonian 
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0 1 1 2

2
2 1 2

1 2

, ,..., ;

    , , ..., ; ...

    , , ..., ; ;

p p n

p p n

p p n

Y Y Y

Y Y Y

Y Y Y

 

 

 

     

   

   

                      (2.5.4) 

while the constant momenta 1 2, ,..., p   play the role of parameters. In case of convergence, the 

relations  

     
 ; ;

k k
k

S y
x

y

  
  


                                             (2.5.5) 

for 1, 2, 3, ...,k p represent first integrals of the original system, depending on p parameters 

1 2, ,..., p   which can be given arbitrary values. 

 The elimination of the slow variables reduces now to a simple condition. In fact, in (2.5.4), 

 0  depends only on 1 2, ,..., p    and is therefore a constant of motion. The Hamiltonian can 

now be written as 

     

   

 

2
1 2; ; ...

      ; ;

F F q p F q p

F q p

   

 

                            (2.5.6) 

where    1 2 1 2, ,..., ,  , ,...,p p n p p nq Y Y Y p        and the parameters 1 2, ,..., p    have been 

omitted. The equations of motion are simply  

      

k
k

k
k

F
q

p

F
p

q







 







                                                  (2.5.7) 

for   1, 2, ..., .k n p   If 1,n p   the system has a single degree of freedom and the problem is 

theoretically solved. If 2n p   the integration by a method of successive approximations of the 

type under discussion can only be performed, obviously, if the dominant part of ,F  that is, 

 1 ;F q p corresponds to an integrable system. From this point on, we have a repetition of the 

process of Poincaré described in the previous section. Useless to say, the problem can formally be 

completely reduced if  1 ;F q p does not depend on any q and contains all of the p variables, that 

is, 1 2, ,..., .p p n     The actual contribution of von Zeipel (1916) was to rec ognize the fact that, 
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although the complete reduction of the system may not be possible, partial reduction is a certain 

step toward the solution of the problem. 

 Error estimates of the method have been obtained by Kyner (1966) and, in case of convergence, 

accelerated process of convergence have been introduced by Moser (1966) based on a Newton-type 

iterative process. This process, actually first suggested by Kolmogorov (1954), has been widely 

used by Arnol’d (1963) in several papers. In this respect, much will be said in the next chapter. 

Evidently, there are several situations where the error estimate  20   obtained by Kyner can be 

improved a lot. For instance, in the proof of convergence in the Twist Mapping of Moser (1962) 

better than quadratic convergence may be obtained so that the error decreases with a power of  

which is increasing as the iterations are accumulated. For this to be true, the mapping involved does 

not even have to be analytic but only finitely many times differentiable. 

 

 

6. Generalization of the Averaging Procedure, Birkhoff’s Normalization and Adelphic 

Integrals. 

 In most cases, when the averaging method is applied, it is a basic hypothesis to assume that the 

Hamiltonian be multi-periodic in the angle variables, say 1 2, ,..., .ny y y  As seen in section 4 of this 

chapter, quasi-periodicity can be assumed as a slight generalization of the assumption of multi-

periodicity, when a proper definition of average is introduced. Such hypotheses are a reminiscence 

of the special fields where the methods have been developed: celestial mechanics and oscillations in 

mechanical and electrical systems. 

 In order to introduce a more general approach to the problem, where the above mentioned 

hypotheses are not verified we initially consider a simple example. Let the Hamiltonian be given 

and such that  

      1 2 1 2 0 1 2, , , ...y y x x      

where 

    

     

 

2 2 2 2
0 11 1 1 22 2 2 12 1 2 1 2

1 2 1 2

1 1

2 2

, , , , 1,2,...p p

x y x y x x y y

y y x x p

        

   
 

where p are homogeneous polynomials of degree 2.p   The solution of the “dominant” part of 

the problem is immediate if one can eliminate the part  1 2 1 2 .x x y y  This can, in general, be 

accomplished quite easily by a linear canonical transformation 
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   ; ;y x    

      

2

1

2

1

a

a

j jk k
k

j kj k
k

x

y

















 

where, for example, one can take 

      

 

   

12 12

22 22 11

11 12 21 22

11 12 21 22

2 2
21 12 22 22 12 22 12 11 22 12 12 22

a

a

a 1 a a / a

a 1 a a / a

a a a / a a 2 a a

 

  

 

 

       

 

excluded the case 11 22,   where the above transformation is singular. This particular case is, of 

course, much more easily solved. The Hamiltonian is brought to the form 

      0 1 2 ...     

where    2 2 2 2
0 1 1 1 2 2 2           and 1 2, ,...   are again homogeneous polynomials of 

degree 1 2 1 23,4,... in , , , .     Also 

     

 

 

2 2
1 11 11 22 21 11 21 12

2 2
2 11 12 22 22 12 22 12

1
a a 2a a ,

2

1
a a 2a a .

2

      

      

 

The solution of Hamilton’s equation 

     
2 2

2
1 1 2 0 1 2

1 2

,
W W

F  
 

       
                    

 

is immediate. With the “natural” choice 

      
2 2

0 1 1 2 2 ,F     

we find 1 2,S S S   where 
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2

2 2, 1,2k
k k

k

S
k 


 

    
 

and therefore 

     

   

2 2 2

1/ 22 2
k

,

 arcsin /

k k k

k k k k

  

    

 

 

 

for 1, 2.k   The inverse transformation is 

     

 

 k

sin /    ,

cos /    , 1,2.

k k k k

k k k k

   

   



 

 

The dominant part of the Hamiltonian is reduced to 

     
2 2

0 0 1 1 2 2F       

while the complete Hamiltonian will in general be made up by terms 

     









2

2

1

1
21  cos







 nmqp                                           (2.6.1) 

The zero-th order solution 

     

   0
k

.    ,

, 1,2

k

k k k

const

t k



  



   

 

shows that Poincaré’s method will produce mixed secular terms due to differentiations with respect 

to 1 2 or    in the generating function of the method (containing necessary terms of the form 

(2.6.1)). The solution to the question is actually simpler, at least in the formal sense. In fact, suppose 

the Hamiltonian contains the variables (x; y) in the combinations 
2 2 2 2
1 1 2 2 and x y x y   only, i. e., 

      2 2 2 2
1 1 2 2, .x y x y           

In this case, since 

      
 

 

2 2

2 2

2 ,

2 ,

j j

j j

j j

j j

x y
x y

y x
x y



 


 

 




 

it follows that 

      2 2 2.j j jx y const c    

and therefore 
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cos

sin

j j j j

j j j j

x c t

y c t

 

 

 

 

 

where 

     
 2 2

2 .j

j j

const
x y

 
  

 
 

and ,j jc   are arbitrary. This is analogous to Whittaker’s (1937) remark that if the Hamiltonian is 

function of the variables j j jx y   only, then the j  are constant. The same remark applies, of 

course, to any combinations of the associate coordinate and momenta. These considerations lead 

naturally to the question whether, assuming   say to have the form 

        2 2 2 2
1 1 1 2 2 2 ,x y x y     

it is possible to reduce all the Hamiltonian to a function of the combinations 
2 2
1 1x y  and 

2 2
2 2.x y  

The answer to this question is affirmative in the sense that, at least formally, the reduction  can in 

general be obtained by a series of homogeneous polynomials in the variable involved, although the 

convergences of these series, as such, has never been investigated. The equivalence to the problem 

of Birkhoff’s normalization is, nevertheless, evident. 

 Consider, then, the dominant part   of the Hamiltonian to be a function only of 

2 2 2 2
1 2 2 2 and x y x y  . The higher order parts of the Hamiltonian are functions of the variables (x; y) 

say in the combinations 

      1 2 1 2
p q m nw w u u  

where 

      

1 1 2 1 2

2 1 2 2 1

2 2
1 1 1

2 2
2 2 2

w x x y y

w x y x y

u x y

u x y

 

 

 

 

 

This is, for instance, the case of Celestial Mechanics when Poincaré’s variables are used (e.g. 

Brouwer and Clemence, 1961). Generally, one can assume the higher order parts of H to be 

homogeneous polynomials of increasing degree in 1 1, ,x y 2 2, .x y  The elimination of all terms except 
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the combinations 1 2,u u , from 1  can be accomplished by means of a generating function 

     
' '

1 1 2 2 1 2 ...S x y x y S S      

so that one finds 

      
'2 2

'0 01 1
1 ' '1

1 1

'; ';
k kk k k k

S S
x y x y

y x x y 

  
    

      

where primes indicate new variables and new Hamiltonian. Now, since 0 1 1 2 2,u u    the 

function 
'
1  is defined by that part of 1,  if any, containing purely the combinations 1u  and 2u , 

which we call 1 .s  The remaining terms, called 1 ,p  will allow for the determinations of 1S . It 

follows that, since 

        '

00
', ', ,x y x y    

      
2

0 01 1
1' '

1

';p
k k k k k

S S
x y

x y y x

   
       

  

where, in 1 ,p  any terms in 1u  and/or 2u  is necessarily factored by a term in 1 2 or .w w  Now, 

considering the form of  0,  one has 

     '0 0
'

2 , 2i i i i
i i

x y
x y

  
 

 
 

where 

      0 '.i
i

x x
u


 

   
 

Therefore, the equation for 1S  becomes 

      ' 1 1
1'

2  '; .i i i p
i i i

S S
x y x y

y x


  
     

  

On the other hand, considering the definition of  and  1,2 ,k kw u k   it follows that 

     

' ' '1 1 1 1
1 1 2 1' ' '

1 1 1 2

' ' '1 1 1 1
2 2 1 2' ' '

2 2 2 2

S S
  ,

y w

S S
  ,

y w

S S
x y w w

x w

S S
x y w w

x w

   
  

   

   
  

   

 

where 
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' ' '
1 1 2 1 2

' ' '
2 1 2 2 1

,

.

w x x y y

w x y x y

 

 

 

The equation for 1S  becomes 

    

   

 

'
' ' ' ' '1 1

1 2 1 1 2 1 2' '
1 22

' '
1 1 2

2  , , ,
w

                            , ,

p p

p

S S
w w w w u u

w

w w

 



  
    

  



 

where the dependence on 
' '
1 2,u u  is omitted and is not relevant to the subsequent discussion (as long 

as isolated dependence of 
' '
1 2,u u  does not occur). The solution of this last equation is obtained by 

introducing the auxiliary variables of integration 

     
2 2 2 2

1 1 2 2 1 2' ' , ' ' .z w w z w w     

With this substitution, one finds 

    
 

 
    


 211212

1
2
2

21
*

1
1

21
1

,

4

1
zdz

zz

zz
zS p 




 

where 1   is an arbitrary function of  
' '

2 1 2, , .z u u  The method does not apply when 1 2,   that is 

      0 0

1 2

.
u u

 


 
 

This is, obviously, a case of internal resonance  of the linear approximation, which is exceptional. A 

similar treatment and overall discussion holds to any order of approximation. The Hamiltonian is, at 

least formally, reduced to 

      ' ' ' '
1 1 2' ... ' ,o u u        

so that 

     

' 2 2
1 1 1

' 2 2
2 2 2

' .,

' .   .

u x y const

u x y const

  

  

 

The relations between primed and unprimed variables are obtained by 

     

' 1 2
' '

' 1 2

...   ,

...   ,

k k
k k

k k
k k

S S
y y

x x

S S
x x

y y

 
   

 

 
   

 

 

The foregoing considerations establish a clear connection between Poincaré’s problem and 
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Birkhoff’s normalisation. (Birkhoff, 1927; Siegel, 1956). The problems are actually identical in 

scope and such identity has been shown in specific applications quite recently, by Deprit (1969, 1971). 

It is a well known fact that the series introduced by Birkhoff are generally divergent, although 

exceptional cases exist. New results connected with such problems are rare and the theorems of 

Kolmogorov and Moser could apply due to the non-linearity of the equations generated by 0 . The 

next connection of importance is with the concept of Adelphic Integrals introduced by Whittaker 

(1937). Recently, the definition and series approximation given by Whittaker, have been explored in 

specific examples by Contopoulos (1963) who, by the way, has shown that such integrals, supposed 

only formal results, do hold, in practice, for a very long interval of time, specifically as long as a 

computer could handle the integration with reasonable confidence in the accuracy of the results. The 

motivation for the question is: can we find, for a conservative system, some other integral which is 

independent from the energy  integral? Evidently there are systems where such is the case and, in 

fact, by definition, an integrable system with n degrees of freedom has n such integrals, Although a 

well known result of Poincaré indicates that dynamical systems are non-integrable, such result relies on 

the existence of uniform (with respect to a certain parameter) integral. In the vicinity of singular 

points, Siegel (1941) has also shown the non-existence of analytic integrals and Moser (1955) the non-

existence of differentiate integrals. Boneless, integrals may exist for specific values of parameters 

appearing in the equations, for specific values of initial conditions, or other exceptional cases as, for 

Instance, just continuous integrals. We shall give, at the end of this section, an example of such 

exceptions. 

Let F(y; x; t) be a (differentiable in D) integral of a conservative system defined by the 

Hamiltonian H(y; x), supposed to be 2C  in a certain domain D of the 2n-dimensional phase space 

   1 2 1 2, ,..., , , ,..., .n ny y y y x x x x   It is well known that F being independent of H (here, not a 

function of H alone) the following condition 

 

      , 0
F

F
t


  

                                                  (2.6.2) 

is necessary and sufficient. In explicit form, the Poisson parenthesis is, here 

 
1

, .
n

k k k k k

F F
F

y x x y

    
       

  

If F is explicitly time independent, the condition is simply ( ,  )  0.F    

Now consider the case in which H depends on a dimensionless parameter  , 0,1 ,  and 

such that it is developable in Taylor series in the vincinity of 00,  for ,   and also, such that 
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       2
0 1 2; ; ; ; ...   .y x x y x y x                                           (2.6.3) 

Finally, suppose F to be time independent and an analytic function (in the real sense) of  

0,  for   . Then 

         2
0 1 2; ; ; ; ; ...F y x F y x F y x F y x                                (2.6.4) 

and we require  ; ,  0,1,2,...,kF y x k   to be differentiable in D. If F is an integral for all 0,  

say, then one must have  0 0, 0,F    = 0, or, more explicitly 

     0 0

1

0.
n

k k k

F
y x

  
                                                       (2.6.5) 

It is .evident that any  0F x satisfies (2.6.5) and also, being  0
,F x y


a solution of (2.6.5) then  

   0 0
,F x y F x

  also is, whatever  0
F x


 may be. We shall exclude cases of resonance, in 

this case, situations where the functions 
0

0 /k kx    are dependent, or, in particular, 

linearly dependent over the set of integers, for .x D  Actually we shall assume the 

infinitely many conditions       

  
1

0 0

1 1

nn n

k k k
k k

j j 
 

 

 
 
 

                                 (2.6.6) 

for all integers not all zero kj  and a convenient constant  . Cases of resonance or near 

resonance have been discussed, in details, in the problem of Adelphic tegrals, by Contopoulos 

(1968, 1970). For systems with n > 2 degrees of free-not even a heuristic solution of the 

problem is available in the literature, although it can be produced with no major difficulties.  The 

above conditions exclude particular solutions (or "near" solutions) of the type 

     0
1

 ,
n

k k
k

F p y


  

Where kp  are integers such that 

      
1

0.
n

k k
k

j p


  

Then one has the following lemma. Lemma 1. "The function  0F  is an arbitrary function of 

1 2, ,..., nx x x  and of any linear form  1 1 2 2 ... n ny y y      where k  are real non-rational numbers 

such that 

    
0 0 0

1 1 2 2 ... 0."n n         
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We note that since the solution of the system generated by 0 is 

    

 0 0

.

,

k

k kk

x const

y x t y



 

 

any function of 1 1 2 2 ... n ny y y       reduces to an absolute constant.  For this reason, we shall 

consider the solution  0 0F F x .  This is, in fact, obvious, since 0F  has to be an integral of the 

system generated by 0  and therefore, a function of the n integrals 1 2, ,..., nx x x  of that system. 

Lemma 2. "If  0 0F F x  and  1 ,F y x  is 2  periodic with respect to 1 2, ,..., ,ny y y  with zero 

average, then  1 1, F  is 2  periodic in 1 2, ,..., ny y y  and has zero average, provided  1 ,y x  is 

2  periodic in 1 2, ,..., ."ny y y  

 In fact, the condition (F,H) = 0 leads to the sequence of conditions 

          0 1 1 2 2 0, , , ... , 0p p p pF F F F                       (2.6.7) 

For 1, 2, 3, ...   .p   For 1,p   we have 

        1 0 0 1, 0F F     

 

or 

 0 1 1

1 1

n n

j j
j jj j

F
p x

y y


 

 


    

where 

       0 .j
j

F
x

x
 


 

The right-hand member of (2.6.8) certainly is 2  periodic in each ky  and has zero average. The 

same will be true for  1 ;F y x  provided one disregards any arbitrary function of x in the solution, 

and the 0
j  satisfy (2.6.6). Now let 1 1 2 2 ... n np y p y p y      be any argument in the Fourier series 

of  1 ; ,y x with 1 2, ,...,  np p p integers, not all zero. In view of the linearity (2.6.8) one can reason 

with that single argument. Thus, eliminating arbitrary functions of x, we have, for that argument 

     1
1

0

1

sin cos

n

j j
j

n

j j
j

p p

F
p

 






   



                      (2.6.9) 
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Where we have defined 1 cos sin ...  .      The factor of the right-hand member of (2.6.9) 

is a function of x, let say,  C x , and in view of (2.6.6), is not large (obviously we need the constant 

 0  to be  0 1 with respect to ). 

 It follows that  

   
2 2

2 1
1

,  sin 2  cos 2
2

n

j
j j

C
F p

x  


   
  

   

    
    

wich proves the lemma since terms independent of  can only be produced by trigonometric 

functions of the same argument. 

 Consider (2.6.7) for 2.p   The function 2F  is defined by 

         2 0 1 1 0 2, , , 0F F F       

or 

       0 2 2
1 1

1 1

,
n n

k k
k kk k

F
x F

y y


 

    
    

and it follows that, disregarding arbitrary functions of 2,x F  is also a 2  periodic function of 

1 2, ,..., .ny y y  

In general, however, it is not true that pF  will be 2  periodic in the angular variables 

1 2, ,..., .ny y y  This is verified only under very special conditions. The most important example is 

when H is a cosine series in the angles 1 2, ,..., .ny y y  In this case, it is easily seen that F is also a cosine 

series. Therefore, any function obtained from a Poisson's Parenthesis is a sine series, and cannot contain 

any constant term. This is easily seen by writing 

    
1

,
n

k k k k k

F F
F

y x x y

 
  
 

     
     

and observing that, in each binomial, one has the product of a sine series by a cosine series. 

The same is true also when H is a sine series. In problems of Celestial Mechanics, when 

Newtonian forces are considered, these conditions are satisfied. 

The convergence of such method of approximation has been proved by Whittaker (1916) for 

some special classes of problems with two degrees of freedom, namely, in the vicinity of an equilibrium 

point of the general elliptic type and as long as the normal frequencies 1 2,   are irrational one to the 

other and for deviations sufficiently small from equilibrium. Although Whittaker felt very strongly in 

favor of the convergence for more general systems, he pointed out the fact that such adelphic integrals 



Eng Res, v. 10, n. 1, p. 1-145, January / 2019. doi.org/10.32426/engresv10n1-001 94 

could not generally be uniformly convergent for any value of the independent variable and with respect 

to all values of the constants of integration or the parameters of the problem in any interval.  This last 

consideration follows clearly from the fact that, as the ratio 1 2/   changes from an irrational to a 

rational value, the series defining the adelphic integrals take a completely different form.  The same 

situation occurs in the application of averaging methods with respect to the type of motion defined by 

0  (the reference solution). In non-linear oscillations, the normal modes depend on the initial 

conditions and therefore, it seems natural to conclude that, as far as the initial conditions are concerned, 

convergence in any domain of the phase space is not possible. This is, in fact, the essential reasoning 

behind Poincaré’s Theorem on the divergence of series in Celestial Mechanics (Poincaré, 1898, Vol. 

II). There is, of course, one case where convergence is a fact not even in question: the obvious situation 

where the series terminates. Even if an integral exists, in the form of a polynomial in , there remains 

the problem of what should be the zero-th approximation 0F . The difference between obtaining a 

series (eventually divergent) and a polynomial, may depend on the choice of  0F x . If a general 

principle for such choice could be found, we would have a criterion for the existence of integrals which 

are polynomials of certain physical parameters. For instance, consider the case 

      0 1 ;x y x    

quite common in problems of perturbation. In this case, the equation defining pF  is 

       0 1 1, , 0p pF F      

for 1, 2, 3, ...   .p   Evidently, if  kF k p  are identically zero, it follows that  

0 1 1... pF F F F     where 

     

 

   

   

   

 

0 0

1 0 0 1

2 0 1 1

1 0 2 1

1 0

, 0

, , 0

, , 0

, , 0

, 0.

p p
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F F

F F

F F
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The last condition implies that 1pF   is an integral of the system generated by 1 . This is a necessary 

condition for the integral F to be a polynomial of degree 1 in .p    Evidently, for this to happen it is 

sufficient that 1pF   be equal to, or a function of, 1 . This is the case for instance of Kovalevskaya’s 

integral for the motion of a symmetric top under the influence of gravity. For this motion we 

introduce Andoyer’s variables (1926) 

      

 cos 

 sin  sin 

   cos 

L p G b

p G b

p G









 

 

   


 

Where , ,    are the usual Euler angles as defined in Goldstein (1951), G is the magnitude of the 

angular momentum, I is the inclination of the invariable plane (normal to the angular momentum 

vector) with respect to the inertial equatorial plane, b is the inclination of the body principal inertial 

equatorial plane with respect to the invariable plane and   the angle between the body x-axis and 

the interception of the body (x, y) plane with the invariable plane. Let h be the angle between the 

inertial X axis and the interception of the invariable and (X, Y) planes and let g the angle between 

the interceptions of the invariable plane with the planes (X, Y) and (x, y). Then the quantities 

 , , ; , ,L G H g h are canonically conjugate (e.g., Deprit, 1966) and the kinetic energy is 

    2 2 2 2 2
0

1 1 1 1
sin cos

2 2
G L L

A B C
      
 

  

Where A, B, C are the principal moments of inertia (w.r.t. x, y, z respectively). If one assumes A = 

B, 

    2 2
0

1 1 1 1

2 2
L G

C A A
     
 

 

While the potential, by proper choice of the axes, can be written 

   

 

  



sin sin cos sin

         cos sin cos sin cos cos

         sin sin cos

G

G

w w x g

b g z b

b g

  

   

 



  

Where w is the weight of the top and , , 0,G G Gx y z  are the coordinates of the center of mass in the 

body system. We have, of course, the integrals 0 1w E     (energy) and 0cosG   (since h 
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is ignorable). 

 Consider an integral  , , , ,F L G g h  of the system, such that, 0 1 ...F F wF    

    

 

  

0 ,

, , , 1,2,...k k

F L G

F F L G g k



 
 

Where we have assumed h to be cyclic, for obvious reasons, and 0  is simply a parameter not 

shown explicitly. We shall write 

   

   

2 2
0

1

a

2 2

sin sin sin cos

b
L G

A g B g C D g E

  

              
 

Where 
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1/ 22 2 2

1/ 22 2 2

1/ 2 1/ 22 2 2 2 2

2

/ 2   ,

/ 2   ,

/               ,

/   ,

  









 

   

   

  

   

  

G

G

G

G

G

x L G G G

x L G G G

C x G L G

D z G L G G

z L G

 

The conditions for F to be an integral are 

        0 1 1, , 0k kF F                                     (2.6.10) 

For 1, 2,...   .k   We shall leave   0,L G F   undefined and try to determine under what conditions 

in   and the physical parameters, the series for F terminates. We obtain from (2.6.10) 

      
L

F
CgBgA

g

F
bG

F
L kkk










 1000 cos cos cosa 


 

       
G

F
gDgBgA k




 1000 sin   cos cos   

      






 10000 cossin  sin  sin  k

LLLLL

F
EgDCgBgA  

    
g

F
EgDCgBgA k

GGGGG 


 10000 cossin  sin  sin     
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(2.6.11) 

For  1,k   we find 

   
       g

b

B
g

b

A
F

GL

GL

GL

GL 







  sin  
a

sin  
a

00

1


 

 gAEg
b

DC

G

G

L

L   sin  cossin  
a

00 
     (2.6.12) 

  EgDCgB  cossin  sin    

Where E’ is an arbitrary function of L, G. The function 1F  has the same form as 1.  In fact, this is 

necessary since, taking 0,   it must result 1 1F    arbitrary function of L, G. It is also clear 

that there exists no 0  such that 1 0.F   For 2,k   Eq. (2.6.11) gives (Giacaglia, 1967): 

  

 

   

   

     

   

 

2 0,1 0,2 1, 1

1,0 1,1 1,2

2, 2 2, 1 2,0

2,1 2,2 1, 2

1, 1 1,0 1,1

1,2

cos cos 2 cos

cos cos cos 2

cos 2 2 cos 2 2 cos 2

cos 2 2 cos 2 2 sin 2

sin sin sin

sin 2 ''

F g g g

g g

g g

g g g

g g

g



 





     

      

      

      

    

  



  

  

  

  



              

                                                                                                                                 (2.6.13) 

where ''  is an arbitrary function of L, G and , ,,k j k j  are given functions of 

, , , , , ', , ,a,L G C L G b       and their derivatives. It one imposes the condition 2 0,F  all 

coefficients must be identically zero and we find 

    
' ''' 0L G     

and, being k a nonzero constant, 
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'

'

'

'

k

k

C kC

D kD









  

  





 

so that 0 0F k   and 1 1.F k   This shows that every differentiable integral (valid for all values of 

w) and of the form 0 1F wF  is necessarily proportional to 0 1.w    From (2.6.11), for 3,k   

we find 

     
3 3

3 , ,
3 3

' cos ' sink j k j
k j

F k jg k jg
 

                               (2.6.14) 

with k, j not simultaneously zero and , ,' , 'k j k j   functions of 
0, , , , , , ', '', , ,a,L G C D L G b         

and their derivatives. Setting equal to zero all coefficients of this trigonometric polynomial, we find 

   

  

  

  

  

22 2 4

2
2 2 2 2 2 2 4

a 2

D ' 0 0

/

'' 2 2 / .

G

G

b C

z

G L

V x G L L G

 



   

      

   

        

 

                                                                                                                                 (2.6.15) 

With these conditions, it follows from (2.6.12) that 

         gLGHG
GA

xG
F 






  sin  

1
1

2 2122
231  

           sin 
4

sin  
2322

23

2

LG
GA

xGH
gLG    

or 

     sin   cos  coscos  sin  sin  sin 
4 22

31 gbgIbG
A

xG
F   

sin   sin   cos bI       (2.6.16) 

 

From (2.6.13) we find 
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 g

G

L

G

L

G

L

G

L

A

Gx
F 2 cos

HH
1

2

1H
2

H

2

14
4

22

2

22

4

22

4

22

2

2

2  

    























 g

GG

L

G

L
cos

H
11

H
2

21

2

221

2

2

2
 

or 

    gIbIb
A

Gx
F 22222

2

2 cos  sin  sincos  cos1
4

  

    gIIbb cos cossin   cos  sin  2  

 It is easily seen that 3 4, ,...F F   are all zero, so that we have established the integral 

    
2

0 1 2F F wF w F    

Which is Kowalevskaya’s integral (e.g., Leimanis, 1958). In fact, writing F in terms of p, q, r 

(components x, y, z of the rotation vector) and of Euler’s angles, we find 

  I)  222444
2

2
44

0 sin1 qpbGA
G

L
GAF 








   

  II)    sin cos 2sin sin   4 221
1 pqqpAGxF  

 

  III)    222222
2 sin4cos14   GAxGAxF  

Using Leimanis’s notation, 

    

1

sin sin

cos sin

cos

Gwx

  

  

 

 







 

it follows 

      2 22 2 2 2 2 .F p q pq       

We  have thus found an integral, valid for any value of w (which here takes the place of ) but 

under the restriction 2 .C  Of course, for more general situations Arnol’d (1963) has shown 

that the system is integrable for a sufficiently small value of w, i.e., has shown stability of the fast 

top. 
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7. The Solution of Poincaré’s Problem in Poisson’s Parentheses. Elimination of Secular Terms 

from Adelphic Integrals. 

In this section we shall indicate how to solve Poincaré’s problem using Poinsson’s 

Parentheses and, at the same time, how to eliminate secular terms in the construction of Adelphic 

Integrals. We shall deal specifically with a case of degeneracy in which the dominant part of the 

Hamiltonian depends on a single action variable and the perturbation is 2  periodic in the angle 

variables. As we have seen, this situation introduces series difficulties in Poincaré’s method, 

difficulties which led von Zeipel to the already described generalization. Also, as we have seen, 

Poincaré’s method constructs n formal integral whose zero-th order approximations are the action 

variables, constants of the unperturbed case. The other n formal integrals are essentially the 

constants of integration for the angle variables when all of these have ultimately been eliminated 

from the Hamiltonian. The process we are going to discuss is essentially that introduced by 

Whittaker, although the elimination of secular terms in the procedure was introduced by Giacaglia 

(1965). With the usual notation, the recurrence relations are 

        
1

0
0

, , ;
k

k k j j k
j

F F y x





                                        (2.7.1) 

where k  is know when all the 1k   preceending approximates are know. For 0, 0.kk    Also, 

assuming  0 0 ,x   

     0

1

;
n

k
j k

j j

F
y x

y
 






                                                 (2.7.2) 

With the condition that every  ;kF y x  should have no secular term, in the sense that the 

substitution 0
j j jy y    should give 

      lim ; .kF y x bounded





  

Nevertheless, since k  is obtained by multiplication of trigonometric series it will contain terms 

that are functions only the x-type variable, so that, upon integration of (2.7.2), condition (2.7.3) will 

not be verified in general. The unwanted “secular behavior’ can be eliminated by introducing an 

averaging procedure to be briefly described hereafter. We shall consider the highly degenerate case 

where 0  depends on one of the momenta only, say  0 0 1 .x   Also, following Poincaré’s 

results, we try to obtain integrals which, for 0,  reduce to the momenta, that is, 

     ;j j jF x F y x                                                   (2.7.4) 

for 1, 2, 3.j   The question remains if this choice will lead to the integrals 
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     ' ;j j jx x W y x                                                    (2.7.5) 

given by Poincaré’s method. Since, by hypothesis, jF  and 'jx  are integrals, the function 

     '
j j j jF x F W     

is also an integral. Now  and j jF W  are not integrals (because jx  is not), so that .j jF W   It 

follows that, if the process converges for  in some interval, the two methods lead to the same 

result, although the use of Poisson parentheses gives explicit forms and add extra features to the 

solution. We let therefore 

    
   1 1 2; ; ...F x F y x F y x   

                                 (2.7.6)                        

where H satisfies the foregoing conditions. T he first order equation (k=1) from (2.7.1) gives 

    0 1 1
1

1 1

 
F

y y
  


 

 

so that 

      1 1 1 2 30
1

1
; , ,..., ;p s nF y x F y y y x


                                 (2.7.8) 

Where 1p  is defined by the operation of subtracting from 1  the average with respect to 1y . In 

general 

        2

0

1
f ; f ; lim f , ,..., ;p nT

y x y x t y y x dt



 

   

or, for the multiperiodic case under consideration, 

        
2

1 2 1.

0

1
f ; f ; f , ,..., ;

2p ny x y x y y y x dy



    

The index s indicates absence of 1y  and 1sF  is, evidently, arbitrary. The second order approximation 

gives 

   0 2 1 1 1 1 2
1 2 2

1 1

 p s
i i i i i

F F F

y x y y x y
  

      
           
  

where and 2 p  are known 2s  and given by 

   

1 1 1 1 2
2

1

1 1 1 1
2 .

p
i i i i i p

s
i i i is s

F F

x y y x y

F F

x y y x
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If 2F  has to be free from secular terms, 2s  must vanish, giving the condition  

     21
2 1 1 12

1 1 1

1
, 0

2s s s p

s

F
x y








  
       

 

and since the last term on the right is zero, 1sF  is defined by 

      1 1, 0s sF                                                    (2.7.9) 

for which we need only a particular solution, the simplest of which, in this case is 1 0.sF   Consider 

for simplicity the case 

     0 1,                                                  (2.7.10) 

so that the second order approximation is given by 

   

   0 2
1 2 1 1 1 10

1 1

0
21

102
1 1 1

1
 , ,

1
              

2

p p s s p

p

p

F
F F

y

x y

 






    



  
    

 

and since 
2 2
1 1

1 1
p p

p
y y

  
     

 it follows that 

      21
2 1 1 1 12 3

1 1 1

1 1
,

2p p p p
F F dy

x



 


 


    

                     (2.7.11) 

and 

     2 2 2p sF F F   

where  2 2 3, ,..., ;s nF y y y x is arbitrary. Under hypothesis (2.7.10) the third approximation gives 

    3
1 1 2 3 3

1

 , p s

F
F

y
  

   


 

where 

      3 1 2 1 2, ,s s s s p s
F F      

and imposing the condition 3 0,s   defines the arbitrary function 2sF  by 

       
2

1 2 1 2 1 3 2

0

1
, , ,..., ;

2s s s p s nF F dy y y x





      

where 3s  is know. The homogeneous characteristics of 1 2, ,...,s s ksF F F  are the same for any k, and 

given by 
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where  is an auxiliary parameter. The solution for  1,2,...ksF k   will thus depend on the solution 

of the system 

     

1

1

                                   2,3,...,

j s

j

j s

j

y

d x

j n

dx

d y





 







 



 

This corresponds to a dynamical system with 1n  degrees of freedom and whose Hamiltonian is 

1 .s  Nevertheless it should be noted that one needs only a particular solution (in the Jacobi sense) 

of such system. Of course, if for some values of (x; y), one or more of the partials 1 /s kx   is zero 

or small (say as small as ), the solution will contain singularities or small divisors, and the method 

cannot proceed. One of the ways to handle this situation is suggested by the considerations pertinent 

to resonance and to be described in chapter V.  Here we limit our discussion to the particular case 

where the derivative  1/ 2
1 2/ 0s x    and we plainly assume the expansion 

    
1/2 3/2

1 2 3 ...   .F F F F F      

From the fundamental relation  , 0F    it follows that, by equating terms f the same order in , 

   

 

 

 

0 0

0 1

10 0 01 1
0 2

1 1 2 2

0 0 01 1 1

1 1 2 2

                , 0   ,

                , 0   ,

, ...

               ... 0

p

n n

n n

F

F

F F F
F

x y x y x y

F F F

y x y x y x

 

 

    
          

    
          

 

   

  11 0 1 1 1 1 1
0 3

2 2 1 1 2 2

1 1 1 1 1 1

1 1 2 2

, ...

             ... 0,

ps

n n

n n

F F F F
F

x y x y x y x y

F F F

y x x x y x

      
           

     
          

 

and so forth. If, again,  0 0 1 0 1, ,x F x   it follows that 

     0 1
1 1 1 2 3

1

 0 , ,..., ;s n

F
F F y y y x

y
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and 

    

 

   

0 2 1
1 2

1 1

0 3 1 1
1 1 1 3

1 2 2

0 1
1 1 2 3 2

1 2 2

 

 ,

 ,

s

k s
k k k k

F

y y

F F
F

y x y

F
F F F

y x y

 

 

   

 
  

 

  
   

  



  
    

  

 

for 4, 5, 6, ...  .k  Now 1sF  is arbitrary and can be taken equal to zero, so that, automatically, one 

gets 3 0   and therefore 

      0 3
1

1

0
F

y
 




 

or 

      3 3 2 3 1 2, ,..., ; , ,..., .s n nF F y y y x x x  

On the other hand 

     2 1 20
1

1
p sF F


    

so that 

        1 2
4 1 2 1 2

2 2

, , s s
s s s p p s

F
F F

x y
  

    
 

 

which should be zero. Since 

   
0

11
1 1 10 02

1 1 1 1

1 1
,  0p

p p p

s s
x y


 

   
             

  

It follows that 

      1 2
4 1 2

2 2

, 0s s
s s s

F
F

x y
  

   
 

 

and 2 0sF  satisfies, in particular, the requirements. In any event, the characteristics (up to any 

order) are 

    
3 3

1 1 1 1

3 3

... ...n n

s s s s

n n

dy dy dy dx
d

x x y y
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with the required disappearance of the small divisor 1 2/ .s x   If 2 20,sF F  is completely defined 

and 4F  is given by 

   

 

 

11
4 1 1 102

1 2 2

0
21

103
1 1

1
,

1
                 

2

ps
s p

p p

F dy
x y

x






 
       


 




 

and so forth. At every stage of the approximation, the characteristics are the same and do not 

present any singularity. It is also clear that the method can be applied equivalently to cases in which 

more than one derivative 1 /s kx   is small. 

 Suppose now 0 2F x so that F will correspond to 
'

2x  of the Poincaré problem. In this case 

     0 1 1
1

1 2

,
F

y y
  

 
 

 

so that,  

    1
1 1 1 2 30

1 2

1
, ,..., ; .nF dy y y y x

y





  
  

However, the integrand 1 2/ y   may contain terms which are independent from 1y  and, therefore, 

1F  will have a secular increase in 1.y  Such secular parts will be 

    1
1 1 1 2 30

1 2

1
, ,..., ;s

s nF dy y y y x
y





  

  

which cannot be zero unless 1s  does not depend on 2.y  Therefore, one is forced to deviate from 

the assumption 0 2F x  and assume a more general form 

     0 0 2 3, ,... ; .nF F y y y x  

If it is possible to choose 0F  so hat secular terms are not present in the higher approximations, one 

can at least obtain a formal integral, eventually convergent. The equation for 1F  is obtained from 

       0 1 1 0, , 0F F     

or 

      0 1
1 1 0

1

 , .
F

F
y

 
 


 

The “secular” part of the  right hand member should be zero, that is, 
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     1 0, 0s F                                                              (2.7.12) 

since 0F  does not contain 1y  by hypothesis. This hypotheses is easily justified by the condition 

 0 0, 0,F   with  0 0 1 .x   An immediate solution of (2.7.12) is to assume 

     0 1sF k   

where k is a constant. From the point of view of Hamilton-Jacobi theory, it is clear that this choice 

is suggested by the equivalent situation in Poincaré’s method (Giacaglia, 1965, p.16). 

 The interesting physical feature of this process is that the “secular” part of 1  becomes the 

zero order approximation of an integral of motion. The interpretation of this fact lies in the 

conservation of the energy of the system under canonical transformations. Also, there is a close 

connection, at this point, with perturbation methods based on Lie Series Transforms to be discussed 

later in this chapter. 

 Now consider the original system 

     ,k k
k k

y x
x y

 
  
 

   

where  ; , 1,2,..., .y x k n  Let 1,nt y   so that 

     ,y x
x y 
 

 
 
 

                                     (2.7.13) 

where 1 1, , 1,2,..., 1.n nx x const n        The angle variables of the system are, 

according to Poincaré’s method 

      
' 'ty y
    

where 
'y  are absolute constants and 

    ....22101 



 




 
x

xn  

and the 
k
  are functions of 

' ' '
1 2, ,..., .nx x x  In particular 

     0 0
'
.

x


 



 

so that 

     ' 0 '; .y t x t          

On the other hand 
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      ''
'

'; ; '; ; .
W

y y x y y x y
x  



     


 

Comparison of the last two relations gives 

     0 .y t t            

On the other hand, the   are constants of the system (2.7.13), and can be written as 

    0
1 '; ; ;k k k n ky y x y t                                             (2.7.14) 

and the zero order part of such integrals can be taken as 

    0
0 1        1,2,..., .k k k nF y y k n                                     (2.7.15) 

Poisson’s condition is now written in the form 

    
1

1

0.
n F F

x y y x    





    
      

  

If  0 0 ,x   the zero order approximation would be given by 

     0 0 0

1 1

n

k k k n

F F

x y y 

  


    

and a particular solution is 

    00
0 1 1 1 1 1

1
n nF y y y y

x
 


   


 

which is of the form (2.7.15) for 1.k   

 The question arises whether the formal series obtained in this form have some meaning, 

since, in the present case, linear terms in time cannot be eliminated. But the same question is 

present in Poincaré’s method, where the frequencies 
0 0 ...k k k      are indeed obtained, in 

practical cases, only up to a certain degree of approximation p. This fact, as mentioned before, is 

reflected in the conclusion that, even if the series converge, in practical cases the solution cannot be 

valid for an interval of time which, at best if  0 .p  

 Writing the condition as 

      , 0
F

F
t


  


 

the “integrals” F corresponding to (2.7.14) are formally obtained as follows. We suppose 

     
0

0 1 1F y t   

and 

       0 1 1 ; .x y x    
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The recurrence relations for kF  are 

       0 1 1, ,k
k k

F
F F

t 


    


 

or 

      0
1 1 1

1

 , .k k
k

F F
F

y t
 

 
  

 
 

For 1,k   

   
1

1

1

0
1

1

11

1

10
1 y

H
t

xx

H

t

F

y

F

















 

  

for 2,k   

   
0

0 2 1 1 1 1
1

1 1 1 1

,
F F

t
y t x x y

     
  

    
 

and so forth. The solution for  1F  is found to be 

   

 

0
1 1 1

1 1 1 10 02
1 1 1 1 1

0 0 0
1 1 1 1

1 1 102 0
1 1 1 1 1 1

1 2 3

1 1

1 1
      

      , ,..., ;n

F dy y dy
x x y

y dy t dy
x y x x

y y y x


 

  
 



  
 

  

   
 

   



 

   

with 1  arbitrary. On the other hand, one has 

     1
1 1 1 1

1 1

,y y
y y

 
  

 
 

so that, if 1   is 2  periodic in every variable 1 3, ,..., ,ny y y  we obtain 

     1 1 1 1 1 1 1
1

.py dy dy dy
y


     

    

Hence 

   
0

1 1
1 1 1 1 1 10 02 0

1 1 1 1 1 1

1 1 1 1
.p pF dy dy t

x x x

 
  

 
     

     

The only undesirable term is the first in the right hand member, from which secular terms in 1y   

may arise. They are precisely 

    1 1
1 10 0

1 1 1 1

1 1
.s sdy y

x x 
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The function 

    

0
1 1

1 1 10 0
1 1 1 1

0
1

1 1 102
1 1

1 1
1

1
    

s
p

p

F y t
x x

dy
x


 

 


  
      


  

 

 

is multiperiodic in 1 2, ,..., ny y y  and secular in t, this second characteristic being unavoidable and 

indeed necessary. The situation suggests therefore a modification of the function 0F  as follows. We 

consider 

    0
0 1 1 0 2 3, ,..., ;nF y t y y y x     

which, evidently, is a solution for 

      0
0 0, 0.

F
F

t


  


 

Then, the equation for 1F  becomes 

    
0

0 1 1 1 1 1
1 1 0

1 1 1 1

,
F F

t
y t x x y

     
     
    

 

Whose solution is the same as before, with the addition of the term 

      1 0 10
1

1
, .dy


  

The part of this integral which contains secular terms in 1y  will be zero if, and only if, 

      1
1 0

1

, 0.s
sx


  


 

The last equation defines the way in which the arbitrary function 0  should be chosen. The solution 

of this partial differential equation is equivalent to the integration of the characteristics 

     1 1,k s k s

x k

dy dx

d x d y 
 

  
 

                            (2.7.16) 

where  is any parameter and 2, 3, ..., ,k n  whereas 1x  has to be treated as a constant parameter. If 

,k ky x  are obtained from these as functions of , then 1s  is expressed as a function of , and 0  is 

obtained from 

     1
0

1

.s d
x

 
 

  

After the integration is performed, 0  is again set in terms of  2 3 1 2 3, ,..., ; , , ,..., .n ny y y x x x x  The 



Eng Res, v. 10, n. 1, p. 1-145, January / 2019. doi.org/10.32426/engresv10n1-001 110 

addition of 0  to 0F  shall have the effect of changing the reference frequency 
1
0 ,  which, in other 

terms, is simply Lindstedt’s device. 

 With this, we have established a clear connection between the definition of an Adelphic 

Integral and the formal integration of a Hamiltonian system by Poincaré’s method. Such connection 

as we shall see next, establishes a fundamental bridge toward the methods using Lie Series 

Transforms and on Auxiliary System. 

 

 

8. Perturbation Techniques Based on Lie Transforms.      

 This section is devoted to a, as brief as possible, view of perturbation methods introduced 

first by Hori (1966). As we have seen, it is perfectly justified to assume Hori’s generator S to 

depend on the parameter  and, therefore, define a canonical transformation by 

     

1

1 j

1

1

S
 

!

 
!

n
n

j j S
n

n
n

j j S
n j

y D
n

S
x D

n

















 
 



 
 







                               (2.8.1) 

for 1, 2, ..., ,j n where jy  are coordinates, jx  momenta, and ,j j   the corresponding new 

variables, and 

       ; ; .S S     

The image of any function  f ; ;y x   into the new phase space  ; ,   via the generator S, is given 

by 

       
0

; ; f ; ; ,
!

n
n
S

n

f y x D
n

 





                                   (2.8.2) 

where, we recall the definitions 

     

 

0

0

1

1 1

f f

f f
f f, 

f f ,      1, 2,...   .

S

n

S
k k k k k

n n
S SS

D

S S
D S

D D D n

   





    
       

 

  

Obviously, all functions involved f, S must be, at least, infinitely many time differentiable and the 

series above should converge for  sufficiently small. 
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 Now consider the original system of differential equations to be defined by the Hamiltonian 

      ; ;y x   

which, for simplicity, we assume to be analytic in the 2 1n  arguments for (x; y)  D and 

00 .  The equations are 

     , ,x yy x       (2.8.3) 

and we assume that the power series 

       
0

; ; ;k
k

k

y x y x




                                             (2.8.4) 

is such that  0 ;y x  is integrable in D, in the Liouville sense, that is, the system 

     

 

 

0

0

;

;

k

k

k

k

d

d

d

d

  
 

  
 






 



                                        (2.8.5)   

for 1, 2, ...,k n  has the explicit solution 

    

 

 

1 2 1 1 2 3

1 2 1 1 2 3

, ,..., ; , , ,...,

, ,..., ; , , ,...,

k n nk

k n nk

         

         





 

 

            (2.8.6) 

where  ;   are constants of integration and  1 1 1 ,   by the usual specific choice of the 

energy integral dependence on only one of the ' ,s  say 1.  The requirement that the jacobian 

matrix 

      
 
 

;

;

 

 

 


 

be non-singular, for sufficiently small , allows the inversion of the above relations as 

    

 

 

 

1 1 1

; ,     1,2,...,

;

; ,     2,3,..., .

k k

k k

k n

k n

   

    

   



 

 

 

                                   (2.8.7) 

Following Hori’s definition we shall call (2.8.5) the auxiliary system. It should be kept in mind that, 

since 0  is supposed to be integrable in the Liouville sense, there exists a canonical transformation, 
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in particular (2.8.6) if  ;   are action-angle variables, which reduces 0  to a function only of the 

new momenta, in this case of 1  only. 

 We now consider the problem of producing first integrals of motion of (2.8.3), independent 

of H. We consider a complete canonical transformation (2.8.1) with a generator 

       
1

; ; ; .k
k

k

S S   




                                         (2.8.8) 

The transformation being time independent, if  ; ;K     is the new Hamiltonian, it follows that 

       ; ; ; ;y x K                                                    (2.8.9) 

where, in the left hand side the coordinates and momenta (y; x) are supposed functions of  ; ;    

through (2.8.1). According to (2.8.2), such transformation is obtained by direct application of S, if 

this is a known function, so that 

       
0

; ; ,
!

n
n
S

n

K L x y
n

 





                                     (2.8.10) 

If the series on the right converges, as a power series in , we must assume that a similar 

convergent power series exists for K, that is, 

       
0

; ; ; .n
n

n

K K   




                                       (2.8.11) 

Making use of (2.8.4) and (2.8.8), the right hand side of (2.8.10) yields, equating coefficients of the 

same power in ,  

     

   

   

0 0

0

; ;

; ,

1, 2,3,...,

p p p

K

K S F

p

   

 

 

  



                             (2.8.12) 

where pF  is a function of 0 1 1 1 2 1, ,..., , , ,..., ,p pS S S     and possible to be specified either directly 

or by recurrence. The specification of pF  is not important as far as the discussion of the method is 

concerned and the advantage of one or another form is pertinent to the specific problem under 

study. For 1,p   equation (2.8.12) represents a partial differential equation in pS  with the typical 

characteristic of averaging methods, that is, pk is also unknown. The equation can be written as 
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0 0
1 1

1

1 1

,..., ; ,...,

                                        ,..., ; ,...,

n
p p

p n n
k k k k k

p n n

S S
F

k

   
   

   



   
      




             (2.8.13) 

or, using the auxiliary system 

    

 

 

'

1 2

'

1 2

; , ,...,

        ; , ,..., .

p
np

np

dS
F

d

K

    


    

  

 

                             (2.8.14) 

The averaging principle in this method can be interpreted by imposing the condition that pK  should 

not depend on .  If, as usual, we assume  ; ;y x   to be a 2  periodic function of each y and 

because 0  is Liouville integrable, the y  and x   are quasiperiodic, or periodic, functions of , a 

classical result following from the general theory of action and angle variables. We generalize the 

average to a quasiperiodic function, as was discussed previously, by setting 

      dF
T

K n

T

p
T

p ,...,,;
1

lim 210
 

                         

    ;,...,,,; 32 pnp KK     (2.8.15) 

the last transformation in (2.8.15) being obtained by means of (2.8.7). It follows that 

      npnp
p KF

d

dS



,....,;,....,,; 221   

or 

        npppp SdKFS  ,...,,; 21  

 ;pS ,                      (2.8.16) 

again making use of (2.8.7) to perform the last transformation. It is also obvious that, in view of the 

definition of ' ,pK  

      finite,...,,;lim 21 
 npS 


 

and, under the foregoing hypotheses, '
pS  is quasiperiodic (or periodic with no constant term) with 

respect to .  By recurrence, or otherwise, one can show that the process can be repeated for any 

1, 2, 3, ...p   which proves that there exists a formal series 

       0 1; ; ...S S S                                         (2.8.17) 

which reduces the Hamiltonian to 
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         0 1; ; ...K K K                                      (2.8.18) 

with the property that, if  ;  are substituted by the solution of the auxiliary system, K does not 

depend explicitly on ,  and therefore, 

     ' '
0

K dK

d 


 


                                             (2.8.19) 

where K’ is defined by the formal series 

     ''

2 2 3,0 1
' ;   , , ..., ;   , , ..., ...  .n nK K K            

Obviously, one can write 

    

1

1

0 0 0

1

'

      

      

n
k k

k k k

n
k k

k k
k

n

k k
k k k

dK K K

d d

d d

d d

K K dK

dt

 
    

  
 

 
 







   
     

    
 

  
       







 

 

 

and in view of (2.8.14), 

      0 0
dK

dt
  

so that 

      0 0; constant .K J                                (2.8.20) 

We conclude that as a result of a Lie Transform, such that the new Hamiltonian does not depend on 

the auxiliary time ,  one obtains a new (formal) integral of motion, given by (2.8.20). The validity 

of this formal result can only be verified by analyzing the convergence of the method. Since it has 

been shown that Lie’s Method and von Ziepel’s Method are equivalent (Shniad) and that, if 

Kolmogorov’s Method converges (under variable frequencies) so does von Ziepel’s (Moser, 1966), 

the convergence, under sufficiently small and several time differentiable perturbations, of the Lie 

Transform Method, can be inferred indirectly. Again, such convergence cannot be uniform with 

respect to  or the initial conditions. The advantage of the method outlined here  is that only 

quadratures are involved, in opposition to Poincaré’s Method where, in general, one has to deal with 

partial differential equations. Equivalently important advantages are, of course, the production of 

the transformation in explicit form (see 2.8.1) ability of writing any function of (x; y) in terms of 

 ;   by the direct use of the generator S (see 2.8.2) and the invariance of the method and resulting 
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quantities with respect to canonical transformations, a fact which follows directly from the 

invariance of Poinsson’s parentheses with respect to such transformations. 

 We recall that a canonical transformation 

     

 

 

; ;

; ;

Q Q q p

P P q p









                                              (2.8.21) 

defined by a Lie generator  ; ;S Q P   can be defined by the solution of the system 

     

dQ S

d P

dP S

d Q









    

 
   

                                              (2.8.22) 

for the initial conditions  0   

     

 

 

; ;0 ,

; ;0 ,

Q q p q

P q p p





                                             (2.8.23) 

where  is  a parameter. The right hand members of (2.8.21) are supposed 2C  in all the 2 1n  

variables, in some domain of the phase space and  restricted to some interval, say, 0.   For the 

Poincaré generator  ; ;W q P   the same canonical transformation is given by 

     

 

 

; ;

; ;

W
Q q q P

P

W
p P q P

q










 




 



                                    (2.8.24) 

under the condition 

      ; ;0 0W q P   

which is equivalent to the initial conditions (2.8.23). It has been established that 

        ; ; ; ;
W

S Q P q P 






                            (2.8.25) 

where Q  is given by the first of (2.8.24). Assuming the expansions 
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1

1
0

; ; ;

; ; ; ,

n
n

n

n
n

n

W q P W Q P

S Q P S Q P

 

 


















                                 (2.8.26) 

and 

        1
1

; ; ; ,n
n

n

S Q P S Q P 





  

equating coefficients of like powers in  in (2.8.25), gives the relations among the kW  and the jS , 

as obtained earlier. 

 Mersman (1971) produced Deprit’s algorithm by setting   in the above formalism. If S 

corresponds now to Lie’s generator S of equation (1.5.7), to keep the notation used there one should 

substitute 1 / !nS n  for nS  in the expansion of (2.8.25) and obtain 

    

1 1
2 2

1 2 2 1
3 3

2 2
1 1 1 1 1 1

,

2

6 2 2

             2

i i i

i i i i i

i j i j i j i j i j

W W
S W

Q P

W W W W
S W

Q P Q P

W W W W W W

Q Q P P Q P P Q

 
 

 

   
  

   

     
 

       







 

and so on. Hori’s formalism is also obtained from (2.8.25) by substituting  ;S Q P  for  ; ;S Q P   

and setting 1   thereafter, that is, the expansions of (2.8.25) corresponding to (2.8.26) are 

     

   

   

1

1

; ;

; ;

n
n

W q P W Q P

S Q P S Q P










 

which, substituted into (2.8.25), or directly into the expansions following (1.6.10) give 
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1 1
1

2 2
1 1 1 1 1 1

,

2
1 1 1

1

2

1

6

           ...    .

i i j

i j i j i j i j i j

i j i j

S S
W S

Q P

S S S S S S

Q Q P P Q P P Q

S S S

P Q Q P

 
 

 

      
         

  
     



               (2.8.27) 

The parameter  is then introduced into W and 1,S  as 

      

 

 1

; ;

; ;

W W Q P

S U Q P

 

 

 

and one assumes the formal series 

      

 

 

1

1

; ,

; .

n
n

n

n
n

n

W W Q P

U U Q P









 

 





                                  (2.8.28) 

The inverse of (2.8.27) is found to be, by a way or another, 

    

1

2 2

,

2

1

2

1
4

12

            ...   .

i i i

i j i j i j i j i j

i j i j

W W
S W

Q P

W W W W W W

Q Q P P Q P P Q

W W W

P P Q Q

 
 

 

      
         

  
     



         (2.8.29) 

Introducing (2.8.28) and equating like powers of , one finds from (2.8.27) 

     

1 1

1 1
2 2

,

1
,

2 i i i

W U

U U
W U

Q P



 
 

 

          

                              (2.8.30) 

or, from (2.8.29) 
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1 1

1 1
2 2

,

1
, .

2 i i i

U W

W W
U W etc

Q P



 
 

 

                       (2.8.31) 

The foregoing relations allow the translation of the perturbation method introduced by Hori (1966) 

and described at the beginning of this section, into Deprit’s formalism. 

 As an example consider Duffing’s Equation without damping, that is, 

     
3 cos u u u B t                                (2.8.32) 

where 0, 0, , 0B     are constant parameters. We consider the case when   is not rational 

and moreover for 0,  p q  integers, a relation 

       1/ 2p q K p                                        (2.8.33) 

is satisfied for a conveniently chosen   ,K p  say   5/2 , 4,K p p     integer. If (2.8.33) is not 

satisfied we do have a case of resonance and it will be discussed in the last chapter. 

 Introducing the homogeneous complete canonical transformation 

     

 

 

1/ 2

1 1

1/ 2

1 1

2 sin

2 cos

u p q

u p q




 

the equation (2.8.32) can be written 

     1 1
1 1

,     q p
p q

 
  
 

                                    (2.8.34) 

where 

    1/ 22
1 1 1 1 1 sin 4 2  sin  cos .p p q B p q t      

Further, introducing the coordinate 

      2q t  

with the conjugate momentum 2,p  the system takes the form 

     ,     j j
j j

K K
q p

p q

 
  
 

                                  (2.8.35) 

for 1, 2,j   and 

   

  

   

1/ 22
1 2 1 1 1 1 2

0 1 2 1 1 2 1

sin 4 2  sin  cos 

   , , , ,

K p p p q B p q q

K p p K q q p
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The auxiliary system is defined by 0K  and has the solution 

      

0
1 1

0
2 2

0
1 1

0
2 2

q

q

p

p

 

 





 

 





 

where 1 2 1 2, , ,     are constants. Let the new Hamiltonian be 

     
2

0 1 2 ...K K K K        

and the Lie generator 

     
2

1 2 ...   ,S S S     

with the condition that K  should not depend on  and therefore 0K 
 is an integral of motion in the 

new coordinates and momenta 1 2 1 2, , , .q q p p   
 

 The equation 

     0 0 01
1 1 2 1 1, , ,

dS
K q q p K

d
     

gives, under the condition that   is not an integer 

    

 
   

 
   

2
1 1

2
1 1 1 1 1

1/ 2

1

1 2

1/ 2

1

1 2

3

8

1 1
 sin 2   sin 4

4 32

2
                    cos 

2 1

2
                     cos .

2 1

K p

S p q p q

B p
q q

B p
q q











  


 


 



  

 


 


 

The second order approximation, using 

     2
1 1 1 2 2

1
,

2

dS
K K S K K

d
       

where case, 2 0,K   , in our gives 
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2
2 3

2 21

2
2 3

2 121

17

64 8 1

1 21
 sin 2

2 32 4 1

B
K p

B
S p q















 


 
   
  

 

   

 
 

      

 
      

 
      

 
    

2 3 2 3
1 1

1 1

3/ 2
2

1 2
2 1 22 2

3/ 2

1 2
1 22

3/ 2

1 2
1 22

3/ 2

1 2

2

3 7
 sin 4  sin 6

128 192

2
 sin 2 13  sin 

8 1 32 1 1

2
13  sin 

32 1 1

2
21 5  cos 3

128 1 3

2
21 5  cos 

128 1 3

p q p q

B pB
q q q

B p
q q

B p
q q

B p

 




   




 




 




 

 
 


  


 


 



 

   
  

  
 

  
 

 
 

 

 
     

   

 
 

 
 

1 2

3/ 2 3/ 2

1 1

1 2 1 2

2 2

1 2 1 22 2

3

2 2
 cos 5  cos 5

128 5 128 5

 sin 2 2  sin 2 2 .
16 1 16 1

q q

B p B p
q q q q

B B
q q q q

 

 

 

 

 
   

   



   
 

   
 

 

With the current approximation the new Hamiltonian is given by 

    2 2 3 3
1 2

1 1

3 17
0

8 64
K p p p p   

           

where we have neglected absolute constants. On the other hand 0K 
 is an integral of motion, that is, 

     1 2 .p p const    

so that 

   2 2 3
1 2

1 1

3 17
...

8 64
K p p p p   

          

is also an integral, so that the problem is, in principle, reduced to quadratures and, except for values 
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of   rational or “close” to rational, the general solution can be found. The relations between the 

two sets of variables  ;q p  and  ;q p   are given by (2.8.1), or in the present notation 

     








1

*
1*

!n j

n
S

n

jj p

S
D

n
qq  










1

*
1*

!n j

n
S

n

jj q

S
D

n
pp                              (2.8.36) 

for 1, 2.j   Obviously, since S does not depend on 2p
, it follows that 2 2 ,q q   that is, the 

transformation does not change the time  2 .q t  Since we have defined 

     
2

1 2 ...S S S     

if one sets 

      W S                                             (2.8.37) 

the transformations can be written 

    

1

1

1

1

1
  

!

1
  

!

n
j j W

n j

n
j j W

n j

W
q q D

n p

W
p p D

n q

 




 





 




 






                                       (2.8.38) 

or to second order in , 

    

1 2 1
1

1 2 1
1

1
,

2

1
,

2

j j
j j j

j j
j j j

W W W
q q W

p p p

W W W
p p W

q q q


  


  

   
         

   
         

 

where 

     

1 1

2 2

W S

W S




 

Clearly, assuming convergence of the method, the jp  are reduced to constants and the jq   to linear 

functions of time  2 .q t  The frequency of the angle variable 1q
 is a power series in .  To the 

second order, 

   2 2
1 1 1

1

3 51
1 ...

4 64
q p p t  
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where 1 1,p  
 are constants. 

 

 

9. Perturbation Methods of Non-Hamiltonian Systems Based on Lie Transforms. 

 Hori (1970, 1971) and Kamel (1970) have developed, independently, methods of 

perturbations of non-linear systems in general, by generalizing the approach to Hamiltonian 

systems. Clearly, such generalization is not strictly necessary since, as mentioned before, any 

system can be reduced to Hamiltonian form by doubling its dimension and introducing Dirac’s 

cotangent space. The price one has to pay by having twice the number of differential equations we 

started with, is more than compensate by the fact that only two functions are to be solved of the 

transformation. The direct approach requires the dealing with as many unknowns as there are 

variables, in fact, by direct application of the results of section 1.7, twice as many, as will be clear in 

a moment. Here we follow closely the presentation given by Kamel (1970). Consider a system of n 

first order differential equations 

      f ;x x                                                       (2.9.1) 

and assume  f ;x  real analytic in the n+1 variables  1 2, ,..., ,nx x x   in some domain 

 0, .nx D R      The right-hand side of (2.9.1) can be expanded for  sufficiently small in 

the convergent power series 

        
0

f
!

k
k

k

x x
k


                                             (2.9.2) 

where 

        
0

f
f .

k
x

k
x







 

 The functions    f x x  are obviously real analytic in D. This condition can eventually be 

relaxed by attaching to the process to follow a smoothing operation at every stage of approximation 

but, for the general understanding of the method, this is not advisable. We shall not consider 

nonautonomous systems and the observation that such cases can be treated just as well by treating t 

as another x-type coordinate is not generally appropriate. Such is the case, for instance, when 

questions asymptotic behavior, stability and periodic solutions are dealt with.  

 If equation (2.9.1) or (2.9.2) cannot be integrated in general, one seeks a transformation to a 

new system of n variables ,  say 

      ;x x                                                        (2.9.3) 
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such that the differential equation in   

      ;g                                                       (2.9.4) 

resulting from (2.9.3) and (2.9.1) be more easily treatable. Obviously, stated in this form, the 

problem is too general to define what should be the properties of that transformation. One way to 

look at it is, of course, to assume that for 0,  the equation (2.9.1) has a known general solution, 

that is, the equation 

          0f ;0 fy y y                                       (2.9.5) 

is integrable. We might then ask the question whether there exists a transformation (2.9.3) such that 

(2.9.1) is brought into the form (2.9.5), that is,  

        0f .                                                    (2.9.6) 

Since for 0  the transformation (2.9.3) is obviously the identity, again we are lead to the search 

of a near identity transformation 

      ;x h                                                 (2.9.7) 

and assume  ;h    to be analytic in some domain of the 1n  variables  ;   containing 0.  It is 

obviously invertible, therefore, near 0,  for  sufficiently small. So one writes 

      
1 !

k

k
k

x E
k

 



                                         (2.9.8) 

and the transformed system of differential equations will be, in general, 

         
0

;  ,
!

k
k

k k
    




    

with 

        
0

.
k

k

k

 




 

 

The problem is now, given the transformation (2.9.8), to obtain the functions    k   in (2.9.9) from 

the functions    f k x  in (2.9.2). Obviously this can be accomplished in several ways but a recursive 

algorithm like the one discussed in section 1.7 is recommended if high orders and systematic 

formalism are sought. Differentiation of (2.9.8) with respect to t gives 

    
1 !

k
k

k

E
x

k
 




 

   

and introducing (2.9.2) and (2.9.9), one finds 
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0 0

1 0

f  
! !

 
! !

k k
k k

k k

k j
jk

k j

x
k k

E

k j

 

 


 

 

 


 




 

 

                                  (2.9.10) 

From relation (1.7.2) we now see that 

        
0

f ; ;
!

n

n

x
n

 





    

and recursive relations are available for the definition of  f ,n   as for instance, equation (1.7.14) 

or (1.7.15) or the resulting relations in section (1.7). From (2.9.10) it now follows that 

            



















1

f
m

mnmn
n

E

m

n



                            (2.9.11) 

If one considers (1.7.22) 

          





















1

1

T 
1

1
T

n

m

mn
mnn

E

m

n
E


  

or, with notation (1.7.19), 

        
1 1

1
1

.
n n

n n m n mm
m

E L E  
 




     
 

                               (2.9.12) 

We write the inverse of (2.9.8) as 

       
1 !

k
k

k

x x
k





                                                  (2.9.13) 

so that 

         
1 1

, 
1

 
n n

n
n m m n mm

m

x x L x
 




     
 

                   (2.9.14) 

using the notation introduced in (1.7.20) and (1.7.21), that is, 

     

   

     

1

, , 
1

1

,

 ,

.

p p

p q m p m q
m

m

q
o q

x L x

x x






     
 

  


            (2.9.15) 

Finally, one finds 

                ,
1

f f
n n

n n j n j
j n j

j
j

E
     







          
          (2.9.16) 

which is the recurrence relation we have  sought. Obviously, Equation (2.9.16) contains the 

coefficients n  defining the mapping (2.9.8), that is, the coefficients    1n x  of the expansion 
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from (2.9.13), and 
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as in (1.7.6), (1.7.7) and (1.7.8). At each stage of the approximation,  n   has to be chosen 

properly so as to meet our special requirements, whenever necessary. Such unknown can be put in 

direct evidence in (2.9.16), by writing 
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where  nG   depends on all previous approximations. In fact, Kamel finds 
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where 
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A thorough development of the method has been given by Kamel (1970) and Henrard (1970) and 

more recently by Hori (1971). Kamel shows how the generalized Lie Transform approach contains 

in essence the important methods of two-variable expansions procedures and matching of 

asymptotic solutions due to Kevorkian (1966). This subject is not dealt with here since it is explored 

in detail in the work of Cole (1968). It is worth noting that Deprit’s presentation of Lie Transforms 

generated by functions depending on a (small) parameter and applied to Hamiltonians also 

depending on that parameter as it has been shown earlier in these notes and following Mersman’s 

work (1971).  In like manner the foregoing formalism can be simplified by introducing operators  

and functions which are not functions of a parameter and, later, introduce power series in  in all 

results. Consider n variables  1 2, ,..., n    and an operator   ,k   and le 
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                                      (2.9.19) 

Consider the mapping 

      1

1

1
  

!
p

j j j
p

x D
p  



                           (2.9.20) 

where 
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which are the analog of (2.8.1) and subsequent definitions. In particular  k   plays the role of 

/ .kS    We also consider the mapping of a real analytic function f(x) of n variables  1 2, ,..., nx x x  

into the   space as given by  
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    (2.9.21) 

and, actually, (2.9.20) is a consequence of (2.9.21). We define the inverse transformation 
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                                         (2.9.22) 

and 
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                                       (2.9.23) 

so that, the inverse mapping of (2.9.21) is 
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p
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x D x
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                (2.9.24) 

a direct generalization of Lie’s Transform. All of the above relations are actually contained in the 

previous formalism ( dependent) and their proof is straight-forward. 

 The equation 

       f ,k kx x                                        (2.9.25) 

by means of the transformation (2.9.20) generated by k  via the mapping (2.9.20), changes into 

       .k k                                          (2.9.26) 

Making use of (2.9.24), the inverse of (2.9.20) is given by 
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Since from (2.9.25) 
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for any function ( ),  F x that is, 
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the computation of  k   in (2.9.26) is obtained as follows. Differentiate (2.9.27) to get 
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and introduce (2.9.25) and (2.9.23) to find 
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or, using (2.9.21) and (2.9.20), 
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  (2.9.29) 

Now we consider the series 
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                             (2.9.30) 

and we search for the operators j  so that the j  take a desired form. Obviously, the equations 

         0
fk k

y y                                      (2.9.31) 

are supposed to have a well defined general solution. The decomposition (2.9.30) of f j  is intended 

not necessarily as a power series in some small parameter  and also is not necessarily an infinite 

series. In fact, the normal case of a perturbed integrable system (2.9.31) will be  f k
j  for 2,k   that 

is, 



Eng Res, v. 10, n. 1, p. 1-145, January / 2019. doi.org/10.32426/engresv10n1-001 128 

        0 1f f f .j j j   

By feeding the series (2.9.30) into (2.9.29) one obtains a recursive algorithm for the unknowns  k
j  

and  k
j , by equating terms of same order. In this respect, the explicit use of a parameter  to 

represent the orders is quite useful, though not necessary. That is, equating terms of same order can 

be translated into the easier language of equating coefficients of like powers of , assuming 

           f 0 ,  0 ,  0 .k k kk k k
j j j        

 The first few approximations give, all functions intended to be in terms of the   variables, 
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and, in general, 

   
 

 
 

 
   
























n

k

p
j

p
j

k

jp
k

k

p
j

k
1

0
0 f...

f
T

T
f 


                   (2.9.32) 

which, in fact, is equivalent to the previous relation (2.9.17). Here we introduce the important 

notion of auxiliary system by defining 

       

 0f j
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d

d
                                               (2.9.33) 

with the general solution 

      j j                                                       (2.9.34) 

so that 
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The general equation (2.9.32) reduces to a linear system for the    p
jT  at every stage of 

approximation, that is, 
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             (2.9.35) 

where the ' s  are substituted by the solution (2.9.34) of the auxiliary system. It is clear that 

(2.9.35) is a straight generalization of (2.8.9). It is noted that, as in the usual averaging methods, 

 p
j  should be chosen so as to avoid secular terms in     ,p

j
  that is, 

        finiteTlim 





p
j  

The simplest case is when the  0f j  are linear functions of the ' ,s  so that (2.9.35) is a linear (non-

homogeneous) system with constant coefficients, for any order of approximation. If this is not the 

case, say the  
 

0f /j k   



   are periodic or quasiperiodic functions of  the integration of (2.9.36) 

is obviously not a trivial task. It is therefore advisable, in general, to produce a decomposition of the 

   0
f

j
  such that    0

f
j
  are linear. 

 

Van der Pol Equation 

  As an example consider the equation 

     21 0x x x x      

which can be written 
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Here we consider 
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The auxiliary system is 

     
   0 0fj
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whose solution we write in the form 
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where ,  are scalar constants. The first order equations become 
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In order to avoid singular terms, the term in  sin    must be avoided in the equation for  1
1   

and a possible choice is 
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so that 
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The first order equations in the new variables are thus 
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and, in fact, one easily verifies that the equation for 2  is obtained from that of 1  by the 

substitutions 2 1 1 2, ,      provided the choice 
     dd 1

1
1

2   is made. If we let 
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it is found that 
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and, therefore, 
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and + sign choice depending on the sign of the constant ,k  that is, on the initial conditions, since 

2u  has to be positive. 

 For 0  we obtain the asymptotic behavior 

    2 0  as u t    

which is the well known damped motion toward a focus. If 
20, 4u   as ,t   which is the 

limit cycle of the van der Pol equation. The fact that a first order theory (in ) is able to give full 

information in the asymptotic behavior of the system is that, to any order, the equations for 1 2,   

have the same character of the first order equations, that is, 
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so that the above described asymptotic properties are conserved. 
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NOTES 

 Integrability of a Dynamical System has been quite a controversial issue. One feels that, as 

far as Hamiltonian systems are concerned, separability of the Hamilton-Jacobi might be a good 

definition, although this is not the general opinion. Stackel     Theorem, unfortunately, does not give 

any indication on how to actually construct a coordinates system which separates the equation. The 

only thing we clearly know is that if there are n  independent integrals for an n dimensional  system,  

then, according  to  Arnol’d, the invariant manifolds  are  tori  and,  on  these, the motion is 

generally quasi-periodic. The existence of such manifolds for a certain class of systems is also 

conjectured by Diliberto under the name of periodic susfaces. The issue for non Hamiltonian 

systems  is  more complex, although, as for the example give  at  the end of   Chapter 5, one may 

think of a generalized Birkhoff normalization, in case of disturbed harmonic oscillators. Many 

problems can actually be reduced to harmonic oscillators by a proper choice of variables and time. 
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For instance, the Newtonian problem of two bodies, by making use of the Levi- Civita 

transformation 

     

2 2

2

x u v

y uv

 


 

combined with  the time  transformation 

     / ,d dt r   

reduces to a simple harmonic motion. Other force laws have been recently considered by Giacaglia 

and associates, following methods introduced by Kustaanheimo. 

  We are also lead to the study of integrability of a system in the vicinity of a stable 

equilibrium solution, a subject where many efforts have been made by Siegel and Moser, as well as 

well as many others. Although convergence of normalization methods cannot be established, it is 

obvious from the results of Contopoulos, Barbanis and Bozis that, under quite general 

circumstances, other integrals (or quase-integrals) may exist both in normal and resonant systems. 

Evidence of existence of integrals has also been established by means of the method of Surface of 

Section by Hènon and associates. 

 As far as methods of successive approximations are concerned, to produce series solutions 

of a system, any simple method will do, and convergence in a properly bounded interval of time can 

be achieved. The question could also be answered by simply applying Picard’s method of iterations, 

which, in fact, has been done by several researchers, especially where numerical techniques are 

involved. 

 Given a system depending on a small parameter, the way the solution goes in terms of 

powers of such parameter, is set by how close one is to a singular (equilibrium) point of the system 

and on the stability character of such singular point. Properties of this sort were studied originally 

by Birkhoff for the behavior of area preserving mappings in the vicinity of fixed points. More 

recent and important results are due to Moser and Gelfand-Lidskii. A typical example of the change 

in behavior of expansions with respect to a parameter in the vicinity of an equilibrium point can be 

seen in the Restricted Problem of three bodies at the five Euler-Lagrange solutions. Such 

expansions can go in powers of 
1/3 1/2,   or , as recently shown by Szebehely and associates 

(1970). The method of successive approximations by MacMillan given in section 2 can be changed 

easily into an averaging method, for the Eq. (2.2.6) or its expanded form (2.2.7). Such a method was 

given by Cesari and lately by Hale. The appearance of secular terms in a solution, as given in the 

example at the beginning of section 3, led Lindstedt to the introduction of the averaging methods. In 

several problems, a poor choice of a reference solution decides on the success of the subsequent 

approximations, in the same fashion as the wrong choice of coordinates decides on the integrability 
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(separability) of a system. The Hamiltonianization of a system, originally due to Dirac, is only 

practical in cases where system (2.4.5) has constant coefficients (excluding exceptional cases), that 

is, the ig  are linear, with constant coefficients, in the components of .jx x  If this is not the case, the 

definition of the reference solution from (2.4.5) might be a very difficult task. As far as Poincaré’s 

method (which he calls Lindstedt’s Method), it has been called von Zeipel’s methods mainly 

because it was through his work on Asteriods that Brouwer obtained a spectacular solution for the 

problem of artificial satellites of the earth in 1959. The averaging methods entered with full power 

in Celestial Mechanics, including the Russian Literature, before that time. Also, equation (2.4.8) 

indicates that, except for the averaging operation, all these methods, in conservative systems, are 

just a solution of Hamilton-Jacobi’s equation by successive approximations. The main disadvantage 

is that the relations between original and new variables, generated by W (Eq. 2.4.10), are implicit 

and their inversion has only been recently fully solved by the introduction of Lie’s Series. The fact 

that, if the average of a quasi-periodic function is zero, the integral of such function is bounded, can 

also be verified if one assumes a certain irrationality condition among the basic frequencies of the 

corresponding Fourier series 1 2, ,..., ;n    precisely, 

     
1 1

n n

j j j
j j

p K p






 

   

for some positive constants K and 1.n    If such conditions are not verified (they are not for a 

set of 's  of zero measure), then the integral of a zero average quasi-periodic function may not be 

bounded due to presence of small divisors, as discussed by Moser, in the theory of quasi-periodic 

motions. From the purely geometric point of view, Moser has made important steps on the study of 

area preserving mappings which are “close” to the identity (see 2.4.12). His work has the obvious 

influence of Birkhoff and Siegel. The expansions involved in actual calculations and decurring from 

(2.4.16) are actually tedious and incredibly long. The recent introduction of automatic sumbol 

processors in fast electronic calculators has nevertheless eliminated most of the practical 

difficulties. Important results have been announced by Kovalevsky, Chapront and Deprit, in typical 

problems of Celestial Mechanics. We are not aware of analogous developments in Nonlinear 

Mechnics and Circuit Theory. 

 Degenerate systems, as defined by Arnol’d, are unfortunately very common in actual 

problems, thus the importance of the understanding of their behavior under perturbations. The 

essential geometric difficulty lies in the fact that the Invariant Manifolds of the Unperturbed 

Problem have a lower dimension than those of the perturbed one. Also, linear perturbed systems are 

much more sensible to resonance conditions and very difficult to describe. The stress given to the 

definition of fast and slow variables in justified by the fact that the former correspond usually to 
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small amplitude oscillations and do not affect the latter which are associated with large scale 

deviations, with respect to the unperturbed system, over a long time. In many instances averaging is 

understood simply as a process of elimination of time when it appers explicitly in the equations. It 

is achieved simply by taking the average of the right-hand members of the differential equations. 

This is, in fact, the first step in the KBM Method. Such a procedure is explored in many ways by 

Hale (section V.3, pp. 171-208, 1969) who studies the deviation, as time goes to infinity, from a 

given non-autonomous system 

      f , ,x t x                                                       (A) 

and the average system 

      0fx x                                                            (B) 

where 

       0

0

1
f lim f , , 0 .x t x dt






   

Hale obtains conditions for the existence of periodic solutions, as well as their stability character. 

The starting proposition is that, under quite general conditions, there exists a transformation 

      , ,x y u t y                                                  (C) 

such that the equation (A) above is reduced to 

        0f , ,y y F t y                                       (D) 

with  , ,0 0.F t y   One sees clearly that near identity transformation (C) produces a system (D) 

which differs from the average system (B) by a quantity  20   at least. The error estimate by Kyner 

is actually derived from this basic result.  

 From a sophisticated point of view, Moser in 1970 studied the topology of Kepler’s Motion, 

the singularities of the manifold of the state of motion and introduces the concept of averaging on 

manifolds, avoiding the explicit use of coordinates. His intrinsic representation applies special 

techniques to the vector field defined by the Keplerian motion. The regularization process used by 

Moser to study orbits in the vicinity of the origin (r = 0) is due to Levi-Civita and generally known 

as the inversion transformation. It is not usually applied in global studies since it introduces new 

singularities at points where the velocity of the particle is zero. 

 Assuming the right-hand sides of the differential equations to be periodic in time, Laricheva 

obtains much better error bounds for the averaged equations of Celestial Mechanics than those 

given by Bogoliubov and Mitropolski. In his work “Theory of Orbits about an Oblate Plant”, Kyner 

in 1963 gives an excellent description of the averaging methods as well as the connection, in that 

particular example, with Diliberto’s theory of periodic surfaces. In the case, they happen to be, as 
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expected, two-dimensional tori, since the field of the Planet is supposed to have rotational 

symmetry. He also applies a technique developed by Hale in the book “Nonlinear Oscillations”, in 

order to obtain conditions of periodicity and also develop approximate solutions. 

 As far as the application of Poincaré’s Method to Hamiltonian systems, when the 

Hamiltonian is a power series in both coordinates and momenta, as in the example at the beginning 

of section 6, it was described by Giacaglia in 1965. The problem arises naturally in small 

oscillations and, in Celestial Mechanics, in the use of Poincaré’s variables and problems of 

resonance. In this way one provides a certain generalization in the concept of Birkhoff’s 

Normalization, by assuming, in principle, any combination of coordinates and momenta and, 

second, by giving a more systematic way of producing the Normalization. The application of Lie’s 

series by Deprit is an example, however, on how complex the actual development of the Method  

might become. The characteristic exponents are better obtained, in this case, by using Cesari’s 

method developed in 1940, as was shown by Giacaglia in the libration cases of the Elliptic 

Restricted Problem in 1971. Obviously, after the characteristic exponents are obtained to some 

order as power series in the small parameter of the problem, Lyapunov’s transformation easily 

reduces the problem to the integration of a linear system whose coefficients are constant within that 

same order. The problem os small divisors in Poincaré’s Method is here translated into a problem of 

parametric resonance. 

 The construction of integrals of motion via a successive approximation to the Poisson 

condition, undertaken by Contopoulos in several works, shows very well the change on the form of 

such integrals (or quasi-integrals) when a region of resonance is crossed. Since, in the limit, the 

resonance points are at least as dense as the rational numbers on the line, one  expects a very wild 

behavior of the inegrals, changing from one form to another, infinitely many times, in every finite 

interval of frequencies, defined by the small parameter of the problem and / or by the initial 

conditions. This fact will  not  prevent  the convergence  for  a  specific value  of  the  frequencies , 

in  fact,  over  a set  of  values  with  non  zero measure.  Such integrals however cannot be analytic, 

nor can their series by uniformly convergent or continuous. However, the number of discontinuities 

is countable and with zero measure. All these considerations and conjectures are intimately 

connected with Moser’s and Kolmogorov’s theories. 

 The construction of Kovalevskaya’s Integral we have given in section 6 is a rare example of 

a series which terminates and, obviously, must be an exceptional situation. It  is  nevertheless  an 

indication  of  the  danger  in  defining  a  system integrable  or  nonintegrable  for  all  possible 

situations. 

           Lie Transform techniques are quite popular at present and they actually represent a real 

breakthrough from Classical Methods. At least one can say they were not known to Poincare, a 
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thing hard to discover in perturbation theories. The credit for this new method goes to Hori. Later 

works and modified algorithms should only be considered as refinements or different forms of the 

same basic idea. One of the best examples of applications of the method has been give by Deprit et 

al for the main problem of earth’s artificial satellites.  Also, a  recent application  to  the motion  of  

a  rigid body under the influence  of  central gravitation  has been given  by  Giacaglia  et  al.  

Several examples are also treated by Choi and Tapley. The example we have given for the solution 

of van  der Pol equation is extended to third order by Hori  in his recent paper on the subject of  non 

Hamiltonian systems, and  is  the  best reference on  the actual  use of the method for non 

Hamiltonian systems. The Hamiltonianization of wan der Pol equation 

     21x x x x      

is readily obtained by defining 1 2, ,x y x y   
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and the  Hamiltonian  is 

    1 1 2 2 0 1,x y x y      
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The equations of motion are 

     ,     
k kk x k yy x    

and the auxiliary system is defined by 

     0 1 2 2 1,K     

that is 
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with the obvious solution 
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From the first order equation 
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For a complete solution up to third order the paper by Choi is suggested. 

              Finally, for a detailed and excellent description of the averaging methods both from the 

point of view of Krylov-Bogoliubov and of Poincaré, as well as the meaning  of neglecting high 

order terms, we refer to the classical work of Musen, and to the  extensive work  of  Volosov. 
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