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APPROXIMATE MOTION MODEL FOR MOBILE ROBOTS LOCALIZATION 

 

Abstract. In mobile robotics, most part of the techniques which aim the elaboration of an efficient 

algorithm to the problem of localization is based on probabilistic approaches. Recently, one have 

applied algorithms bond to data that are conditioned to uncertainty, like the Monte Carlo 

Localization (MCL) that is part of a family of probabilistic algorithms dependent on the quality of 

two models: sensors and motion model. This paper proposes an approach for the generation of the 

motion model based on a discrete model and from that one searches the adequacy of a function of 

linear nature in order to represent the motion model in an approximated way, with the purpose of 

detecting the robot motion’s stochastic behavior. The obtained results show that the proposed 

models work for the problem of localization and they can be alternatives of choice to the MCL 

algorithm. 
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1. INTRODUCTION 

Autonomous mobile robotics is a fascinating research field for many reasons, among them is 

notable its classification as one of the greatest approximations ever conceived of intelligent agents. 

A mobile autonomous robotic system is a ground, marine, or aerial vehicle consisting of all the 

integrated components (mobility platform, sensors, computers, and algorithms) required to perceive, 

learn, and adapt in the environment to make intelligent decisions for navigating, communicating, 

and accomplishing required tasks [1]. 

Mobile robots can be applied to several tasks such as transportation, exploration, 

surveillance, guidance, inspection, etc. Due to the freedom of motion that mobile robots present in 

their environment, three important questions need to be analyzed [2]: “Where am I?”, “Where am I 

going?” and “How should I get there?” which the former is of fundamental importance and is the 

basis to answer the others, being classified as the “localization problem”. 

The localization problem can be defined as the problem of finding out the coordinates of a 

mobile robot relative to its environment. Some authors consider it as one of the most fundamental 

problems in mobile robotics [3] [4] [5]. The position or pose to be determined in a given instant of 

time t consists of a tridimensional vector (x, y, θ) called state, where x and y represent its 

coordinates in the Cartesian plane and θ its orientation as shown in Figure 1. 

 

 

Figure 1. Representation of a circular mobile robot’s pose. 

 

The localization problem can be subdivided into three distinct classes: 

- Position tracking: situation in which the robot knows its initial pose and must keep 

knowledge of future states that it will possibly be in as time goes by, seeking to correct 

possible errors that will have accumulated related to the robot’s odometry. 
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- Global localization: it is a more difficult problem that consists of localizing the robot 

without prior knowledge of its initial pose. 

- Kidnapped robot: this problem is an unexpected situation to the robot such that in a given 

moment its pose is changed or some object in the environment changes, forcing the robot to 

estimate new states which possibly will not be linked to the latter calculated estimations. 

 

2. LOCALIZATION TECHNIQUES 

A basic way of classifying localization techniques is to distinguish those that utilize 

landmarks or reference points from those that combine the model of data from sensors. 

A landmark or reference point is a physical characteristic located in the environment used by 

the robot to help it localize itself. Landmarks may be natural, that is, present in the environment 

without the purpose of making the task of navigation easier for the robot. Among them are walls, 

doors, corners, etc [6]. They may also be artificial, as marks placed in the environment, as for 

instance, geometric figures painted in a defined color. 

A group of methods that have been very well spread nowadays is that which searches to 

combine information acquired from the sensors system assembled with a map of the environment. 

These methods show very efficient results even when they face highly noisy observations. Notable 

in this group are: Kalman Filter [7] [8], Markov Localization [9] and Monte Carlo Localization [5] 

[10] [11]. Among these three techniques the Monte Carlo Localization, also known as MCL, comes 

as the most recent and efficient solution for the localization problem of mobile robots. Current 

researches having applications with real robots have demonstrated that this technique has proved to 

be robust from simpler problems of localization as Position tracking to those of greater complexity 

as Kidnapped robot. 

 

2.1 Monte Carlo Localization 

The Monte Carlo Localization algorithm (MCL) is a probabilistic localization algorithm 

where its main idea is to represent the belief about the pose of the mobile robot as a set of samples 

or particles, constructed according to a prior distribution of states [10]. It is a recursive Bayesian 

filter which from a initial set of N particles one can estimate the posterior distribution of the robot 

based in sensor data along with an action applied by the robot during its interaction the 

environment. The basic algorithm is described in Figure 2. 
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Figure 2.MCL Algorithm. 

 

The main concept about the MCL algorithm is the fact of representing the belief bel(st) in all 

possible poses that the mobile robot may be as a set of N random samples. 

These samples are defined as {(x,y,θ),p}, where (x,y,θ) denote the robot’s pose and 0 ≤ p ≤ 1 

a numeric factor of weight. For the Global localization problem, the initial distribution is sampled 

with uniform probability over the space of all possible states. When the initial pose of the robot is 

known this distribution is represented as a Gaussian distribution centered in its initial pose. From 

this distribution, the belief is recursively updated. 

In the MCL algorithm showed in the Figure 2, one can notice that the posterior distribution 

is generated from two predefined probabilistic models: the motion model p(st|st-1,at-1) that represents 

the robot’s cinematic behavior, that is, the conditional probabilities that the robot goes to a state 

given its current state and the action it has executed; and the perception model p(ot|st) which defines 

the conditional probabilities for every reading from the robot’s sensors in each state. 

 

3. PROPOSALS OF MOTION MODELS 

In this work, two models will be presented for validity under simulation processes. Firstly, 

one opted for a discrete motion model and finally the adequacy of a function to represent an 

approximated motion model. All simulations were made in the Saphira simulator, version 6.2, 

developed by SRI International's Artificial Intelligence Center. The mobile robot simulated was 

Magellan Pro (Figure 3) developed ISRobotics. Magellan Pro is 40.6 cm in diameter, 25.4 cm in 

height, and it has 16 sonar sensors distributed symmetrically, being 8 in its frontal part and 8 in its 

back part, allowing the robot to have a perception of 360º of the environment. The robot contains 

two usual DC motors, making it possible forward and backward movements as well as turns along 

its center. 
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Figure 3. Magellan Pro Robot. 

 

3.1 Discrete Motion Model 

In order to construct a discrete motion model, the robot was placed initially in a known pose 

and following was applied an action and recorded, at every one second interval, how much it has 

shifted. The samples were collected for speeds ranging from 100 mm/s to 500 mm/s in steps of 10 

mm/s and angular velocities ranging from 0 degrees/s to 30 degrees/s in steps of 10 degrees/s. 

The shift of the mobile robot along the x and y axis (namely  des_x and des_y) was 

calculated by means of Eqs. (1) and (2), where is a shift of the robot’s orientation and dist a value of 

the Euclidian distance. From these values it has been defined a probability for every noise when 

considering one hundred repetitions of each action. 

 

)_cos(*_ desdistxdes        (1) 

 

)_(*_ dessendistydes        (2) 

 

All recorded values were stored in a table in which every row represented the noise resulted 

from an action applied to the mobile robot. In this way, each action had a different number of 

registered noises with very distinct probability values. 

 

3.2 Approximated Motion Model 

The approximated motion model considers the set of noises acquired in the simulations as 

probability distributions. Its construction was based in a linear function that maps a value of 

probability to a certain noise that is related to ranges of an accumulated probability distribution in 

which the ranges are defined by the noises over the three variables that represent the state of the 



 

Eng Res, v. 4, n. 2, p. 1-B, July / 2013. doi.org/10.32426/engresv4n2-001. 8 

mobile robot. 

The selected noise to be added to the current state of the mobile robot by the approximated 

motion model is calculated through a method similar to a transformation of values between two 

different scales of temperature, which is a linear method quite used in physics where initial and 

final values of the scale are used as well as a value inside this range in order to obtain a new value 

in the other scale, as shown in Figure 4. 

 

 

Figure 4. Transformation of distinct scales. 

 

From a probability value generated randomly by the Monte Carlo algorithm, one can find in 

the set of noises the range that contains this value and apply a linear transformation to obtain a new 

noise that is going to be added to three variables of the current state of the mobile robot. 

The new acquired noise is calculated based on the difference between the extreme values of 

the probability ranges and the value of each noise as well as on the difference between the random 

probability value and the initial probability value. In this way, the formula is defined by Eq. (3), 

where n is the quantity of noises for a determined action. After a simple algebraic manipulation, it 

can obtain Eq. (4), that is the proposed formulation to be utilized by the Monte Carlo algorithm for 

the calculation of a new state of the mobile robot. 
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3.3 Computational Representation of the Simulations 

The environment utilized in the simulations was the same proposed by [11], planned to 
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present some simple obstacles of two kinds: wall and corner. The distance values to obstacles are 

part of a set of ten possible values, identified by the numbers from “0’ to “9”, where each value 

represents a region of 25 cm from the environment’s discretization as exemplified in Figure 5. 

 

 

Figure 5. Discretization that indicates the closest obstacle to the robot. 

 

Thus, when one evidences that the robot finds itself in a pose in the environment which the 

region of reference to the spatial representation has a value of “1” as the distance of the closest 

obstacle, then it means that the robot is located in a distance ranging from 25.1 cm to 50 cm from 

this obstacle. 

 

4. TESTS AND RESULTS 

The simulations were conducted for a verification of the differences between the obtained 

results with the use of the discrete and approximated motion models. The efficiency analysis of both 

motion models studied through the simulations was realized with focus on the Position tracking 

problem. 

In the simulations was considered as a quantity N of the set of particles the values 1000, 

2000 e 3000. In each simulation one recorded at every interval of 20 seconds the states shown by 

the simulator and that returned by the Monte Carlo algorithms, where one uses the discrete model 

and the other the approximated model. In Tables 1, 2 e 3 one can see some results obtained for 

values of N equal to 1000, 2000 e 3000, respectively. The errors are considered for calculations as 

the Euclidian distance between each of the values of x and y coordinates, where all values are 

defined in millimeters. 
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Table 1. Differences between simulated and estimated for values N = 1000. 

 

 

Table 2. Differences between simulated and estimated for values N = 2000. 

 

 

Table 3. Differences between simulated and estimated for values N = 3000. 

 

 

From the error data shown in Tables 1, 2 e 3 were generated the following error graphs, 

namely Figures 6, 7 e 8, in which D represents the discrete model and A the approximated model. 

The errors are practically alike in relation to the form that they behave, although this depends on 

what action is being applied to the mobile robot. As a consequence of this fact, results from the 

Simulation 
Simulator Discrete Model Approximated Model 

Error D Error A 
TH X Y TH X Y TH X Y 

1 359 2.7 0.4 2 3.000 0.545 0 2.760 0.468 0.1502 0.0907
2 356 3.1 0.4 0 2.985 0.479 359 3.242 0.500 0.1395 0.1737
3 358 2.8 0.4 0 2.786 0.500 0 2.947 0.436 0.1010 0.1513
4 356 2.8 0.4 1 2.739 0.511 0 2.874 0.485 0.1267 0.1127
5 356 2.8 0.4 0 2.739 0.489 0 2.749 0.469 0.1079 0.0858
6 3 2.9 0.5 358 2.739 0.495 356 2.951 0.463 0.1611 0.0630
7 356 2.9 0.4 0 2.787 0.490 1 2.860 0.488 0.1445 0.0967
8 356 2.8 0.4 359 2.739 0.462 0 2.797 0.468 0.0870 0.0681
9 356 2.8 0.4 2 2.739 0.521 0 2.740 0.465 0.1355 0.0885

10 356 2.9 0.4 359 2.739 0.496 356 3.074 0.458 0.1874 0.1834

Simulation 
Simulator Discrete Model Approximated Model 

Error D Error A 
TH X Y TH X Y TH X Y 

1 356 3.0 0.4 1 2.840 0.460 358 3.127 0.414 0.1709 0.1278
2 357 2.8 0.4 3 2.773 0.563 3 2.933 0.466 0.1652 0.1485
3 356 2.8 0.4 357 2.739 0.461 357 2.906 0.430 0.0863 0.1102
4 356 3.0 0.4 1 2.839 0.509 1 3.155 0.516 0.1944 0.1936
5 356 2.8 0.4 0 2.739 0.499 0 2.780 0.499 0.1163 0.1010
6 0 2.9 0.5 0 2.739 0.494 0 2.726 0.489 0.1611 0.1743
7 356 2.8 0.4 1 2.786 0.501 1 2.870 0.502 0.1020 0.1237
8 356 2.8 0.4 0 2.739 0.501 1 2.722 0.502 0.1180 0.1284
9 359 2.8 0.5 2 2.739 0.532 1 2.810 0.507 0.0689 0.0122

10 356 2.8 0.4 3 2.739 0.542 2 2.825 0.540 0.1545 0.1422

Simulation 
Simulator Discrete Model Approximated Model 

Error D Error A 
TH X Y TH X Y TH X Y 

1 359 2.9 0.5 2 2.787 0.54 2 2.851 0.545 0.1199 0.0665
2 357 2.8 0.4 1 2.739 0.501 1 2.886 0.491 0.1180 0.1252
3 356 3.3 0.4 359 3.14 0.459 359 3.418 0.437 0.1705 0.1237
4 357 2.8 0.4 359 2.739 0.48 359 2.697 0.476 0.1006 0.1280
5 2 2.8 0.5 0 2.739 0.494 0 2.895 0.489 0.0613 0.0956
6 357 2.8 0.4 359 2.739 0.457 359 2.959 0.446 0.0835 0.1655
7 357 2.8 0.4 359 2.786 0.487 359 2.970 0.484 0.0881 0.1896
8 357 2.8 0.4 359 2.739 0.463 359 2.929 0.453 0.0877 0.1395
9 357 2.8 0.4 359 2.704 0.502 359 2.991 0.400 0.1401 0.1910

10 357 2.8 0.4 0 2.833 0.495 0 2.882 0.491 0.1006 0.1225



 

Eng Res, v. 4, n. 2, p. 1-B, July / 2013. doi.org/10.32426/engresv4n2-001. 11 

application of several distinct actions need to be shown to the analysis of each model. 

Observing Figure 6, one can verify that for 1000 particles the discrete motion model showed 

only two errors considered big while the approximated model also showed small errors although 

they were more accentuated. Thus, the discrete model seemed more proper when reducing the 

quantity of particles. 

 

 

Figure 6. Distance errors for N = 1000. 

 

In Figures 7 and 8, one can observe that for 2000 and 3000 particles, respectively, the 

approximated motion model resulted less distance errors with higher frequency while the discrete 

model presented some errors near 10 cm. In this way, the approximated model demonstrated to be a 

possibility as an application for a greater quantity of particles, what represents a practical result of 

the statistical concept that the greater is the quantity of sample data the higher is the fidelity of the 

modeled results in relation to what has been observed. 

 

 

Figure 7. Distance errors for N = 2000. 
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Figure 8. Distance errors for N = 3000. 

 

For comparison purposes between the obtained results, with a quantity of particles being 

different in each simulation, Table 4 presents the mean and standard deviation for the localization 

errors for every configuration. In that table one can also observe the percentage in relation to how 

many times one model presented to be better than the other as well as the difference between 

means. 

 

Table 4. Analysis of results for different quantities of particles. 

Discrete Model Approximated Model Relation between Models 

N Mean σ Mean σ Discrete Approximated Difference 

3000 0.1341 0.0299 0.1114 0.0431 20% 80% 0.02269 

2000 0.1338 0.0412 0.1262 0.0489 40% 60% 0.00757 

1000 0.1070 0.0314 0.1347 0.0391 70% 30% 0.02769 

 

Although the obtained means of distance errors have presented very close values in a 

precision of two or three decimal places, one can observe that the standard deviation of the discrete 

motion model is lesser than the standard deviation of the approximated motion model. However, the 

approximated model exhibited an improvement when the quantity of particles increased, resulting 

in a frequency of less errors in relation to the discrete model. 

 

7. CONCLUSIONS 

This work presented a study about motion models applied to the MCL algorithm used for the 

localization problem. It has been proposed two alternatives of motion model: a discrete and an 

approximated model. 

A first observation is that the MCL algorithm really presents as a very good solution to the 
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localization problem in mobile robotics. Meanwhile, its efficiency is totally dependent on the 

quality of the available probabilistic models. The motion models studied in this work presented 

good results reaching a small error range for the navigation theme. 

In this way, one can consider that both the discrete and the approximated models are options 

to be applied as a solution along with the MCL algorithm. However, it is important to notice that 

these models were defined based on simulations, and, therefore, it would be interesting to future 

works a deeper analysis with a real mobile robot. 

Another important aspect is that the proposed motion models do not take into consideration 

the influence the distinct kinds of floors could have over the robot motion (friction and sliding). 

Thus, for more complex models, one can suggest a study that may incorporate a coefficient related 

to the kind of floor where the robot acts. 

At last, in future stages of this work, it would also be interesting to realize several tests in 

order to generate estimates for the Global localization problem, which is a more difficult problem 

and that demand more time and computational resources for the mobile robot to present a more 

adequate localization and possibly even to the Kidnapped robot problem. 
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