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Abstract. The well known strombolian activity at Strom-
boli volcano is occasionally interrupted by rarer episodes of
paroxysmal activity which can lead to considerable hazard
for Stromboli inhabitants and tourists. On 5 April 2003 a
powerful explosion, which can be compared in size with the
latest one of 1930, covered with bombs a good part of the
normally tourist-accessible summit area. This explosion was
not forecasted, although the island was by then effectively
monitored by a dense deployment of instruments. After hav-
ing tackled in a previous paper the problem of highlight-
ing the timescale of preparation of this event, we investigate
here the possibility of highlighting precursors in the volcanic
tremor continuously recorded by a short period summit seis-
mic station. We show that a promising candidate is found
by examining the degree of coupling between successive sin-
gular values that result from the Singular Spectrum Analysis
of the raw seismic data. We suggest therefore that possible
anomalies in the time evolution of this parameter could be
indicators of volcano instability to be taken into account e.g.
in a bayesian eruptive scenario evaluator. Obviously, further
(and possibly forward) testing on other cases is needed to
confirm the usefulness of this parameter.

1 Introduction

Stromboli is the prototype for strombolian activity, observed
since at least 3–7 A.D. (Rosi et al., 2000). Occasionally,
paroxysmal phases are observed (Barberi et al., 1993; Jaquet
and Carniel, 2003) involving an additional kind of magma,
low-porphyritic and volatile-rich (Francalanci et al., 2004)
that apparently plays a major role in the development of such
phases. This involvement of a different magma suggests that
there may be a sufficiently long timescale of preparation for

Correspondence to:R. Carniel
(roberto.carniel@uniud.it)

this kind of events, and therefore the possible appearance
of recordable precursors. Talking about timescales, (Ripepe
et al., 2002) identified two degassing and explosive regimes
at Stromboli, linked to the fresh gas-rich magma supply rate,
that alternate on a 5–40 min timescale. At a longer timescale,
(Carniel and Di Cecca, 1999) identified days-to-weeks-long
dynamical phases, sometimes separated by abrupt transi-
tions. Talking about possible precursors, (Carniel and Iacop,
1996b) showed that paroxysmal phases are sometimes pre-
ceded by increasing lower frequency content in the tremor.
Due to the complexity of the physical processes involved,
a stochastic (Jaquet and Carniel, 2001, 2003) or dynamical
approach (Carniel and Di Cecca, 1999; Carniel et al., 2003)
is often a more appropriate choice for short-to-medium term
forecasts aimed e.g. to schedule the tourist excursions when
volcanic hazard is lower.

On 28 December 2002, an effusive eruption (Alean
et al., 2006) marked the most significant effusive episode
since 1985–1986. This induced considerable morpholog-
ical changes before its end on 21–22 July 2003 (Calvari,
2003) and showed the most energetic associated explosive
event at 07:12 GMT of 5 April 2003. The event started
with a reddish ash emission related to collapses within the
craters, soon replaced by darker juvenile material from NE
Crater and followed by similar emissions from SW Crater
which mushroom-shaped dark cloud rose about 1 km above
the summit (Calvari, 2003). Bombs, ash, and blocks af-
fected most the Western sector and the village of Ginostra;
the volcano top above 700 m a.m.s.l. was completely covered
by bombs, including meter-sized ones (Alean et al., 2006),
and scientific equipment, including the seismic station of the
University of Udine, was damaged or destroyed. In a previ-
ous paper,Carniel et al.(2006) tackled the problem of high-
lighting the timescale of preparation of this event, showing
that the volcanic tremor recorded continuously by a short
period seismic station is sufficiently informative to derive
this kind of information. In fact, non-stationarity is a key
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characteristic of the tremor (Konstantinou and Schlindwein,
2002), as it offers the possibility of monitoring changes in pa-
rameters derived from an experimental time series and their
possible use in forecasting (Carniel and Di Cecca, 1999) or
at least to highlight different regimes (Ripepe et al., 2002;
Carniel et al., 2003; Harris et al., 2005; Jones et al., 2005).
By the use of spectral and dynamical analysis (Carniel et al.,
2006) showed that the paroxysmal phase of 5 April 2003
have built up over at least the previous 2.5 hours, but the ap-
plication of the Material Failure Forecast Method during the
days before the event revealed a consistent trend that sug-
gests a preparation of the paroxysm further in the past, an
evolution which was possibly temporarily “paused” the day
before, before finally accelerating during the consistent dy-
namical phase of the last few hours. In any case, there is
sufficient “persistence” in the data to look for some kind of
precursor as a hind-cast exercise. In particular, the Singular
Spectrum Analysis is the methodology that shows the most
promising potential in the search for precursors. We there-
fore start by presenting this technique in further detail.

2 The Singular Spectrum Analysis (SSA) technique

Time series analysis has recently profited from the appli-
cation of spectral decomposition of matrices (e.g. (Marelli
et al., 2002; Mineva and Popivanov, 1996; Pereira and Ma-
ciel, 2001)), which has its roots mostly in chaos theory (Tak-
ens, 1981; Broomhead and King, 1981). The SSA con-
sists of several steps (Golyandina et al., 2001; Aldrich and
Barkhuizen, 2003). In the first step (embedding), the one
dimensional time series is recast as anL-dimensional time
series (trajectory matrix). In the second step (singular value
decomposition), the trajectory matrix is decomposed into a
sum of orthogonal matrices of rank one. These two steps
constitute the decomposition stage of SSA. In the third and
fourth steps, the components are grouped and the time series
associated with the groups are reconstructed.

2.1 Decomposition stage

2.1.1 Embedding of time series

Embedding expands the original time series into what is re-
ferred to astrajectory matrixof the system. This matrix is
associated with a certain window length that is the embed-
ding dimension. The series is expanded by giving it a unitary
lag and creating a certain number of lagged vectors. So, for
the time seriesx= {x1, x2, ... , xn} and for an embedding di-
mensionm, we obtain the trajectory matrix:

X =


x1 x2 · · · xm

x2 x3 . . . xm+1
...

...
. . .

...

xn−m+1 xn−m+2 . . . xn



This is by definition a Hankel matrix, as it isXi,j=xi+j−1.
The size of the embedding windowm (number of columns
of the trajectory matrix) should be sufficiently large to cap-
ture the global behavior of the system. A common method
to determinem is to use the first zero of the linear correla-
tion between the first and the last column of the trajectory
matrix. Another method used to determinem (Shaw, 2000)
uses the point where mutual information between the first
and the last column of the trajectory matrix reaches the first
minimum (Fraser, 1986; Fraser and Swinney, 1986). This is
in principle a better choice, since it takes into account also
the non-linear correlation within the time series.

2.1.2 Decomposition of time series

Once the time series are embedded into the trajectory matrix
X, the singular value decomposition is performed on such
matrix. The singular values decomposition technique allows
to obtain the decomposition:

X = U S VT (1)

whereU is a(n−m+1) × (n−m+1) real orthogonal matrix,
V is am×m real orthogonal matrix andS is a(n−m+1) ×m

diagonal real matrix such that its elements are the singular
values of the trajectory matrixX. This is done by computing
the lagged covariance matrix

C = XT X (2)

soC is a symmetric semidefinite positive matrix and then a
unique spectral decomposition exists:

C = 838T (3)

where8 is a real orthonormal matrix such that its columns
are the eigenvectors ofC, and3 is a real diagonal matrix
such that its elementsσ 2

i are the eigenvalues ofC in decreas-
ing order. One can now observe that

C = XT X

=

(
USVT

)T (
USVT

)
= VST UT USVT

butU is an orthonormal matrix andS is a diagonal matrix, so
UT U=I andST S=S2. Therefore

C = VS2VT (4)

Comparing Eqs. (3) and (4) one obtains that

8 = V

3 = S2

So one can deduce the important consequence that the right
eigenvectors ofX are the eigenvectors ofC while the singu-
lar values ofX are the square root of the eigenvalues ofC.
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Therefore:

S =



σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...

0 0 . . . σm

0 0 · · · 0
...

...
. . .

...

0 0 . . . 0


, σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0

Another way to write Eq. (1) is the so called spectral de-
composition:

X =

m∑
i=1

σiuivT
i (5)

where ui and vi are respectivelyU’s and V’s matrix i-th
columns. But we had demonstrated thatV=8, and from
Eq. (1) it is not difficult to show thatXV=US. So vi=8i

andσiui=X8i where8i is 8’s i-th column. Substituting
this equality in Eq. (5) permits us to obtain a simpler and
more useful form forX’s decomposition:

X =

m∑
i=1

X8i8
T
i (6)

2.2 Reconstruction stage

The aim of this stage is to separate the additive components
of the time series. It can be seen as separating the time series
into two groups: “our signal” and the “noisy” components,
which are by definition the components we are not interested
in.

The idea is to project the trajectory matrix over aq-
dimensional space. In fact, in Eq. (5), every term of the
sum has a lower importance with respect to the previous
one in the construction of the signal. Such importance is
given by the weightσi of each singular value of the base and
σ1≥σ2≥. . . ≥ σm≥0 by construction. Then we can approxi-
mate Eq. (5) and (6) with the following:

Xq =

q∑
i=1

σiuivT
i (7)

and

noise=

m∑
i=q+1

σiuivT
i (8)

or, in a simpler form:

Xq =

q∑
i=1

X8i8
T
i (9)

and

noise=

m∑
i=q+1

X8i8
T
i (10)

The criteria for this separation are not completely formalized
and they depend on knowledge of the data, and obviously on
σi ’s modules. For example if the firstq singular values are
much greater than the others, then the choice can be straight-
forward.

The new matrixXq is not always a trajectory matrix (be-
cause in general it is not a Hankel matrix) and then it does not
directly represent the noise-freex time series. However this
time series can be obtained by a diagonal average method.
For example, ifXq is the matrix:

Xq =


x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3
x4,1 x4,2 x4,3


then we obtain:

xq =

{
x1,1,

x2,1 + x1,2

2
,

x3,1 + x2,2 + x1,3

3
,

x4,1 + x3,2 + x2,3

3
,

x4,2 + x3,3

2
, x4,3

}
In conclusion, the noise-free time seriesxq depend on the

choice of the parametersm andq, so we can write:

xq = SSA (x; m, q)

Obviously, the level of de-noising is higher whenq is lower.
(Hegger et al., 1999) suggest thatq should be at least the cor-
rect embedding dimension, andm considerably larger (e.g.
m=2q or larger).

3 Coupling of the singular values

The behavior of the singular values (also called the spectrum
of the singular values) can contain useful indications on the
composition of the signal (i.e.Yang and Tse, 2003). In par-
ticular, for a sufficiently high embedding dimension some of
the singular values tend to show a certain degree of coupling,
that isσ2→σ1, σ4→σ3 and so on. An example is shown in
Fig. 1. Note that in Fig.1, the singular values are computed
using the following definition of the covariance matrix:

C =
1

n − m
XT X

In this way the singular values are detrended, allowing a sim-
pler visualization.
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Another way to write Eq. (1) is the so called spectral de-
composition:

X =
m∑

i=1

σiuivT
i (5)

where ui and vi are respectively U’s and V’s matrix i-th
columns. But we had demonstrated that V = Φ, and from
Eq. (1) it is not difficult to show that XV = US. So vi = Φi

and σiui = XΦi where Φi is Φ’s i-th column. Substituting
this equality in Eq. (5) permits us to obtain a simpler and
more useful form for X’s decomposition:

X =
m∑

i=1

XΦiΦT
i (6)

2.2 Reconstruction stage

The aim of this stage is to separate the additive components
of the time series. It can be seen as separating the time series
into two groups: “our signal” and the “noisy” components,
which are by definition the components we are not interested
in.

The idea is to project the trajectory matrix over a q-
dimensional space. In fact, in Eq. (5), every term of the
sum has a lower importance with respect to the previous
one in the construction of the signal. Such importance is
given by the weight σi of each singular value of the base and
σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0 by construction. Then we can
approximate Eq. (5) and (6) with the following:

Xq =
q∑

i=1

σiuivT
i (7)

and

noise =
m∑

i=q+1

σiuivT
i (8)

or, in a simpler form:

Xq =
q∑

i=1

XΦiΦT
i (9)

and

noise =
m∑

i=q+1

XΦiΦT
i (10)

The criteria for this separation are not completely formalized
and they depend on knowledge of the data, and obviously on
σi’s modules. For example if the first q singular values are
much greater than the others, then the choice can be straight-
forward.

The new matrix Xq is not always a trajectory matrix (be-
cause in general it is not a Hankel matrix) and then it does not
directly represent the noise-free x time series. However this
time series can be obtained by a diagonal average method.
For example, if Xq is the matrix:

Xq =


x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

x4,1 x4,2 x4,3



then we obtain:

xq =
{

x1,1,
x2,1 + x1,2

2
,

x3,1 + x2,2 + x1,3

3
,

x4,1 + x3,2 + x2,3

3
,

x4,2 + x3,3

2
, x4,3

}
In conclusion, the noise-free time series xq depend on the

choice of the parameters m and q, so we can write:

xq = SSA (x; m, q)

Obviously, the level of de-noising is higher when q is lower.
(Hegger et al., 1999) suggest that q should be at least the cor-
rect embedding dimension, and m considerably larger (e.g.
m = 2q or larger).

3 Coupling of the singular values

The behavior of the singular values (also called the spectrum
of the singular values) can contain useful indications on the
composition of the signal (i.e. Yang and Tse (2003)). In par-
ticular, for a sufficiently high embedding dimension some of
the singular values tend to show a certain degree of coupling,
that is σ2 → σ1, σ4 → σ3 and so on. An example is shown in
Fig. 1. Note that in Fig. 1, the singular values are computed
using the following definition of the covariance matrix:

C =
1

n−m
XT X

In this way the singular values are detrended, allowing a sim-
pler visualization.
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Fig. 1. Example of coupling between singular values for the sig-
nal sin (20 · 2πt) + 0.7 sin (57 · 2πt) (sampled at 1000Hz) in an
increasing embedding dimension m = 10 to 400

We can define the “degree of coupling” as:

ρ1 =
σ2
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ρk =
σ2k
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Fig. 1. Example of coupling between singular values for the signal
sin(20·2πt) +0.7 sin(57·2πt) (sampled at 1000 Hz) in an increas-
ing embedding dimensionm=10 to 400.
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4 The data

One of the longest seismic time series available at Strom-
boli comes from an automatic station installed in 1989 by
the Dipartimento di Georisorse e Territorio of the University
of Udine (Beinat et al., 1994) with the purpose of studying
the long-term evolution of the strombolian activity (Carniel
and Iacop, 1996a). The summit station, based on 3 Will-
more MKIII/A seismometer (f0 = 0.5Hz), is located at 800
m a.m.s.l. and at about 300 m from the craters (Beinat et al.,
1994). During this last effusive phase, the hardware and soft-
ware of the receiving station was upgraded in collaboration
with CSIC, Madrid, for a continuous acquisition and internet
data transmission. Data are now sampled with 16 bits (96dB)
at 50 Hz (Ortiz et al., 2001; Carniel et al., 2006). Although at
the time of 5 April 2003 paroxysmal event a dense network
of monitoring equipment installed by the Civil Defence was
operating, the explosion was not forecasted by any evident
change in the data. In the following we will examine with the
SSA methodology described above the seismic data recorded
by our station during the days before this paroxysmal event,
in particular from 25 March to 5 April 2003. The confidence
in the method of analysis goes back again to Carniel et al.
(2006), where another promising parameter was studied, de-
rived from the SSA methodology:

rk =

k∑
i=1

σi

m∑
i=k+1

σi

The idea behind this parameter was to monitor the time evo-
lution of the relative weight of the first k SSA components in
the construction of the full tremor signal.

5 From tremor to singular values coupling

First of all we subdivide the raw data in windows of 60 s
(i.e., 3000 sample points at 50 Hz). Both the methods of au-
tocorrelation function and of mutual information (see 2.1.1)
supply an embedding dimension estimate m between 7 and
10, so m = 10 seems a correct minimal choice for the con-
struction of the trajectory matrix. The singular values are
computed on each of the one-minute time windows. In or-
der to avoid amplitude-dependent effects, before the calcula-
tion of the singular values, the data in each time window is
normalized to zero mean and unitary variance. We start our
analysis with the minimum embedding dimension m = 10.

5.1 Behaviour of ρk parameter for m = 10

We analyze the time evolution of ρk approaching the parox-
ysmal event, that will be denoted by the hour "zero", at
the extreme right of our graphs, for the embedding dimen-
sion m = 10 (This embedding dimension is probably too
small to capture the behaviour of the signal but allowed a

very fast analysis). The first two singular values do not
show any anomalous behaviour in their ratio ρ1, as can be
seen in Fig. 2. However, if we plot the same time evolu-
tion but we take into account the “degree of coupling” be-
tween the singular values σ3 and σ4, i.e. ρ2, we observe a
very clear anomalous decrease of the parameter, that starts
to diverge from the "normal" value - that theoretically, as
we have shown, should be close to unity - already about 7
hours before the explosion (Fig. 3). Note that it is impor-
tant to observe the relative change in the behaviour of the
ρk rather than the absolute change. In fact, the coupling is
observed more easily for singular values of smaller indexes,
while the phenomenon tends to be less evident as the index
is increased. Moreover, the physical explanation of the cou-
pling is still subject of research.

If we assume the lowest 5% percentile of the coupling pa-
rameter range as a threshold for an alert, in this case the ab-
solute value of the threshold is about 0.45. This threshold
generates two short-lasting false alerts at about 115 and 152
hours before the explosion, but gives a "warning time" before
the real explosion of more than 6 hours
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We can define the“degree of coupling”as:

ρ1 =
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= . . .

ρk =
σ2k

σ2k−1

4 The data

One of the longest seismic time series available at Strom-
boli comes from an automatic station installed in 1989 by
the Dipartimento di Georisorse e Territorio of the Univer-
sity of Udine (Beinat et al., 1994) with the purpose of
studying the long-term evolution of the strombolian activ-
ity (Carniel and Iacop, 1996a). The summit station, based on

3 Willmore MKIII/A seismometer (f0=0.5 Hz), is located at
800 m a.m.s.l. and at about 300 m from the craters (Beinat
et al., 1994). During this last effusive phase, the hardware
and software of the receiving station was upgraded in col-
laboration with CSIC, Madrid, for a continuous acquisition
and internet data transmission. Data are now sampled with
16 bits (96 dB) at 50 Hz (Ortiz et al., 2001; Carniel et al.,
2006). Although at the time of 5 April 2003 paroxysmal
event a dense network of monitoring equipment installed by
the Civil Defence was operating, the explosion was not fore-
casted by any evident change in the data. In the following
we will examine with the SSA methodology described above
the seismic data recorded by our station during the days be-
fore this paroxysmal event, in particular from 25 March to
5 April 2003. The confidence in the method of analysis goes
back again toCarniel et al.(2006), where another promising
parameter was studied, derived from the SSA methodology:

rk =

k∑
i=1

σi

m∑
i=k+1

σi

The idea behind this parameter was to monitor the time evo-
lution of the relative weight of the firstk SSA components in
the construction of the full tremor signal.

5 From tremor to singular values coupling

First of all we subdivide the raw data in windows of 60 s (i.e.,
3000 sample points at 50 Hz). Both the methods of autocor-
relation function and of mutual information (see Sect.2.1.1)
supply an embedding dimension estimatem between 7 and
10, som=10 seems a correct minimal choice for the con-
struction of the trajectory matrix. The singular values are
computed on each of the one-minute time windows. In or-
der to avoid amplitude-dependent effects, before the calcula-
tion of the singular values, the data in each time window is
normalized to zero mean and unitary variance. We start our
analysis with the minimum embedding dimensionm=10.

5.1 Behaviour ofρk parameter form=10

We analyze the time evolution ofρk approaching the parox-
ysmal event, that will be denoted by the hour “zero”, at the
extreme right of our graphs, for the embedding dimension
m=10 (This embedding dimension is probably too small to
capture the behaviour of the signal but allowed a very fast
analysis). The first two singular values do not show any
anomalous behaviour in their ratioρ1, as can be seen in
Fig. 2. However, if we plot the same time evolution but
we take into account the“degree of coupling”between the
singular valuesσ3 andσ4, i.e. ρ2, we observe a very clear
anomalous decrease of the parameter, that starts to diverge
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4 The data

One of the longest seismic time series available at Strom-
boli comes from an automatic station installed in 1989 by
the Dipartimento di Georisorse e Territorio of the University
of Udine (Beinat et al., 1994) with the purpose of studying
the long-term evolution of the strombolian activity (Carniel
and Iacop, 1996a). The summit station, based on 3 Will-
more MKIII/A seismometer (f0 = 0.5Hz), is located at 800
m a.m.s.l. and at about 300 m from the craters (Beinat et al.,
1994). During this last effusive phase, the hardware and soft-
ware of the receiving station was upgraded in collaboration
with CSIC, Madrid, for a continuous acquisition and internet
data transmission. Data are now sampled with 16 bits (96dB)
at 50 Hz (Ortiz et al., 2001; Carniel et al., 2006). Although at
the time of 5 April 2003 paroxysmal event a dense network
of monitoring equipment installed by the Civil Defence was
operating, the explosion was not forecasted by any evident
change in the data. In the following we will examine with the
SSA methodology described above the seismic data recorded
by our station during the days before this paroxysmal event,
in particular from 25 March to 5 April 2003. The confidence
in the method of analysis goes back again to Carniel et al.
(2006), where another promising parameter was studied, de-
rived from the SSA methodology:

rk =

k∑
i=1

σi

m∑
i=k+1

σi

The idea behind this parameter was to monitor the time evo-
lution of the relative weight of the first k SSA components in
the construction of the full tremor signal.

5 From tremor to singular values coupling

First of all we subdivide the raw data in windows of 60 s
(i.e., 3000 sample points at 50 Hz). Both the methods of au-
tocorrelation function and of mutual information (see 2.1.1)
supply an embedding dimension estimate m between 7 and
10, so m = 10 seems a correct minimal choice for the con-
struction of the trajectory matrix. The singular values are
computed on each of the one-minute time windows. In or-
der to avoid amplitude-dependent effects, before the calcula-
tion of the singular values, the data in each time window is
normalized to zero mean and unitary variance. We start our
analysis with the minimum embedding dimension m = 10.

5.1 Behaviour of ρk parameter for m = 10

We analyze the time evolution of ρk approaching the parox-
ysmal event, that will be denoted by the hour "zero", at
the extreme right of our graphs, for the embedding dimen-
sion m = 10 (This embedding dimension is probably too
small to capture the behaviour of the signal but allowed a

very fast analysis). The first two singular values do not
show any anomalous behaviour in their ratio ρ1, as can be
seen in Fig. 2. However, if we plot the same time evolu-
tion but we take into account the “degree of coupling” be-
tween the singular values σ3 and σ4, i.e. ρ2, we observe a
very clear anomalous decrease of the parameter, that starts
to diverge from the "normal" value - that theoretically, as
we have shown, should be close to unity - already about 7
hours before the explosion (Fig. 3). Note that it is impor-
tant to observe the relative change in the behaviour of the
ρk rather than the absolute change. In fact, the coupling is
observed more easily for singular values of smaller indexes,
while the phenomenon tends to be less evident as the index
is increased. Moreover, the physical explanation of the cou-
pling is still subject of research.

If we assume the lowest 5% percentile of the coupling pa-
rameter range as a threshold for an alert, in this case the ab-
solute value of the threshold is about 0.45. This threshold
generates two short-lasting false alerts at about 115 and 152
hours before the explosion, but gives a "warning time" before
the real explosion of more than 6 hours
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from the “normal” value – that theoretically, as we have
shown, should be close to unity – already about 7 h before
the explosion (Fig.3). Note that it is important to observe
the relative change in the behaviour of theρk rather than the
absolute change. In fact, the coupling is observed more easily
for singular values of smaller indexes, while the phenomenon
tends to be less evident as the index is increased. Moreover,
the physical explanation of the coupling is still subject of re-
search.

If we assume the lowest 5% percentile of the coupling pa-
rameter range as a threshold for an alert, in this case the ab-
solute value of the threshold is about 0.45. This threshold
generates two short-lasting false alerts at about 115 and 152 h
before the explosion, but gives a “warning time” before the
real explosion of more than 6 hours

5.2 Behaviour ofρk parameter form>10

In order to verify that the anomalous behaviour is not strictly
dependent on the particular choice of the embedding dimen-
sion m=10, we performed a similar analysis also in higher
dimensions, in particular form=20 andm=100. In both cases
we observe again that some of the“degree of coupling”
ratios show a strong decrease approaching the paroxysm.
Figure4 shows for instance the anomalous time behaviour
of the ratioρ3=

σ6
σ5

in the embedding dimensionm=20, while
Fig. 5 shows the anomalous decrease ofρ15=

σ30
σ29

in an em-
bedding withm=100.

Using again the 5% percentile criterion, form=20 we have
a threshold of about 0.75. As for the casem=10, we obtain
false alerts at about 115 and 152 h before the true explosion.
Also in this case however, the explosion is preceded by a
warning more than 6 h in advance.

For m=100 the 5% percentile threshold corresponds to an
absolute value of about 0.89. Also in this case we have false
alerts at about 115 and 152 h before the true explosion, and
an additional one about 48 h before the explosion.
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6 Practical issues on the use of the ρk parameter

Close to the paroxysmal event, as we have shown, only
some of the ρk parameters show an anomalous decreasing
behaviour. Other ρk on the contrary don’t show anything
interesting. Consequently, a problem arises regarding the
number of parameters to be monitored in order to observe
possible anomalous behavior. We propose here a solution to
this problem, with the definition of a "summarizing" param-
eter defined as the minimum of all ρk computed in a given
embedding dimension. Care should be taken however in or-
der to obtain meaningful results: the last ratios should be
excluded from this minimum calculation. The last (i.e. the
least important) components of the SSA decomposition are
in fact associated to what is essentially a noise signal (8),
and should therefore be removed. We can then finally define:

ρ̂q = min
k=1..q

{ρk − µk} q < m

where µk is the average of the ratio ρk that can be estimated
during a normal period of activity (in our case the first 4 days
in the graph). A suitable value of q should be chosen; a rule
of thumb is to take

q ' 1
3
m

In Fig. 6 the time evolution of the parameter ρ̂q is shown for
q = 4 in an embedding dimension m = 20. The decreasing
anomalous behaviour is again very evident before the parox-
ysmal event.
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In Fig. 4 a phase is evident with a peculiar behaviour start-
ing about 40 hours before the explosion. This is the time at
which Carniel et al. (2006) observe the first successful ap-
plication of the Failure Forecast Method (FFM), that gives a
forecast for 5 April 2003 at 15 GMT (see line 1 in Fig. 9 of
Carniel et al. (2006)). More than 6 hours before the explo-
sion, the ρ2, ρ4, ρ15 and ρ̂4 parameters (see Fig. 3, 4, 5 and 6
respectively) go below the percentile threshold of 5%. At this
time the FFM (see line 2 in Fig. 9 in Carniel et al. (2006)), af-
ter an apparent recovery of the stability, is able again to give

Fig. 4. ρ3=
σ6
σ5

in an embedding space of dimensionm=20, for
Stromboli volcanic tremor.
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In Fig. 4 a phase is evident with a peculiar behaviour start-
ing about 40 hours before the explosion. This is the time at
which Carniel et al.(2006) observe the first successful ap-
plication of the Failure Forecast Method (FFM), that gives a
forecast for 5 April 2003 at 15 GMT (see line 1 in Fig. 9 of
Carniel et al.(2006)). More than 6 h before the explosion, the
ρ2, ρ4, ρ15 andρ̂4 parameters (see Fig.3, 4, 5 and6, respec-
tively) go below the percentile threshold of 5%. At this time
the FFM (see line 2 in Fig. 9 inCarniel et al.(2006)), after an
apparent recovery of the stability, is able again to give a (even
more reliable) forecast, for 5 April 2003 at 10:20 GMT, with
a less than 3 h difference with respect to the real occurrence
of the explosion.

A practical problem is that there are some embedding di-
mension ranges for which the anomalous behaviour disap-
pears. One can think of a minimization procedure similar to
the one adopted for the index of the ratio, but exploring e.g.
every embedding dimension in the rangem=10 to 500, al-
though theoretically possible, can lead to unacceptable com-
puting times.

Also the choice of the minimum embedding dimension to
use is not straightforward. The value suggested by the first
zero of the autocorrelation function or by the first minimum
of the mutual information (i.e.m=10) seems in fact too low.

7 Conclusions

Forecasting paroxysmal events such as the one recorded on
Stromboli on 5 April 2003 is of paramount importance, es-
pecially at a volcano like Stromboli, where tourism is a ma-
jor economical resource. This is undoubtly a difficult task
if we consider the forecast in a deterministic sense. How-
ever, if we consider the risk of a volcano in a probabilistic
sense (Aspinall et al., 2003, 2005) the issuing of a Tempo-
rary Increase in Probability of a paroxysmal event would be
already a considerable success. In order to do this, a num-
ber of parameters should be monitored and their anomalies
highlighted and weighted in a bayesian sense. Different use-
ful parameters can be derived from the Singular Spectrum
Analysis, one of which – therk parameter weighting the rel-
ative importance of the firstk SSA components in the con-
struction of a geophsyical signal – was proposed byCarniel
et al. (2006). In this paper we have shown the potential of
another family of parameters,ρk, which measure the degree
of coupling between successive singular values. A practical
way of getting rid of the problem of how to choose which
of these couplings to monitor was also proposed, with the
parameterρ̂q , which looks for the (significant) minimum of
these degrees of coupling. An important brand new class of
monitoring parameters are therefore available for inclusion
in bayesian eruptive scenario evaluators. Obviously, further
(and possibly forward) testing on other cases is needed for
testing the effective forecasting capabilities of these new pa-
rameters.

Acknowledgements.The methodologies developed and applied in
this work are partially supported by the projects “V4 – Conception,
verification and application of innovative techniques for studying
volcanoes” by the Istituto Nazionale di Geofisica e Vulcanologia
– Dipartimento Protezione Civile, Italy, “TEGETEIDE – Técnicas
geof́isicas y geod́esicas para el estudio de la zona volcánica
activa del complejo Teide – Pico Viejo (Tenerife)”, Spain, TEI-
DEVS (Spain, CGL2004-05744), INGV-DPC V4 “Conception,
verification, and application of innovative techniques to study
active volcanoes” (Italy) and PRIN 2004131177 “Numerical and
graphical methods for the analysis of time series data” (Italy). The
SCILAB package (seehttp://www.scilab.org) was used to integrate
the different analysis routines. Italian Civil Defence provided
logistic support when access to the summit area was forbidden.
The seismic station was originally installed under a research grant
of the Italian Gruppo Nazionale di Vulcanologia. The authors
gratefully acknowledge the collaboration of J. Alean, S. Ballarò,
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