
Atmos. Meas. Tech., 2, 609–619, 2009
www.atmos-meas-tech.net/2/609/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Measurement

Techniques

Ground-based FTIR water vapour profile analyses

M. Schneider and F. Hase

IMK-ASF, Forschungszentrum Karlsruhe und Universität Karlsruhe, Karlsruhe, Germany

Received: 22 April 2009 – Published in Atmos. Meas. Tech. Discuss.: 30 April 2009
Revised: 30 September 2009 – Accepted: 30 September 2009 – Published: 28 October 2009

Abstract. Due to a large vertical gradient and strong vari-
ability of water vapour, algorithms that are effectively ap-
plied for ground-based remote sensing of many different at-
mospheric trace gases can be insufficient for the retrieval of
tropospheric water vapour profiles. We review the most im-
portant features of the retrieval and of the radiative transfer
modelling required for accurate monitoring of tropospheric
water vapour profiles by ground-based FTIR (Fourier Trans-
form Infrared) experiments. These are: a fit of a variety of
different water vapour lines with different strength, a loga-
rithmic scale inversion, a speed dependent Voigt line shape
model, and a joint temperature profile retrieval. Further-
more, the introduction of an interspecies constraint allows
for a monitoring of HDO/H2O ratio profiles.

1 Introduction

Water vapour is the most important greenhouse gas and
thus, continuous observations of tropospheric water vapour
amounts are essential for climate change research. The radia-
tive forcing of water vapour depends strongly on the altitude.
In the middle and upper troposphere, it is much more effec-
tive as a greenhouse gas than in the lower troposphere (e.g.
Spencer and Braswell, 1997; Held and Soden, 2000). Con-
sequently, the long-term observations of middle/upper tropo-
spheric water vapour amounts are of particular interest. Tra-
ditionally, operational radiosondes measure upper-air water
vapour. Although there are large efforts for reducing the un-
certainties of the radiosonde data (e.g.Leiterer et al., 2005;
Miloshevich et al., 2009), the consistency of the radiosonde
data set remains questionable, since a variety of different sen-
sor types has been applied during the last decades. There are
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even inconsistencies for sensors of the same type but with
different manufacturing dates (Turner et al., 2003). It is dif-
ficult to use these data for trend analyses and climate studies.

Ground-based high quality remote sensing experiments
have the potential to monitor atmospheric trace gases in a
rather consistent manner. In the framework of NDACC (Net-
work for Detection of Atmospheric Composition Change,
Kurylo, 2000), high quality solar absorption spectra have
been measured over many years and at many different sites
with the same type of instrument. These measurements dis-
close significant information about the distribution of many
different atmospheric trace gases. Over the last decades, the
NDACC FTIR experiments contributed to the study of strato-
spheric ozone chemistry by providing a long-term dataset
of different ozone relevant trace gases (e.g.Rinsland et al.,
2003; Vigouroux et al., 2008). During the last years, the
NDACC-FTIR community has increased its efforts of moni-
toring the tropospheric distribution of greenhouse gases, in-
cluding water vapour. Since the NDACC FTIR experiments
are regularly characterised by low pressure gas cell measure-
ments (Hase et al., 1999), the FTIR data can serve as a more
reliable source for water vapour trend studies than the ra-
diosonde data, especially in the upper troposphere. Further-
more, the FTIR raw data (measured solar absorption spectra)
are stored and can be reprocessed whenever there is some
progress in the analysis method. Analysis methods for at-
mospheric remote sensing are treated extensively in the text-
book of C. D. Rodgers (e.g.Rodgers, 2000). However, the
retrieval of atmospheric water vapour amounts from ground-
based FTIR spectra is an advanced atmospheric inversion
problem. The large vertical gradient and variability is the
main reason why a standard retrieval set up is not suitable.
First vertical profiles of water vapour measured by ground-
based FTIR experiments were reported by a group of the
Institute for Meteorology and Climate Research, Karlsruhe,
Germany (in German letters: IMK-ASF;Hase et al., 2004).
During the last years, the IMK-ASF water vapour analysis
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has been continuously developed and improved (Schneider et
al., 2006a,b; Schneider and Hase, 2009). These efforts made
it possible to monitor tropospheric H2O profiles (including
upper tropospheric amounts) and HDO/H2O ratio profiles by
ground-based FTIR experiments.

This paper reviews the aspects of an effective ground-
based FTIR water vapour profile analysis. Section2 briefly
describes the principles of a ground-based FTIR analysis and
in Sect.3 we discuss the methods developed at IMK-ASF to
overcome the difficulties of water vapour analysis. Section4
lists these developments in the order of their importance.

2 General setup of a ground-based FTIR analysis

The basic equation for analysing solar absorption spectra is
Lambert Beer’s law:

I (λ) = Isun(λ) exp(−
∫ Obs.

TOA
σx(λ, s(T , p))x(s)ds) (1)

HereI (λ) is the measured intensity at wavelengthλ, Isun the
solar intensity,σx(λ, s) is the absorption cross section and
x(s) the concentration of an absorberx at locations. The
integration is performed along the path of the direct sunlight
(between the Observer (Obs.) and the Top of the atmosphere
(TOA)). The spectra are simulated by a precise line-by-line
radiative transfer model applying the parameters of spec-
troscopic databases (e.g. HITRAN,Rothman et al., 2005).
Within NDACC mid-infrared ground-based FTIR spectra
are typically measured with a resolution of 0.005 cm−1.
Equation (1) neglects atmospheric emission. However, at
low frequencies (below approximately 1000 cm−1) or when
analysing lunar absorption spectra (Palm et al., 2008), it
should be considered by adding an atmospheric emission cor-
rection term.

For the purpose of numerical handling, the atmospheric
statex(s) and the simulated spectrumI (λ) are discretised in
form of a state vectorx and a measurement vectory. The
measurement and state vector are related by a vector valued
functionF which simulates the atmospheric radiative trans-
fer and the characteristics of the measurement system (spec-
tral resolution, instrumental line shape, etc.):

y = F (x) (2)

The derivatives∂y/∂x determine the changes in the spec-
tral fluxesy for changes in the vertical distribution of the ab-
sorberx. These derivatives are collected in a Jacobian matrix
K :

∂y = K∂x (3)

Direct inversion of Eq. (3) would allow an iterative calcu-
lation of the sought variablesx. However, the problem is
generally under-determined, i.e. the columns ofK are not
linearly independent and there are many solutions that are
in acceptable agreement with the measurement. An optimal

estimation (OE) approach removes this ambiguity. It com-
bines the measurement information with the a priori assump-
tion about the atmospheric state and selects the most prob-
able state for the given measurement. The solution is the
maximum value of a conditional probability density function
(pdf), which is the product of two pdfs: a first, describing the
statistics of the differences between simulated and measured
spectra (measurement noise covarianceSε), and a second,
describing the a priori knowledge of the atmospheric state
(mean statexa and covarianceSa). The maximum value of
the conditional pdf is reached at the minimum of its nega-
tive logarithm. Assuming pure Gaussian statistics, we have
to minimise:

[y − F (x)]T Sε
−1

[y − F (x)]

+[x − xa]
T Sa

−1
[x − xa] (4)

Due to the nonlinear behaviour of the Lambert Beer law
(Eq. 1), the cost function (Eq.4) is minimised iteratively by
a Gauss-Newton method. The solution for the(i+1)th itera-
tion is (Rodgers, 2000):

xi+1 = xa + SaK i
T (K iSaK i

T
+ Sε)

−1

[y − F (xi) + K i(xi − xa)] (5)

An important component of the retrieved solution is the av-
eraging kernel matrixA:

A = (KT Sε
−1K + Sa

−1)−1KT Sε
−1K (6)

The averaging kernel matrixA documents the sensitivity and
the vertical smoothing of the remote sensing system. It re-
lates the real variability(x−xa) to the measured variability
(x̂−xa):

(x̂ − xa) = Â(x − xa) (7)

wherebyÂ is the averaging kernel matrix as calculated at
the solution statêx. In addition, the trace of̂A quantifies
the amount of information introduced by the measurement.
It can be interpreted in terms of degrees of freedom of the
measurement (DOF).

3 Particularities of a water vapour analysis

In recent years at IMK-ASF, we continuously extended the
standard FTIR analysis by several innovative features, which
enables the analysis of water vapour profiles. The fea-
tures are as follows: first, the application of a variety of
weak and strong water vapour lines, which makes the re-
trievals very sensitive to both extremely low and high wa-
ter vapour amounts. Second, a logarithmic scale inversion.
Only this assures a proper constraint of tropospheric wa-
ter vapour amounts (Schneider et al., 2006a; Worden et al.,
2006a; Deeter et al., 2007). Third, a constraint of H2O pro-
files against HDO profiles, which allows for a retrieval of tro-
pospheric HDO/H2O ratio profiles (Schneider et al., 2006b;
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Worden et al., 2006a) and also improves the results for H2O.
The HDO/H2O ratio profiles are useful for investigating the
transport pathways of tropospheric water vapour. Fourth, the
application of optimised spectroscopic parameters including
a non-Voigt line shape model for a proper simulation of the
water vapour lines (Boone et al., 2007; Schneider and Hase,
2009). Fifth, the consideration of atmospheric emissions for
a proper simulation of radiances at low frequencies. And
sixth, a simultaneous temperature profile inversion. This
reduces two important error sources of ground-based FTIR
measurements, which are uncertainties in the assumed tem-
perature profiles and uncertainties in the temperature depen-
dence of the applied spectroscopic parameters (Schneider et
al., 2006a; Schneider and Hase, 2008; Schneider et al., 2008).

In the following subsections, we document the improve-
ments achieved by these innovations, therefore, we document
the performance of 6 different FTIR analysis setups:

– lin: inversion on a linear scale.

– log: inversion on a logarithmic scale.

– log, isc: log-scale and H2O, H18
2 O, and HDO inter-

species constraint.

– log, isc, nV: log-scale, inter-species constraint, and non-
Voigt line shape model.

– log, isc, nV, ae: log-scale, inter-species constraint, non-
Voigt line shape, and correction for atmospheric emis-
sion.

– log, isc, nV, ae,T : log-scale, inter-species constraint,
non-Voigt line shape, atmospheric emission, and simul-
taneous temperature profile retrieval.

The documentation consists of a theoretical part, by
analysing the DOF values achieved by the different analy-
sis setups, and of an empirical part, by comparing the FTIR
profiles to radiosonde measurements. We do this, taking
measurements performed at the Izaña Atmospheric Research
Centre (in Spanish letters: CIAI) as an example, since at
CIAI water vapour radiosonde measurements (Vaisala RS92)
are performed twice daily. The quality documentation is
based on a representative set of measurements, which cover
a large variety of different atmospheric water vapour states,
taken on 93 different days between June 2005 and February
2007.

Concerning the empirical validation, we have to consider
that an FTIR measurement takes less than 10 min, but a ra-
diosonde needs about 1 hour to measure a profile from the
ground to 15 km. As temporal coincidence criterion we re-
quire that the RS92 radiosonde is located at 7.5 km within
2 h of the FTIR measurement. In addition, it is important to
take into account the relatively modest vertical resolution of
the ground-based FTIR profiles, which is documented by the
averaging kernel matrix̂A. Figure1 shows the columns of a

Fig. 1. Typical averaging kernels for ground-based FTIR remote
sensing of water vapour. Left panel: for the subarctic site of Kiruna
(68◦ N, 420 m a.s.l.); right panel: for the subtropical site of Izaña
(28◦ N, 2370 m a.s.l.). The kernels for the selected heights as given
in the legend are highlighted by solid black, red, green, and blue, re-
spectively. The total sensitivity (

∑
row) is depicted as a thick black

line.

typical averaging kernel matrix̂A for two very distinct sites:
for the subarctic site of Kiruna (Northern Sweden, 67◦50′ N,
20◦25′ E at 420 m a.s.l.), on the left panel, and for Izaña
(Tenerife Island, Spain, 28◦18′ N, 16◦29′ W at 2370 m a.s.l.),
on the right panel. At both sites the FTIR system is very
sensitive up to the upper troposphere (sum along the rows of
Â, i.e. 6row>75%, see thick black line). The vertical res-
olution is 2 km in the lower troposphere, 4 km in the mid-
dle troposphere and 6 km in the upper troposphere (see solid
lines highlighted by different colours). For the comparison,
we adjust the vertically highly-resolved Vaisala RS92 profile
(xRS92) to the modest vertical resolution of the FTIR profiles
by a convolution with the FTIR averaging kernelsÂ. Ac-
cording to Eq. (7) it is:

x̂RS92= Â(xRS92− xa) + xa (8)

The result is an RS92 profile (x̂RS92) with the same vertical
resolution and sensitivity as the FTIR profile. In addition, we
apply the temperature and radiation correction for the RS92
sensor as suggested byVömel et al.(2007). We would like to
remark that smoothing according to Eq. (8) is an approxima-
tion since we deal with a nonlinear problem, whereas Eq. (8)
assumes linearity betweenxRS92 andxa . However, as long
as the individual averaging kernels (the averaging kernelsÂ
at the solution state) are used, this approximation is still ap-
plicable.

3.1 Simultaneous fit of weak and strong lines

Atmospheric water vapour is highly variable, e.g. the total
precipitable water vapour (PWV) amount varies almost over
2 orders of magnitude. This requires the application of water
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Fig. 2. Dependence of DOF values on slant PWV for the appli-
cation of different water vapour signatures. Left panel: weak line
at 879 cm−1; Middle panel: strong line at 849 cm−1; Right panel:
Both weak and strong line at 879 cm−1 and 849 cm−1.

vapour lines with different characteristics. Strong lines are
necessary to be sensitive in the case of low water vapour
amounts. However, these lines are saturated at large water
vapour amounts. Therefore, weak lines have to be included
into the spectral microwindows. Figure2 shows the degrees
of freedom of the measurement (DOF) versus the total wa-
ter vapour content along the line of sight (slant PWV). If
we apply a spectral microwindow with a weak water vapour
line, the DOF value is around 2.1, but tends to lower values
for slant PWVs below 3 mm (left panel). The central panel
shows the situation when applying a strong line. For slant
PWVs below 8 mm we obtain larger DOF values if compared
to the “weak line retrieval”. However, this strong line is sat-
urated for slant PWVs above 10 mm. For large slant PWVs
the DOF values are rapidly decreasing. The right panel de-
picts the DOFs for a retrieval which applies both the weak
and the strong line. Then we achieve similar results in the
case of low and high slant PWVs.

Our IMK-ASF water vapour analysis algorithm applies 49
water vapour lines of different strength (37 H2O, 3 H18

2 O,
and 9 HDO lines) between 790 and 1330 cm−1. The corre-
sponding spectral microwindows are shown in Fig.3. With
this setup we achieve DOF values between 2.2 and 3.0 (see
Fig. 4).

3.2 Logarithmic scale inversion

Equation (4) assumes Gaussian statistics for the measure-
ment noise and the a priori covariance. While Gaussian
statistics is a valid assumption for the measurement noise,
it is not necessarily valid for the distribution of the absorber.
Highly variable absorbers like water vapour do not follow
a Gaussian statistic. However, by performing the inversion
on a linear scale, we implicitly assume a normal distribu-
tion. Under these circumstances minimising the cost func-
tion (Eq.4) does not yield a statistically optimal solution. If
the inversion is performed on a linear scale, the FTIR pro-
files significantly disagree with the RS92 profiles which is
documented by the left panels of Fig.5: the top panel de-
picts the differences of all 93 FTIR/RS92 coincidences and

the bottom panel its statistics (mean and standard devia-
tion of the difference). Frequently, the FTIR analysis pro-
duces physically impossible negative volume mixing ratios,
i.e. FTIR

RS92−1<−100%.
Like most highly variable atmospheric constituents, water

vapour is quite well log-normally distributed and so we can
improve the optimal estimation formalism of Eqs. (4) and
(5) by transforming the absorber’s amounts to a logarithmic
scale: ifx is log-normally distributed ln(x) is normally dis-
tributed and Eqs. (4) and (5) remain valid. The second panels
from the left show the comparison of the RS92 and FTIR pro-
files when the inversion is performed on a logarithmic scale.
The log-scale inversion significantly reduces the scatter be-
tween the RS92 and the FTIR data, particularly below 7 km.
At higher altitudes the scatter is increased, which is due to
the increased sensitivity of the log-scale inversion, whereas
for the linear scale inversion both the smoothed sonde pro-
file and the FTIR profile stick to the a priori value. Figure4
depicts the degrees of freedom of the measurement (DOF)
versus the PWV (PWV is calculated by integration of the
vertical profiles over altitude). The left panel shows the sit-
uation for a linear scale inversion and the second panel from
the left for a logarithmic scale inversion. These plots give
further insight into the deficiencies of a linear scale water
vapour inversion. We observe that for a linear scale inversion
the DOF decreases continuously with increasing PWV. This
strong dependence is due to an inadequate constraint caused
by applying a wrong a priori statistics. At low PWVs the con-
straint is too weak and at large PWVs it is too strong. The
DOF values, in case of a logarithmic scale inversion, show a
much weaker dependence on PWV. Its DOF values only de-
crease when an increasing number of lines become saturated
(for slant PWVs above 7 mm).

For an evaluation of the PWVs determined by the dif-
ferent FTIR analyses, we use the coincident PWV mea-
surements of the RS92 and Izaña’s Cimel sunphotome-
ter (Holben et al., 1998). We only compare if all
three experiments are performed within 1 hour (88 coinci-
dences). For these coincidences the scatter of(RS92−Cimel)

(RS92+Cimel)/2
is 19.6%. For a linear scale inversion the scatter of
(FTIR−RS92)

(FTIR+RS92)/2 and (FTIR−Cimel)
(FTIR+Cimel)/2 are 14.5% and 13.5%, re-

spectively. The root-square-sum (RSS) of these values is√
14.52+13.52%=19.8%. Assuming that all three experi-

ments observe the same airmasses and that their errors (ε)
are independent, this RSS value is the error sum of Cimel,
RS92, and 2×FTIR:

RSS

=

√(
(FTIR − RS92)

(FTIR + RS92)/2

)2

+

(
(FTIR − Cimel)

(FTIR + Cimel)/2

)2

=

√
ε2

Cimel + ε2
RS92+ 2ε2

FTIR (9)

The precision of the FTIR PWV data can then be estimated

to
√

19.82−19.62

2 %=2.0%. Table1 collects the scatter between
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Fig. 3. The 15 spectral windows used for the retrieval of water vapour profiles for typical atmospheric conditions at CIAI (slant PWV
of 6.1 mm). The spectral resolution of a typical measurement is 0.005 cm−1. Top panels: black line: measurement; dotted red line:
simulation; blue line: residuals relative to maximum radiances, i.e. (measurement−simulation)/max(measurement). Central panels: Zoomed
out residuals when applying a Voigt line shape model and the HITRAN 2004 parameters (Rothman et al., 2005) with the water vapour update
of Gordon et al.(2007) (depicted as noise to signal ratio); Bottom panels: same as central panel but for a speed dependent Voigt line shape
model and the parameters ofSchneider and Hase(2009).

Fig. 4. Dependence of DOF values on PWV for the same different inversion approaches as in Fig.5. The mean DOF value as well as its 1σ

variability are noted in each panel.

the PWVs determined by the different FTIR analyses and by
RS92 and Cimel sunphotometer (Holben et al., 1998) mea-
surements. For all the different retrieval setups the error sum
of Cimel, RS92, and FTIR, approximated by the RSS value,
is very similar to the error sum of Cimel and RS92 of 19.6%.
This suggests that the FTIR PWV data are very precise and

that the different retrieval setups – although strongly affect-
ing the profile shape – do not significantly change the re-
trieved PWV values.

Often the RSS (RS92+Cimel+FTIR error sum) is smaller
than the RS92+Cimel error sum of 19.6%. We think that
this is caused by the observation of different airmasses by
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Fig. 5. Difference between smoothed Vaisala RS92 profiles and FTIR profiles for different inversion approaches. Top panels: Individual
differences for 93 coincidences (between June 2005 and February 2007); Bottom panels: statistics of the differences (mean and standard
deviation). From the left to the right: lin: inversion on a linear scale; log: inversion on a logarithmic scale; log, isc: log-scale inversion
and application of an HDO/H2O inter-species constraint; log, isc, nV: log-scale, inter-species constraint, and application of a speed depen-
dent Voigt line shape model; log, isc, nV, ae: log-scale, inter-species constraint, speed dependent Voigt line shape, and consideration of
atmospheric emission; log, isc, nV, ae,T : log-scale, inter-species constraint, speed dependent Voigt line shape, atmospheric emission, and
simultaneous temperature profile inversion. Please note that for the three rightmost bottom panels thex-axis scale is amplified by a factor 2.

Table 1. Scatter between PWVs of FTIR, RS92 and Cimel sunpho-
tometer for the different FTIR retrieval setups. First column: scat-
ter of FTIR−RS92; Second column: scatter of FTIR−Cimel sun-
photometer; Third column: root-square-sum of scatter FTIR−RS92
and FTIR−Cimel. The Cimel data are courtesy of P. Goloub, Uni-
versity of Lille, France (PI of Izãna’s Cimel experiment).

FTIR FTIR RSS
−RS92 −Cimel

lin ±14.5% ±13.5% ±19.8%
log ±14.1% ±13.4% ±19.5%
log, isc ±13.8% ±13.3% ±19.2%
log, isc, nV ±14.2% ±13.4% ±19.6%
log, isc, nV, ae ±14.2% ±13.3% ±19.5%
log, isc, nV, ae,T ±14.1% ±13.1% ±19.2%

the different experiments. Different airmasses are observed
since it is impossible to guarantee that the measurements
coincide perfectly, neither in time nor in space. While the
RS92 measures the airmass in-situ at the location of the ra-

diosonde, the Cimel and the FTIR detect the water vapour
amounts between the instrument and the Sun. Concerning
temporal coincidence, the situation is straight forward in the
case of Cimel and FTIR since both measurements are per-
formed within several minutes. But for the RS92 the situa-
tion is more complex, since the sonde takes more than one
hour to travel throughout the troposphere.

3.3 HDO/H2O ratio profiles

The isotopic composition of tropospheric water vapour de-
pends on the ocean surface conditions where it evaporates
and on its atmospheric transport pathways. Measurements of
HDO/H2O are a powerful tool for investigating atmospheric
dynamics and, in particular, water vapour transport pathways
(Worden et al., 2006b; Yoshimura et al., 2008; Frankenberg
et al., 2009), which in turn is important for a better under-
standing of global climate change (water vapour feedback
effect). Infrared remote sensing offers a unique opportunity
for a continuous observation of the HDO/H2O ratio, which is
typically expressed in the form of aδD value. TheδD value
is the relative difference of the actual HDO/H2O ratio to
the standard HDO/H2O ratio called SMOW (Standard Mean

Atmos. Meas. Tech., 2, 609–619, 2009 www.atmos-meas-tech.net/2/609/2009/
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Fig. 6. δD profiles produced by different inversion approaches. Top panels: Individual profiles for the ensemble of the FTIR/RS92
coincidences; Bottom panels: statistics of theδD profiles (mean and standard deviation represented by black line and error bars, respectively).
The grey line and shaded area depicts the mean and standard deviation as calculated from several in-situ measurements (Ehhalt, 1974; Zahn,
2001). From the left to the right: log: log-scale inversion; log, isc: log-scale inversion and application of an HDO/H2O inter-species
constraint; log, isc, nV: log-scale, inter-species constraint, and application of a speed dependent Voigt line shape model; log, isc, nV, ae,T :
log-scale, inter-species constraint, speed dependent Voigt line shape, atmospheric emission, and simultaneous temperature profile inversion.

Ocean Water) in permil (δD=1000×(
[HDO]/[H2O]

SMOW −1)).

Figure 6 shows δD profiles as obtained from different
analysis algorithms. The left panel shows the situation for
independent H2O and HDO inversions. Then theδD val-
ues vary between−1000 and+4000, which is physically
impossible. The reason for these large errors is the ab-
sence of an HDO/H2O constraint. Since H2O and HDO
profiles have different vertical resolutions their profiles are
not comparable and by using a simple ratio produces unrea-
sonable results. The logarithmic scale inversion allows for
an optimal estimation of HDO/H2O profiles, by constrain-
ing ln[HDO]− ln[H2O] (Schneider et al., 2006b; Worden et
al., 2006a). This procedure produces statistically optimised
HDO/H2O profiles, which are depicted in the second panel
from the left of Fig.6. Applying the HDO versus H2O inter-
species constraints, we observe reasonable HDO/H2O ratios
between−700 and+50.

The inter-species constraint also improves the agreement
between RS92 and FTIR water vapour profiles, as can be
seen in the third panel from the left of Fig.5. Atmospheric
HDO amounts are by more than three orders of magnitude
lower than H2O amounts. Whereas if we have to fit H2O
lines corresponding to transitions between states with high

quantum numbers, we can fit HDO lines which involve states
with low quantum numbers. The spectroscopic line parame-
ters, used for describing the absorption signatures, are ob-
tained from laboratory measurements interpreted in terms
of quantum theoretical calculations. The measurements, as
well as the calculations, are less reliable for transitions in-
volving high quantum number states. These lines are very
weak which makes accurate laboratory measurements diffi-
cult and corresponding quantum theoretical calculations less
constrained by experimental data. It is therefore reasonable
to assume that the spectroscopic knowledge of the strongest
HDO lines is better than the spectroscopic knowledge of the
weak H2O transitions. The inter-species constraint partly re-
duces the misinterpretation of the H2O signatures, but, due to
inconsistencies between the H2O and the HDO line parame-
ters, it increases the residuals (difference between measured
and simulated spectrum). As a consequence, the DOF values
are slightly reduced (see third panel from the left of Fig.4).

www.atmos-meas-tech.net/2/609/2009/ Atmos. Meas. Tech., 2, 609–619, 2009
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3.4 Improvement of spectroscopic description

Applying lines with different strength and pressure broaden-
ing coefficients theoretically increases the DOF value, but in
practice there is no realistic water vapour profile that brings
measured and simulated signatures of all the different lines
to a reasonable agreement. InSchneider and Hase(2009),
we analysed this problem in more detail and found that op-
timising the spectroscopic parameters, including a speed de-
pendent Voigt line shape model instead of a Voigt line shape
model, provides a much better agreement between the sim-
ulated and measured high-resolution spectra and at the same
time improves the quality of the retrieved water vapour pro-
files. This coincides withBoone et al.(2007) who recom-
mended the application of a speed dependent Voigt line shape
model when analysing the infrared spectra measured by ACE
(Atmospheric Chemistry Experiment). The improved agree-
ment between measured and simulated spectrum becomes
obvious when the two panels from the bottom of Fig.3 are
compared. The first panel shows the residuals (difference
between measured and simulated spectrum) when applying
a Voigt line shape model and the HITRAN 2004 parame-
ters (Rothman et al., 2005) with the water vapour update of
Gordon et al.(2007). The second panel depicts the resid-
uals for a speed dependent Voigt line shape model that ap-
plies the parameters ofSchneider and Hase(2009). The im-
provement in the quality of the retrieved water vapour pro-
file is documented in Fig.5 when comparing the third panel
from the left, where profiles are retrieved by applying a Voigt
line shape model and theGordon et al.(2007) water vapour
line parameters, with the fourth panel from the left, where a
speed dependent Voigt line shape model and theSchneider
and Hase(2009) parameters are applied.

In addition, applying a refined line shape model allows
for a further improved interpretation of the measured spec-
trum and leads to larger DOF values. This can be observed
by comparing the third and the fourth panel from the left of
Fig. 4.

Figure 6 demonstrates that applying a speed dependent
Voigt line shape model also improves the quality of theδD
profiles. They are now in reasonable agreement with the
a priori expectedδD profiles (third panel from the left),
whereas theδD profiles produced by applying a Voigt line
shape model show an unexpected maximum at about 7 km
(second panel from the left).

3.5 Atmospheric emissions

Some line-by-line models used for simulating solar absorp-
tion spectra approximate the radiances by applying Eq. (1)
disregarding atmospheric self emission. Figure7 shows the
relative absorption at the line centres (i.e. baseline offset at
the line centre related to the radiances at the line shoulders)
of two strong water vapour lines versus the slant PWVs. The
black squares show the measurement. Both lines are satu-

Fig. 7. Relative baseline offset
(

radiances at line centre
radiances at line shoulder

)
at the cen-

tres of strong water vapour lines. Left panel: line at low frequency
(795 cm−1); Right panel: line at higher frequency (1198 cm−1).
Black squares: measurement; Blue triangle: no consideration of
atmospheric emission; Red circles: consideration of atmospheric
emission.

rated for slant PWVs above 3 mm. We observe that the base-
line offset at 796 cm−1 is 0.4%, and at 1198 cm−1 it is 0.1%.
We find that for frequencies below approx. 1000 cm−1 the
baseline offset caused by atmospheric emission is larger than
the measurement noise. The blue triangles depict radiances
simulated according to Eq. (1), i.e. by disregarding atmo-
spheric emission, and the red circles show the calculation
which include atmospheric emissions. We observe that the
baseline offset is dominated by atmospheric emission.

The consideration of atmospheric emission prevents a mis-
interpretation of the strong water vapour signatures at low
frequencies. Considering the atmospheric emission slightly
increases the DOF values by 0.1 and reduces the DOF 1σ

variability by 0.1 (compare forth and fifth panel from the left
of Fig. 4). In addition, it slightly improves the quality of the
FTIR water vapour profiles (the scatter and mean difference
to the RS92 profile are reduced; compare fourth and fifth
panel from the left of Fig.5). In the case of solar absorp-
tion spectra, these effects are very small since the intensity
of the atmospheric emission is less than 0.5% of the solar in-
tensity. However, when analysing lunar absorption spectra,
it is essential to consider atmospheric emission (Palm et al.,
2008).

3.6 Joint retrieval of temperature profiles

The cross sectionsσx (see Eq.1) depend on temperature
and pressure. Standard inversion algorithms apply temper-
ature profiles from meteorological reanalyses or data mea-
sured close to the FTIR site by radiosondes. However, these
data may be erroneous, first, due to errors in the radiosonde
observations (reanalysis data are also based on radiosonde
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measurements), and second, due to temporal and spatial mis-
match between radiosonde and FTIR measurements.Schnei-
der and Hase(2008) showed that for standard O3 inversions
these temperature uncertainties are the leading error source
and they suggested to retrieve the temperature profile simul-
taneously with the trace gas profile. In the case of O3, a
joint retrieval of temperature profiles significantly improves
the quality of the FTIR O3 data (Schneider and Hase, 2008;
Schneider et al., 2008).

The fifth and sixth panel from the left of Fig.5 document
how a joint retrieval of temperature profiles improves the
quality of the FTIR water vapour profiles. If the reanalysis or
radiosonde temperatures are used, we observe a mean differ-
ence and scatter between RS92 and FTIR of(+26.1±33.5)%
at 3 km, (−18.3±24.8)% at 5 km, and(−2.3±29.4)% at
9 km. For a joint inversion of the temperature profile, we get
(−15.3±19.7)% and(+2.7±19.3)% at 5 and 9 km, respec-
tively. Then the middle and upper tropospheric FTIR water
vapour amounts are of very good quality, since the remain-
ing scatter of about 20% is in agreement with the expected
uncertainty of the RS92 data (Vömel et al., 2007). Surpris-
ingly, in the lower troposphere the scatter slightly increases
from ±33.5% to±38.1%. We think that this increase is spu-
rious given the relatively large inhomogeneity in lower tro-
pospheric water vapour fields and the fact that the RS92 and
FTIR detect different airmasses.

The joint temperature inversion also reduces the variability
in δD values as retrieved for the lower troposphere, from 110
permil to 95 (compare third and fourth panel from the left
of Fig. 6), providing for a better agreement with other lower
troposphericδD measurements (e.g.Ehhalt, 1974).

Concerning the DOF values, the joint temperature inver-
sion slightly increases the DOFs for measurements made at
high slant PWVs and slightly decreases the DOFs for mea-
surements made at low slant PWVs (see Fig.4). The 1σ
variability of the DOFs for the analysed ensemble reduces to
0.22, i.e. the H2O results under different atmospheric condi-
tions are more consistent.

4 Conclusions

Tropospheric water vapour is highly variable. For a precise
monitoring of both very humid and very dry atmospheric
states, the application of many different lines with differ-
ent strength and pressure broadening coefficients is essential.
Furthermore, the inversion must be performed on a logarith-
mic scale. Only this assures a proper constraint of tropo-
spheric water vapour amounts and a statistically optimal so-
lution. In addition, the logarithmic scale inversion allows for
an optimal estimation of HDO/H2O ratio profiles. A linear
scale inversion provides no statistically optimal solution and
no possibility for an optimal estimation of HDO/H2O ratios.

The logarithmic scale inversion is important, but for an ef-
fective ground-based FTIR water vapour inversion we need

to remove the inconsistencies when simulating the spectral
signatures of a large number of different lines. The incon-
sistency between the HDO lines (situated above 1220 cm−1)
and the H2O lines (between 775 and 1200 cm−1) is particu-
larly large. The application of a speed dependent Voigt line
shape model together with the improved spectroscopic pa-
rameters given inSchneider and Hase(2009) removes a large
part of these inconsistencies and significantly improves the
quality of the FTIR profiles. Applying a large set of weak and
strong water vapour signatures, performing the inversion on
a log-scale, and using improved spectroscopic parameters in-
cluding a speed dependent Voigt line shape model adequately
exploits ground-based FTIR measurements. The FTIR sys-
tem then provides tropospheric water vapour profiles pre-
cisely better than 25–30% and systematic errors of smaller
than 50% as well as reasonable HDO/H2O ratio profiles. Our
analysis recipes significantly reduce the dependency of the
DOFs on the atmospheric condition, i.e. they produce con-
sistent profiles even for largely varying atmospheric water
vapour contents. Our recipes are essential for retrieving pro-
files but do not significantly affect the total precipitable water
vapour (PWV) amounts. All the different retrieval setups al-
low a very precise PWV monitoring (precision of about 2%).

Considering atmospheric emission and, in particular, per-
forming a joint temperature profile inversion further im-
proves the quality of the FTIR profiles. Then the systematic
difference and scatter between the RS92 and the FTIR data
is reduced to 15 and 20%, respectively. This scatter value is
close to the expected precision of the RS92 data of 5–20%
(Vömel et al., 2007) and this means that when applying all
the features of the IMK-ASF water vapour analysis as pre-
sented in Sect.3, a ground-based FTIR system provides tro-
pospheric water vapour profiles with good precision and with
the vertical resolution as documented in Fig.1.
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