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Abstract

The flow of a two-layered Newtonian fluid induced by peristaltic waves
in a catheterized tube has been investigated. The expressions for the
flow characteristics- the flow rate, the pressure drop and the friction
forces at the tube and catheter wall are derived. It is found that
the pressure drop increases with the flow rate but decreases with the
increasing peripheral layer thickness and a linear relationship between
pressure and flow exists. The pressure drop increases with the catheter
size (radius) and assumes a high asymptotic magnitude at the catheter
size more that the fifty percent of the tube size. The friction forces at
the tube and catheter wall posses characteristics similar to that of the
pressure drop with respect to any parameter. However, friction force at
catheter wall assumes much smaller magnitude than the corresponding
value at the tube wall.

Keywords: Peripheral layer, pressure drop, friction force, catheter
size, amplitude ratio.

Introduction

The flow induced by peristaltic waves in the wall of the flexible tubes has
been the subject of engineering and scientific research since the first in-
vestigation of Latham (1966). Physiologists term the phenomenon of such
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transport as peristalsis. It is a form of fluid transport that occurs when
a progressive wave of area contraction or expansion propagates along the
length of a distensible duct containing liquid or mixture. Besides, its prac-
tical applications involving biomechanical systems such as heart-lung ma-
chine, finger and roller pumps, peristaltic pumping has been found to be
involved in many biological organs including the vasomotion of small blood
vessels (Srivastava and Srivastava, 1984). Shapiro et al. (1969) and Jaffrin
and Shapiro (1971) explained the basic principles of peristaltic pumping and
brought out clearly the significance of the various parameters governing the
flow. A summary of most of the theoretical and experimental investigations
reported up to the year 1983; arranged according to the geometry, the fluid,
the Reynolds number, the amplitude ratio and the wave shape; has been
presented in an excellent article by Srivastava and Srivastava (1984). The
important contributions between the years 1984 and 1994 are cited in Sri-
vastava and Saxena (1995). The literature beyond this and of recent years
include the investigations of Srivastava and Srivastava (1997), Mekheimer
et al. (1998), Srivastava (2002), Misra and Pandey (2002), Hayat et al.
(2002,2003,2004,2005), Mekheimer(2003), Misra and Rao (2004), Hayat and
Ali (2006a,b), Srivastava (2007), Hayat and Coworkers (2008a,b), Ali and
Hayat (2008), Medhavi and coworkers (2008a,b; 2009, 2010), and a few oth-
ers. Except the few (Shukla et al., 1980; Srivastava and Srivastava, 1984;
Srivastava and Saxena, 1995; Brasseur et al., 1987; Rao et al.1995; Mishra
and Pandey, 2002; Medhavi and Singh, 2008b, etc.), most of the studies
conducted in the literature deal with the peristaltic flow problem of single-
layered of a Newtonian or non-Newtonian fluid.

The study of flow through a catheterized tubes is of immense practical
applications in physiology and engineering. The use of catheters has become
standard tool for diagnosis and treatment in modern medicine. An inserted
catheter in an artery increases the impedance and modifies the pressure dis-
tribution and alters the flow field. A brief review on the subject has recently
been presented by Srivastava and Srivastava (2009). The geometrically sim-
ilar problem of peristaltic pumping to study the effects of inserted catheter
on ureteral flow was analyzed by Roos and Lykoudis (1970). A number of
authors including Hakeem et al. (2002), Hayat and coworkers (2006, 2008a,
b), Srivastava (2007), etc. have explained the effects of an endoscope on the
flow behavior of chyme in gastrointestinal tract. It is known from the pub-
lished literature that studies conducted so far have considered the flow of a
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single-layered fluid in a catheterized tube. It is however, regretted that no
efforts, at least to the authors knowledge, has been made to study the flow of
a two-layered fluid through a catheterized tube. With the above discussion
in mind, an attempt is therefore made here in the present paper to study the
peristaltic induced flow of a two-layered Newtonian fluid in a catheterized
tube. Mathematical model corresponds to the flow of a two-layered fluid
through an annulus. The outer layer (peripheral) is a Newtonian fluid of
constant viscosity and the inner layer (core region) is also a Newtonian fluid
(the viscosity of which may vary depending on the flow conditions). The
study is aimed at possible application of peristaltic induced flow of blood
(Saran and Popel, 2001) in catheterized small vessels and chyme in small
intestine with an inserted endoscope (Srivastava, 2007).

Formulation of the problem

Consider the axisymmetric flow of a two-layered fluid in a catheterized tube
of radius a, consisting of a central core region of radius a1 filled with a
Newtonian fluid of viscosity µc, and a peripheral layer of thickness a − a1
filled with a Newtonian fluid of constant viscosity µp. The tube wall is
assumed to be flexible and the flow is induced by a sinusoidal wave traveling
down its wall. The catheter is assumed to be a co-axial rigid circular cylinder
of radius ac. The geometry of the wall surface is described (Fig.1) as

H(z, t) = a+ b sin
2π

λ
(z − ct), (1)

where b is the wave amplitude, λ is the wavelength, c is wave propagation
speed, z is the axial coordinate and t is the time. The equations governing
the linear momentum and the conservation of mass for the fluid in the two
regions (peripheral and core) using a continuum approach are expressed
(Misra and Pandey, 2002; Sharan and Popel, 2001) as

ρp

{
∂up
∂t

+ up
∂up
∂z

+ vp
∂up
∂r

}
= −∂p

∂z
+ µp∇2up, H1 ≤ r ≤ H, (2)

ρp

{
∂up
∂t

+ up
∂up
∂z

+ vp
∂up
∂r

}
= −∂p

∂r
+ µp

(
∇2 − 1

r2

)
vp, H1 ≤ r ≤ H,

(3)
1

r

∂

∂r
(rvp) +

∂

∂z
(rup) = 0, (4)
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Figure 1: Flow geometry of a two-layered peristaltic pumping in a catheter-
ized tube

ρc

{
∂uc
∂t

+ uc
∂uc
∂z

+ vc
∂uc
∂r

}
= −∂p

∂z
+ µc∇2uc, ac ≤ r ≤ H1, (5)

ρc

{
∂uc
∂t

+ uc
∂uc
∂z

+ vc
∂uc
∂r

}
= −∂p

∂r
+ µc

(
∇2 − 1

r2

)
vc, ac ≤ r ≤ H1,

(6)

1

r

∂

∂r
(rvc) +

∂

∂z
(ruc) = 0, (7)

where ∇2 = ∂/∂r2+(1/r)(∂/∂r)+∂2/∂z2 is the two-dimensional Laplacian
operator, (up, vp) and (uc, vc) are (axial, radial) components of fluid velocity
in peripheral and central regions, respectively, (ρp, ρc) are the fluid density
in the (peripheral, central) regions, r is the radial coordinate and p is the
pressure. In view of the argument stated in Misra and Pandey (2002) and
Medhavi and Singh (2008b), one may now assume H1 = a1+ b1sin2π/λ(z−
ct) in which b1 is the amplitude of the interface wave.

Introducing the following dimensionless variables

r′ = r/a, (u′p, u
′
c) = (up, uc)/c, z′ = z/λ, t′ = ct/λ, (v′p, v

′
c) = λ(vp, vc)/ac

p′ = a2p/λcµc, µ = µp/µc,
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into the equations (2) and (7), yields the following in the moving frame of
reference (i.e., moving with speed of the wave, c; Shapiro et al., 1969) as

δRe

{
∂up
∂t

+ up
∂up
∂z

+ vp
∂up
∂r

}
= −∂p

∂z
+ µ

{
1

r

∂

∂r

(
r
∂up
∂r

)
+ δ2

∂2up
∂z2

}
,

h1 ≤ r ≤ h, (8)

δRe

{
∂up
∂t

+ up
∂up
∂z

+ vp
∂up
∂r

}
= −∂p

∂r
+ µδ2

{
1

r

∂

∂r

(
r
∂vp
∂r

)
−

(9)

1

r2
+ δ2

∂2vp
∂z

2
}
, h1 ≤ r ≤ h,

1

r

∂

∂r
(r vp) +

∂

∂z
(r up) = 0, (10)

(
ρc/ρp

)
δRe

{
∂uc
∂t

+ uc
∂uc
∂z

+ vc
∂uc
∂r

}
= −∂p

∂z
+

{
1

r

∂

∂r

(
r
∂uc
∂r

)
+

(11)

δ2
∂2uc
∂z2

}
, ε ≤ r ≤ h1,

(
ρc/ρp

)
δRe

{
∂vc
∂t

+ uc
∂vc
∂z

+ vc
∂vc
∂r

}
=

(12)

−∂p

∂r
+ δ2

{
1

r

∂

∂r

(
r
∂vc
∂r

)
− 1

r2
+ δ2

∂2vc
∂z2

}
, ε ≤ r ≤ h1,

1

r

∂

∂r
( r vc) +

∂

∂z
( r uc) = 0, (13)

where (h, h1) = (H,H1)/a,= (1, α)+(ϕ, ϕ1) sin 2π z, ε = ac/a, (α, ϕ, ϕ1) =
(a1, b, b1)/a, Re = ρpca/µc and δ = a/λ are Reynolds number and wave
number, respectively.
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The Reynolds number, Re is quite small when wavelength is large, and
therefore, inertial convective acceleration terms may be neglected in com-
parison to viscous terms (Shapiro et. al, 1969; Jaffrin and Shapiro, 1971).
Using thus the long wavelength approximation (i.e., δ << 1) of Shapiro et
al. (1969), and neglecting the inertial terms, the equations of motion (i.e.,
equations (8)-(13)) reduce to

dp

dz
=

µ

r

∂

∂r

(
r
∂

∂r

)
up, h1 ≤ r ≤ h, (14)

dp

dz
=

1

r

∂

∂r

(
r
∂

∂r

)
uc, ε ≤ r ≤ h1. (15)

The non-dimensional boundary conditions are

up = −1 at r = h, (16)

up = uc and τp = τc, at r = h1 = α+ ϕ1 sin 2π z , (17)

up = −1 at r = ε, (18)

where τp = µp ∂up/∂r and τc = µc ∂uc/∂r are shearing stress of
the peripheral and core the regions, respectively. The boundary conditions
stated in eqns. (16)-(18) are the standard no slip condition on the tube wall
and continuity of velocity and shear stress at the interface.

Analysis

The solution of the equations (14) and (15) subject to the boundary condi-
tions (16)-(18), yields the expression for the velocity of peripheral and core
fluids as

up = −1− 1

4µ

dp

dz

{
h2 − r2 +M log(r/h)

}
, (19)

uc = −1− 1

4

dp

dz

{
ε2 − r2 +M log(r/ε)

}
, (20)

with

M =
−h2 + µε2 + (1− µ)h21
log(h1/h)− µlog(h1/ε)

.
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The non-dimensional instantaneous volume flow rate q (=q’/πa2c, q’
being the flux in the moving system which is same as in stationary system)
is calculated as

q = ε2 − h2 − 1

8µ

dp

dz

{
h4 + (1− µ)h41 + 2(µε2 − h2)h21 − µε4

+ M

[
µε2 − h2 + (1− µ)h21 + 2

(
µlog

h1
ε
−log

h1
h

)]}
.

(21)

Using now the fact that the total flux is equal to the sum of the fluxes
across the regions: ε ≤ r ≤ h1 and h1 ≤ r ≤ h, one derives the relations:
ϕ1 = αϕ and h1 = αh ( Shukla et al., 1980; Medhavi and Singh, 2008b). An
application of these relations into equation (21), yields

−dp

dz
=

8µ
(
q + h2 − ε2

)
η (µ, α, ε, h)

, (22)

where

η ∼= η (µ, α, ε, h) =
{
1 + (1− µ)α4 − 2α2

}
h4 + (2− ε2)µε2

+N

{
µε2 −

[
1− (1− µ)α2

]
h2 + 2

(
µlog

αh

ε
−logα

)
α2h2

}
,

N =
µε2 −

{
1− (1− µ)α2

}
h2

logα− µlog(αh/ε)
.

Following now Shapiro et al. (1969) and Medhavi (2010), the mean
volume flow rate, Q over a period is determined as

Q = q + 1 + ϕ2/2− ε2. (23)

The pressure drop, ∆p = p(0) − p (1) across one wavelength is thus
calculated as

∆p =

1∫
0

(
−dp

dz

)
dz = 2µ

{(
Q− 1− ϕ2/2

)
I1 + I2

}
, (24)

where

I1 = 4

1∫
0

Q− 1− ϕ2/2

η
dz, I2 = 4

1∫
0

h2

η
dz.
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The friction force Fa(= F ′
a/πλcµp; F

′
a is the friction force at the tube

wall in the stationary system which is same as in moving system) across one
wave length is now obtained as

Fa =

1∫
0

h2
(
−dp

dz

)
dz = 2µ

{(
Q− 1− ϕ2/2

)
I2 + I3

}
, (25)

with

I3 = 4

1∫
0

h4

η
dz.

The friction force at the catheter wall, Fc(= F ′
c/πλcµp; F ′

c being the
friction force at the catheter wall in both the stationary and moving systems)
across one wave length is now derived as

Fc =

1∫
0

ε2
(
−dp

dz

)
dz = 2µε2

{(
Q− 1− ϕ2/2

)
I1 + I2

}
(26)

From equations (13)-(15), one derives the following relations of particular
interest as

Q = 1 + ϕ2/2− I2
I1

+
∆p

2µI1
, (27)

Fa = 2µ

[
I3 −

I22
I1

+
I2

2µI1
∆p

]
, (28)

Fc = ε2∆p, (29)

The pressure rise (-∆p) for zero time mean flow and the time mean flow
for zero pressure rise which are of particular mechanical and physiological
interest, are obtained from equation (27) as

(−∆p)Q=0 = 2µ
{(

1 + ϕ2/2
)
I1 − I2

}
, (30)

(Q)∆p=0 = 1 + ϕ2/2− I2
I1
. (31)

It is to note here that under the limit, ε → 0 (no catheter); the results
derived above yield the same results as obtained in Shukla et al. (1980).
With α = 1, µ = 1, one derives the results obtained in Medhavi (2010) for
a single-phase Newtonian viscous fluid. With α = 1, µ = 1 and ε → 0, the
results of Shapiro et al. (1969) are recovered from the present study.
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Numerical results and discussions

In order to discuss the results of the study quantitatively, computer codes
are developed to evaluate analytical results obtained in equations (24) –
(26) for various parameter values selected (Shukla et al., 1980; Mishra and
Pandey, 2002; Medhavi, 2010) as: α= 1, 0.95, 0.90; µ= 0.1, 0.2, 0.3, 0.5,
1.0; ε= 0, 0.1, 0.2, 0.3, 0.4, 0.5; ϕ= 0, 0.2, 0.4, 0.6; Q= 0, 0.2, 0.4, 0.6,
0.8, 1.0, 1.2, 1.4, 1.6. Present study reduces to a two-layered flow in the
absence of the catheter (Shukla et al., 1980), single-phase Newtonian viscous
fluid in catheterized tube (Medhavi, 2010 in the absence of particle phase),
single-phase Newtonian fluid in uncatheterized tube (Shapiro et al., 1969)
for parameter values:ε → 0, α=1, µ=1 in the absence of particle phase,
respectively.

Pressure drop, ∆p increases with the flow rate, Q and a linear relation-
ship between pressure and flow exhibits for any given set of parameters (Fig.
2). For any given flow rate, Q the flow characteristic, ∆pdecreases with de-
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Figure 2: Pressure drop ∆p versus flow rate Q for different α and ϕ at
ε = 0.3 and µ = 0.3.

creasing values of α (i.e., increasing peripheral layer thickness), however,
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depending on the magnitude of the non-zero amplitude ratio, ϕ, this prop-
erty reverses (Fig. 2). The pressure drop, ∆pincreases with increasing value
of the catheter size, ε for any given flow rate, Q (Fig. 3). With other pa-
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Figure 3: Pressure drop ∆p versus flow rate Q for different ε and ϕ at
α = 0.95 and µ = 0.3.

rameter fixed, ∆p increases with the peripheral layer viscosity, µ for higher
values of the flow rate, Q but the property reverses for small values of the
flow rate, Q depending on the non-zero value of the amplitude ratio, ϕ (Fig.
4). The variation of the pressure drop, ∆p with respect to the peripheral
layer viscosity, µ seems to have similar characteristics as with the peripheral
layer thickness, α (Figs. 2 and 4).

The pressure drop, ∆p assumes higher magnitude for higher values of
the catheter size, ε for any given flow rate, Q in the absence of the peri-
staltic waves (i.e., ϕ = 0). However, in the presence of peristaltic waves,
∆p assumes higher magnitude only for non-zero value of the catheter size,
ε (Fig. 5). The flow characteristic, ∆p decreases indefinitely with increas-
ing amplitude ratio, ϕ for any given set of other parameters (Fig. 6). The
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Figure 4: Pressure drop ∆p versus flow rate Q for different µ and ϕ at
α = 0.95 and ε = 0.3.

pressure drop, ∆p decreases from its value in the absence of the catheter
(i.e.ε = 0) and achieves a minimum value at about ε = 0.2, it then increases
rapidly with increasing catheter size and assumes a high asymptotic mag-
nitude when ε > 0.5 in the presence of the peristaltic waves (i.e., ϕ ̸= 0)
but in the absence of the peristaltic waves (i.e., ϕ = 0), ∆p increases with
ε (Fig. 7). The friction force at the tube wall, Fa increases with the flow
rate, Q for any given set of parameters (Fig. 8). Also Fa decreases with
the amplitude ratio, ϕ (Fig. 9). One notices that the friction force at the
catheter wall, Fc possesses characteristics similar to that of Fa with respect
to any parameter but its magnitude is much lower than the corresponding
magnitude of Fa (Fig. 10). An inspection of Figs. 2, 8 and 10 reveals that
Fa and Fc possess characteristics similar to that of the pressure drop, ∆p
with respect to any parameter.
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Figure 5: Pressure drop ∆p versus flow rate Q for different ε and ϕ at
α = 0.95 and µ = 0.3.

Concluding remarks

The flow induced by peristaltic waves of a two-layered Newtonian fluid in a
catheterized tube has been addressed. The effects of the inserted catheter
and the peripheral layer thickness has been observed simultaneously through
out the analysis.The informations that the pressure drop increases with the
catheter size and decreases with the parameter α (i.e., increasing periph-
eral layer thickness) may be noted as important observations. However, the
study conducted above carries certain assumptions and approximations in-
cluding the long wavelength approximation and constant peripheral layer
thickness. It is well known from the literature that the Reynolds number is
quite small when the wavelength is long in most of the physical situations,
particularly in biological organs (Misra and Pandey, 2002). This allows the
inertia-free flow and fully developed flow equations (Shapiro et al., 1969).
Further, some comments need to be made here regarding the shape of the
interface. Misra and Pandey (2002) observed that the shape of the interface
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Figure 6: Pressure drop ∆p versus ϕ for different Q and α at µ = 0.3 and
ε = 0.3.

is not significantly affected when the viscosity of one of the layers is kept
constant while the viscosity of the fluid in the other layer is varied. In view of
the theoretical model used in the present work, the peripheral (outer) layer
fluid viscosity, µp remains constant throughout and it is only the viscosity of
the core fluid, µc may vary depending on the flow conditions. This justifies
the use of the constant value of the parameter, α (i.e., constant peripheral
layer thickness). In view of the theoretical model used (Sharan and Popel,
2001) to conduct the study, it is strongly believed that the findings of the
work may be used to discuss the flow of blood through catheterized artery
by means of the peristaltic waves.
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Figure 7: Pressure drop ∆p versus ε for different Q, ϕ and α at µ = 0.3.
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Figure 8: Friction force at tube wall Fa versus flow rate Q for different α
and ϕ at µ = 0.3 and ε = 0.3.
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Figure 9: Friction force at tube wall Fa versus ϕ for different Q and α at
µ = 0.3 and ε = 0.3.
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Figure 10: Friction force at catheter wall Fc versus flow rate Q ϕ for different
α and ϕ at µ = 0.3 and ε = 0.3.
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Kontinuirani transport dvoslojnog fluida u kateter cevi

Razmatra se tečenje dvoslojnog fluida izazvan peristaltičnim talasima u
kateter cevi. Izvedeni su izrazi za karakteristike tečenja - brzinu tečenja,
pad pritiska i sile trenja na cevi i zidu katetera. Nadjeno je da pad pri-
tiska raste sa brzinom tečenja ali opada porastom debljine perifernog sloja
i da postoji linearna relacija izmedju pritiska i brzine. Pad pritiska raste sa
veličinom poluprečnika katetera i teži ka visokoj asimptotskoj veličini kada
je poluprečnik katetera jednak polovini poluprečnika cevi. Sile trenja na
cevi i zidu katetera poseduju karakteristike slične onima za pad pritiska u
odnosu na bilo koji parametar. Medjutim, sila trenja na zidu katetera ima
mnogo manju veličinu od odgovarajuće vrednosti na zidu cevi.
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