
Modeling, Identification and Control, Vol. 29, No. 2, 2008, pp. 39–49

General Solutions to Functional and

Kinematic Redundancy

P̊al Johan From 1 Jan Tommy Gravdahl 1

1Department of Engineering Cybernetics, Norwegian University of Science and Technology, N-7491 Trondheim,

Norway. E-mail: {from,tommy.gravdahl}@itk.ntnu.no

Abstract

A systematic and general approach to represent functional redundancy is presented. It is shown how this
approach allows the freedom provided by functional redundancy to be integrated into the inverse geometric
problem for real-time applications and how it can be utilised to improve performance. A set of new iterative
solutions to the inverse geometric problem, well suited for kinematically redundant manipulators, is also
presented. ∗

Keywords: Robotics, Kinematics, Redundancy

1 Introduction

This paper addresses functional and kinematic redun-
dancy. Both types of redundancy provide a freedom
that should be utilised in order to improve the per-
formance of the manipulator. Two separate optimi-
sation problems are formulated; (a) if functional re-
dundancy is present, choose the desired (optimal) end-
effector configuration; and (b) if kinematic redundancy
is present, find the joint positions from the end-effector
position/orientation that optimises a given cost func-
tion.

In general, motion control is performed in opera-
tional space or joint space (Khalil and Dombre, 2002).
Operational space control has the advantage that the
end-effector position and orientation are given in the
Cartesian space. For operational space control, the
transformation from operational to joint space is ob-
tained by the inverse kinematic problem, which finds
the joint velocities from the desired end-effector veloc-
ities. The operational space control has many advan-

∗ c©[2007] IEEE. Reprinted, with permission, from P̊al Johan
From and Jan Tommy Gravdahl, ”General Solutions to Func-
tional and Kinematic Redundancy”, Proceedings of 46th
IEEE Conference on Decision and Control, New Orleans,
USA, December 2007.

tages and is fast to compute. A drawback is that it is
very dependent of the inverse Jacobian and that the
transformation from operational to joint space is per-
formed inside the feedback loop so that the time-step
of the controller strongly depends of the complexity of
this transformation (Perdereau et al., 2002).

For joint space control, the transformation from op-
erational space to joint space is obtained by the inverse

geometric problem, i.e. to find the joint positions from
the desired end-effector position/orientation. Then
some joint space control scheme, independent of the
task, can be designed. The disadvantage of this
approach is that the inverse geometrics is a time-
consuming problem to solve. The advantage is that
the transformation from operational to joint space is
moved outside the control loop. When kinematic re-
dundancy is present, the inverse geometric approach
also allows for optimising a general secondary criteria,
and is not dependent of finding a suitable inverse of
the Jacobian, such as the Moore-Penrose generalised
inverse, as for the inverse kinematic problem.

Functional redundancy comes from a freedom in the
specifications of the end-effector configuration and is
hence task dependent. One example of functional re-
dundancy is the pointing task where only the direc-

ISSN 1890–1328 c© 2008 Norwegian Society of Automatic Controldoi:10.4173/mic.2008.2.1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26781768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Modeling, Identification and Control

tion of the end-effector is specified. A systematic and
general approach to represent functional redundancy
is presented. The freedom due to the pointing task is
represented by a continuous set of orientations, called
a quaternion volume, and the optimal orientation is
chosen among these. It is shown that if an orienta-
tion error is allowed, this can also be represented by a
quaternion volume. It is also shown that performance
is improved in both cases.

When path planning is to be integrated into the in-
verse geometric problem, this can be done by methods
based on global or local path information. Most of
the solutions presented in literature are local (Khalil
and Dombre, 2002; Perdereau et al., 2002; Grudic and
Lawrence, 1993). Optimal global solutions are far more
complex and for the time being not suitable for real-
time applications. One approach to solve the path-
planning problem globally is to find a sub-optimal so-
lution of a general minimisation problem. The problem
is then to formulate some cost function, representing
both global and local objectives. To illustrate the ad-
vantages of the general representation of the freedom
provided by the functional redundancy, a sub-optimal
approach based on complete path information which
does not increase the computation time notably is pre-
sented. This approach can be integrated into any in-
verse geometric/kinematic algorithm and is suitable for
real-time applications.

Closed-form solutions to the inverse geometric prob-
lem are only known for certain types of robotic ma-
nipulators, so numerical approaches are widely stud-
ied and in many cases, such as for most redundant
manipulators, represent the only solution to the prob-
lem. Numerical solutions are in general more time-
consuming than closed-form solutions and are hence
more suitable for off-line path planning. In this pa-
per, the inverse geometric problem is treated as a pure
optimisation problem which allows the programmer to
include a secondary objective (Grudic and Lawrence,
1993; Wang and Chen, 1991; Luenberger, 2003). When
redundancy is present, the redundant degrees of free-
dom are used to optimise this objective.

The novelty of the method presented is that the min-
imum of the cost function with respect to each joint is
found analytically and this is exploited to develop a set
of computationally efficient algorithms. The solution
is shown for a cost function representing the position
and orientation error of the end effector but can be
expanded to include a general class of cost functions
representing both global and local objectives.

Five algorithms are presented. The first three use
coordinate descent which looks at one joint at the time.
It is well known that the convergence of coordinate
descent is slower than steepest descent and Newton’s

method. The advantage is that the analytic solution
presented is a lot faster to solve than search algorithms
in general. The last two methods can be looked upon as
approximations of steepest descent where the gradient
is estimated. It is argued that the step size can be set
as a constant. Hence, an analytic and computationally
efficient alternative to the steepest descent is presented.

2 Representing Rotations

2.1 The Unit Quaternion

Any positive rotation φ about a fixed unit vector n can
be represented by the four-tuple (Kuipers, 2002)

Q =

[
q0
q

]
, (1)

where q0 ∈ R is known as the scalar part and q ∈ R
3 as

the vector part. The unit quaternionQ(φ,n) is written
in terms of φ and n by

q0 = cos (
φ

2
), q = sin (

φ

2
)n, (2)

where n is unitary. Note that Q and −Q repre-
sent the same rotation. This is referred to as the
dual covering. The quaternion identity is given by

QI =
[
1 0 0 0

]T

. Let P =
[
p0 p1 p2 p3

]T

and Q =
[
q0 q1 q2 q3

]T

. A multiplication of two
quaternions is given by the quaternion product

P ∗Q =

p0q0 − p1q1 − p2q2 − p3q3
p0q1 + p1q0 + p2q3 − p3q2
p0q2 + p2q0 + p3q1 − p1q3
p0q3 + p3q0 + p1q2 − p2q1

 . (3)

A pure quaternion is a quaternion with zero scalar

part. Any vector, v̄ =
[
x y z

]T

can be represented

by a pure quaternion v =
[
0 v̄

]T

. The conjugate of a

quaternion is defined as Q∗ =
[
q0 −q1 −q2 −q3

]T

.

2.2 Quaternions and Rotations

Let a vector, v̄1, be represented by the pure quaternion
v1. This vector is rotated φ radians around the axis n

by

v2 = Q ∗ v1 ∗Q
∗. (4)

Every vector v̄ ∈ R
3 can be represented by a pure

quaternion. The resulting vector, v̄2, is then of the
same length as v̄1 if and only if Q is a unit quaternion.

40

From and Gravdahl., “Functional and Kinematic Redundancy”

3 Quaternion Volumes

3.1 General Definition

A systematic approach on how to represent sets of ori-
entations, as presented in From and Gravdahl (2007),
is given. A set of frames that correspond to a refer-
ence frame by a rotation about a fixed axis, n, can be
represented by a quaternion and some restriction1

Q(φ,n), for φmin < φ < φmax. (5)

When restrictions are not limited to one axis only, a
more general description of all allowed orientations can
be defined by a combination of rotations given by the
quaternion product of two or more quaternions and
their restrictions. In this paper, only sets of frames
that can be described by a sequence of rotations about
fixed axes are treated.

Definition 3.1 (Quaternion Volume) A quater-

nion volume, Q⊗, is defined as

Q⊗,{Q(φ1, . . . , φn,n1, . . . ,nn)|φ1,min ≤ φ1 ≤ φ1,max

... (6)

φn,min ≤ φn ≤ φn,max}

for n ≥ 1 and where

Q(φ1, . . . , φn,n1, . . . ,nn) = Q(φ1,n1)∗· · ·∗Q(φn,nn).
(7)

3.2 Quaternion Volumes by Rotations

Sequences

A rotation sequence describes a rotation about one co-
ordinate axis followed by a rotation about another of
the coordinate axes in the rotated coordinate system.
A general framework on how to construct easily visual-
isable quaternion volumes by rotation sequences is pre-
sented. The rotation sequence starts with two subse-
quent rotations about two coordinate axes, represented
by the quaternion Qs. This defines the direction of the
z-axis. The last degree of freedom is added by a ro-
tation about the direction vector, here the z-axis, by
Qz. In Equation (4), let Qz represent the vector to be
rotated and Qs the quaternion describing the direction
of this vector. Then the rotation sequence

V = Qs ∗Qz ∗Q
∗

s (8)

1The dual covering allows every rotation to be described twice.
In this paper, however, it is only described once, so that all
angles are assumed to be in the interval (−π, π). It is also
assumed that all angles of inverse trigonometric functions
are in this interval with the correct sign. For arctan, this is
denoted arctan 2.

represents the direction of the z-axis for a given ro-
tation Qs given by the direction of the vector part
of V and the rotation about the z-axis given by the
scalar part or length of the vector part of V by ψ =
2 arcsin(‖v̄‖) = 2 arccos(v0)sgn(ψ). Henceforth, V is
called a visualising quaternion. Note that V does not
represent a rotation. It is used as a tool to visualise
rotations and as a help to define an appropriate set
of frames for different applications. The visualising
quaternion and the corresponding quaternion should
be viewed upon as a pair, (Q,V), where the visualis-
ing quaternion, V , gives an intuitive description of a
rotation of a frame by Q.

Let the vector part of the visualising quaternion be
plotted as a point in the xyz-sphere. Then the direc-
tion of the z-axis, rotated by the corresponding quater-
nion is given by the vector from the origin to this point,
and the rotation about the z-axis itself is given by
the length of this vector. Hence, a continuous set of
quaternions (a quaternion volume) is represented by a
“cloud” in the xyz-sphere describing the corresponding
set of orientations.

The quaternion that rotates the reference frame into
the orientation described by Equation (8) is then given
by

Q = Qs ∗Qz. (9)

Finally, the quaternion volume is given by restricting
the allowed rotations of each quaternion.

.

Given a visualising quaternion volume by the se-
quence

V⊗ = Q⊗

s ∗Q⊗

z ∗ (Q⊗

s)∗ (10)

and the restrictions on Q⊗
s and Q⊗

z . Then the
corresponding quaternion volume that results in
the set of orientations described by V⊗ is given by

Q⊗ = Q⊗

s ∗Q⊗

z (11)

with the same restrictions applied to Q⊗ as to V⊗.

Figure 1 shows the difference between the quaternion
volume and the visualising quaternion volume plotted
in the xyz-sphere. Note that the dual covering also
applies to the visualising quaternion volume.

3.3 Reorientation of Quaternion Volumes

Let Q⊗ be a quaternion volume and the quaternion
P represent some transformation on Q⊗. Then the
transformation Q⊗

P = P ∗Q⊗ rotates this set of frames
by a rotation P .

Proposition 3.1 (Transformation of QV) Any

quaternion volume, Q⊗, represented with respect to

41

Modeling, Identification and Control

Figure 1: The quaternion volume and the visualising
quaternion volume in the xyz-sphere. The
upper plots show a freedom about the z-
axis and the lower plots show all directions
that span out a cone and the orientations
about these direction vectors. The visualis-
ing quaternion volume gives a more intuitive
picture of the orientations described by the
quaternion volume.

the identity frame can be transformed into another

quaternion volume by

Q⊗

P = P ∗Q⊗, (12)

where the orientations represented by Q⊗

P relate to P

in the same way as Q⊗ relates to the identity frame.

proof The proof is given in From and Gravdahl
(2007).

Similarly, the transformation Q⊗

P = P ∗ ∗Q⊗ allows
the set of frames represented by the quaternion volume
to be represented with respect to a new reference frame
P . The transformation induced by changing from one
reference orientation to another is called reorientation

(Alpern et al., 1993).

4 Optimisation Algorithms

4.1 Descent Methods

This section presents some important approaches to
solve a general optimisation problem by iterative algo-
rithms (Luenberger, 2003).

Definition 4.1 (Descent Algorithm) An algo-

rithm that for every new point generated, decreases

the corresponding value of some function, is called a

descent algorithm.

If an algorithm is not descent, it is not guaranteed
that the cost function decreases at every iteration. This
property is desirable, but not required. Luenberger
(2003) shows that the first order necessary condition
is satisfied (∇f = 0) for descent algorithms. A simi-
lar proof cannot be given for algorithms that are not
descent.

4.2 Steepest Descent

The most common method to minimise a function of
several variables is the steepest decent, or the gradient
method. The steepest descent is given by the iterative
algorithm (Luenberger, 2003)

x
k+1 = x

k − αk∇f(xk)T (13)

where αk is a non-negative scalar minimising f(xk −
αk∇f(xk)). αk is found by a search in the direction of
the negative gradient for a minimum of this line. Con-
vergence to a point where ∇f(x) = 0 can be proven.

4.3 Coordinate Descent Methods

The coordinate descent algorithm optimises a given
cost function f(x), x ∈ R

n, by sequentially minimis-
ing with respect to each of the components, xi, for
i = 1 . . . n. The convergence of coordinate descent
is in general poorer than the steepest descent. How-
ever, they are easy to implement and, as the gradient is
not required, a fast solution to the sub-problem makes
these algorithms relatively fast.

One important issue that needs to be addressed is
objectivity (observer indifference). In this paper, the
cost function is an error metric, i.e. a distance metric
on SE(3). Note that an algorithm might be descent for
one metric, but not for another. An unfortunate choice
of distance metric on SE(3) may cause the algorithm
to fail to converge (Gwak et al., 2003).

5 Solutions to the Inverse

Geometric Problem

If kinematic redundancy is present, this should be in-
cluded in the inverse geometric algorithm to improve
performance. This section presents a set of algorithms,
all based on the same analytical solution to a minimi-
sation problem on SE(3).

In the following, the principal cost function, repre-
senting the position and orientation error is presented.

42

From and Gravdahl., “Functional and Kinematic Redundancy”

All cost functions presented are well-defined. If the cost
function is extended to also include some secondary
objective, this will depend on the task, and must be
worked out in each case. The problem is solved for
revolute joints only.

5.1 Position and Orientation Error

The algorithms in this section are based on two dif-
ferent optimisation problems. One with the position
and orientation treated separately, and one where the
cost function represents the sum of the position and
orientation error.

5.1.1 Position Cost Function

Let the desired position Pd =
[
0 xd yd zd

]T

and

current position Pc =
[
0 xc yc zc

]T

be given in
the frame of joint i. Assume that the current position
can be rotated about the z-axis, and hence represents
a 1 degree of freedom, given by the quaternion vol-

ume Q⊗
z =

[
cos (ψ2) 0 0 sin (ψ2)

]T

for −π < ψ < π.
Then, the solution to the problem of finding the quater-
nion within the quaternion volume that takes Pc as
close to Pd as possible is given by minimising

gp(ψ) = (xd − x̂c)
2 + (yd − ŷc)

2 + (zd − ẑc)
2, (14)

where

P̂⊗

c = Q⊗

z ∗ Pc ∗ (Q⊗

z)∗. (15)

By noting that

P̂⊗

c =

0
xc cosψ − yc sinψ
yc cosψ + xc sinψ

zc

 for − π < ψ < π, (16)

gp(ψ) can be written as

gp(ψ) = Kψ + aψ cos (ψ) + bψ sin (ψ), (17)

where

Kψ = x2
d + y2

d + z2
d + x2

c + y2
c + z2

c − 2zdzc, (18)

aψ = −2(xdxc + ydyc), (19)

bψ = 2(xdyc − ycxd). (20)

Similarly when the freedom is given about the y-axis,
gp(θ) is given by

gp(θ) = Kθ + aθ cos (θ) + bθ sin (θ), (21)

where

Kθ = x2
d + y2

d + z2
d + x2

c + y2
c + z2

c − 2ydyc, (22)

aθ = −2(xdxc + zdzc), (23)

bθ = 2(zdxc − xdzd). (24)

The rotation that minimises the position error of the

end effector is given by setting
dgp(ψ)

dψ = 0 and
dgp(θ)

dθ =
0:

ψmin = arctan 2

(
bψ

aψ

)
, θmin = arctan2

(
bθ

aθ

)

(25)

for a rotation about the z- and y-axes, respectively.

5.1.2 Orientation Cost Function

Similarly, the orientation error can be given by the dif-
ference between the desired orientation, D, and Ĉ⊗.
Let D and Ĉ⊗ be given in the frame of joint i and let
Ĉ⊗ = Q⊗

z ∗ C represent all the reachable orientations
by rotating about z-axis. Then,

go(ψ) =(ĉ0(ψ) − d0)
2 + (ĉ1(ψ) − d1)

2

+ (ĉ2(ψ) − d2)
2 + (ĉ3(ψ) − d3)

2. (26)

go(ψ) is given by

go(ψ) = Kψ + cψ cos (
ψ

2
) + dψ sin (

ψ

2
), (27)

where

Kψ = 2, (28)

cψ = −2(c0d0 + c1d1 + c2d2 + c3d3), (29)

dψ = 2(c3d0 + c2d1 − c1d2 − c0d3). (30)

Similarly when the freedom is given about the y-axis,
go(θ) is given by

gp(θ) = Kθ + cθ cos (
θ

2
) + dθ sin (

θ

2
), (31)

where

Kθ = 2, (32)

cθ = −2(c0d0 + c1d1 + c2d2 + c3d3), (33)

dθ = 2(c3d0 + c2d1 − c1d2 − c0d3). (34)

The advantage of this approach is that the cost func-
tion can be used as an error measure directly. The
quaternion representation also allows the optimal ro-
tation to be computed somewhat faster, but then the
error function needs to be calculated separately as in
Johnson (1995) and From (2006).

5.2 Orientation and Position Cost

Function

The total position and orientation error can be given
by g(ψ) = gp(ψ) + go(ψ). gp(ψ) and go(ψ) are taken

43

Modeling, Identification and Control

from Equations (17) and (27), respectively, so that the
minimum of g(ψ) is given by

dg

dψ
= bψ cos (ψ)+dψ cos (

ψ

2
)−aψ sin (ψ)−cψ sin (

ψ

2
) = 0.

(35)
This can be turned into an equation of degree four
which can be solved analytically, for example by Fer-
rari’s method.

However, by avoiding the half angles, the solution is
found simply by the inverse tangent and the computa-
tional complexity is reduced.

In Wang and Chen (1991) a cost function of ψ is
found, and this is maximised for every iteration. In
the following, a cost function, representing the sum of
the position and orientation error is presented. This
cost function can then be used as a threshold limit
directly. The approach resembles the one in Ahuactzin
and Gupka (1999), but allows the programmer to weigh
the importance of the position and orientation error.

The cost function can be written as a function of
ψ by representing the desired orientation of each joint
by a rotation of the three unit vectors by xQd = Qd ∗
ei ∗ Q

∗
e.

yQd and zQd are constructed similarly from
ej and ek where ei, ej , ek are the unitary axes. Then
the unitary axes are transformed by the quaternion Qd
into

xQd = Qd ∗ ei ∗Q
∗

d =

0
q20 + q21 − q22 − q23
2(q1q2 + q0q3)
2(q1q3 − q0q2)

 , (36)

yQd = Qd ∗ ej ∗Q
∗

d =

0
2(q1q2 − q0q3)
q20 − q21 + q22 − q23
2(q0q1 + q2q3)

 , (37)

zQd = Qd ∗ ek ∗Q
∗

d =

0
2(q0q2 + q1q3)
2(q2q3 − q0q1)
q20 − q21 − q22 + q23

 . (38)

Then the cost function can be written as

g(ψ) = wpgp(ψ) + wogo(ψ) (39)

where wp and wo are constant weights, gp(ψ) is given
by Equation (17) and gp(ψ) is found similarly by rep-
resenting the difference between the desired position of
the unitary axes and the current position of the same
axes. The desired position for the x-axis is given by
xQd =

[
0 xxd

xyd
xzd

]
. Assume that the z-axis

is the revolute axis. Then the position of the unitary

x-axis is given by xQc =
[
0 cos (ψ) sin (ψ) 0

]
and

the difference is written as

xgo(ψ) = (xxd − cos (ψ))2 + (xyd − sin (ψ))2 + (xzd − 0)2

= 2 − 2xxd cos (ψ) − 2xyd sin (ψ), (40)

and similarly for the y- and z-axes. By adding these
three equations to Equation (17), g(ψ) can be written
as

g(ψ) = wpgp(ψ) + wo(
xgo(ψ) + ygo(ψ) + zgo(ψ))

= Kψ + aψ cos (ψ) + bψ sin (ψ) (41)

where

Kψ = wp
(
x2
d + y2

d + z2
d + x2

c + y2
c + z2

c − 2zdzc
)

+ wo (6 − 2zzd) ,

aψ = −2wp(xdxc + ydyc) − 2wo(
xxd + yyd),

bψ = 2wp(xdyc − ydxc) + 2wo(
yxd −

xyd).

Similarly when the y-axis is the revolute axis

g(θ) = Kθ + aθ cos (θ) + bθ sin (θ) (42)

where

Kθ = wp
(
x2
d + y2

d + z2
d + x2

c + y2
c + z2

c − 2ydyc
)

+ wo (6 − 2yyd) ,

aθ = −2wp(xdxc + zdzc) − 2wo(
xxd + zzd),

bθ = 2wp(zdxc − xdzc) + 2wo(
xzd −

zxd).

The minimum of the cost function, with respect to each
joint, is given by Equation (25) and the error is given
by E = K + a (set ψ = θ = 0 in (41) and (42)).

For redundant manipulators, the cost function can
be expanded to include an addition term

g(ψ) = wpgp(ψ) + wogo(ψ) + wrgr(ψ). (43)

Whenever gr can be written on the form of (41) the
same analytical solution to the sub-problem can be
found. This is a large class of cost functions that allows
a great variety of secondary objectives to be included
in the cost function, such as distance to obstacles and
elbow position.

5.3 Algorithm 1 - Coordinate Descent

The coordinate descent algorithm optimises a cost
function with respect to each of the variables of the
cost function (Wang and Chen, 1991). That is, for
each joint in the chain, the minimum of the cost func-
tion, when only the respective joint is moved, is found.

There are several different ways the algorithm can
work its way through the chain:

44

From and Gravdahl., “Functional and Kinematic Redundancy”

• Start from the end and work its way towards the
base.

• Start from the base and work its way towards the
end.

• Start from one end and sweep its way towards
the other and then back (Aitken double sweep
method).

• If the gradient is known, select the coordinate (in
this case the joint) that corresponds to the largest
(in absolute value) component of the gradient vec-
tor (Gauss-Southwell Method, presented in the
sub-section 5.4).

The cost function must be objective, preferably de-
scribing some physical property, as the sum of the po-
sition and orientation error. Objectivity is important
and in this case sufficient to guarantee that the algo-
rithm is descent (to a point satisfying the first order
necessary condition). The cost function should also be
computationally efficient, i.e. the minimum of the cost
function should be found analytically.

The cost function presented in Section 5.2 have these
properties. This cost function, together with an al-
gorithm that starts from the end and moves its way
towards the base, is a fast and stable algorithm.

5.4 Algorithm 2 - “Gauss-Southwell” with

Cost Function

The Gauss-Southwell Method determines the largest
component of the gradient ∇g(x) and chooses this
for descent. This sub-section presents an alternative
approach, where the minimum of the cost function is
found for each joint. The joint that corresponds to the
smallest possible value of the cost function is then cho-
sen. This is found simply by Equation (25). This ap-
proach is computationally more efficient than to com-
pute the gradient. It will also converge faster (at least
in the beginning) because the joint that corresponds to
the maximum possible decrease of the cost function is
always chosen. This algorithm is descent.

5.5 Algorithm 3 - Gauss-Southwell with

Gradient

The method presented above can be modified some-
what so that each joint is chosen by the steepest de-
scent instead of maximum possible descent. Assume
that the position of each joint that results in the min-
imum of the cost function g(x) is found. Denote this
by x̂ki for joint i and iteration k. Then, the rate of

Figure 2: General structure of a robotic manipulator.

decrease with respect to this joint is estimated by

∂g(xki)

∂xki
≈
g(x̂ki) − g(xki)∣∣x̂ki − xki

∣∣ , for i = 1 . . . n. (44)

Then the joint with the largest corresponding abso-
lute value of the “gradient” is chosen. This approach is
different from the solution given in Section 5.4 in that
not only the absolute minimum is taken into account,
but also how much the manipulator has to move re-
flects the choice of search direction, which leads to a
more energy preserving solution. The joint update is
then given by

xk+1
i = xki + wi(x̂

k
i − xki), with 0 < wi ≤ 1. (45)

5.6 Algorithm 4 - Manipulator Dependent

Steepest Descent

Equation (47) gives information about all the joints.
Another approach is thus to apply (45) to all the joints
for every iteration. The next step is then to find the
weights, wi.

The manipulator structure should be taken into ac-
count to improve convergence. For instance if two
joints work in the same “direction” in the operational
space, they should be scaled down so that the sum
of the two joints will result in the desired movement,
and not each one looked at separately. By studying
the structure of the manipulator in Figure 2, joint 1 is
seen to be very much decoupled from the others when
it comes to the effect on the end-effector position and
orientation, and thus xk+1

1 is set close to x̂k1 . Joint 2
and 3, however, are strongly coupled, so w2,3 should
be set to about 0,5. The three wrist joints should also
be scaled due to coupling. In addition, this scaling
vector should be scaled down somewhat by a factor
0 < ws ≤ 1, to ensure convergence. The following
scaling vector is suggested for a manipulator with a
structure similar to the one in Figure 2:

W = ws
[
1 0.5 0.5 0.3 0.3 0.3

]
. (46)

45

Modeling, Identification and Control

5.7 Algorithm 5 - Steepest Descent with

Gradient Estimate

Equation (44) can also be used to make an estimate of
the gradient of the cost function. If the absolute sign
is removed, the gradient of g(xk) can be estimated as

∇̂g(xk) ≈

g(x̂k
1
)−g(xk

1
)

x̂k
1
−xk

1

...
g(x̂k

n)−g(xk
n)

x̂k
n−xk

n

(47)

As g(x) is on the form of (41),
∣∣∣∇̂g(xki)

∣∣∣ ≤
∣∣∇g(xki)

∣∣

for all i so that ∇̂g(x) is a conservative estimate of
∇g(x).

Now, Equation (47) can be applied to Equation
(13) directly. The “step size” can be set similar to
Equation (46) with (somewhat conservatively) ws =
mini=1...n

∣∣x̂ki − xki
∣∣. When the solution approaches

zero, the it can be simplified to ws =
∣∣x̂k1 − xk1

∣∣.
It should be noted that when Equation (45) is ap-

plied to all joints, or the estimate of the gradient is
applied in Equation (13), the algorithm is not descent.

6 Pointing Task Improved

Trajectory Planning

Functional redundancy, as opposed to kinematic redun-
dancy, does not increase production cost of the manipu-
lator, nor does it make the manipulator structure more
complex. It is important to recognise functional redun-
dancy and to analyse how overall performance changes
when introducing this freedom. For the pointing task,
only the direction of the central axis (in this case the
z-axis, see Figure 2) of the end effector is specified, so
that the orientation about the central axis can be cho-
sen freely, and thus represents one degree of freedom (1
DOF). This functional redundancy can be exploited to
improve the overall performance of the manipulator in
many ways. In this paper, this redundancy is exploited
to improve the trajectory velocity of the end effector.

Assume that the end effector is to follow a path in
the xy-plane, as in Figure 3, with constant velocity2.
In general, the joints close to the base require the most
energy due to the total mass to be moved. A simple ap-
proach to minimise the velocity of joint 1 is presented.
This is obtained by, for every time step, setting the

2In this paper, when it is stated that the end-effector velocity is
constant, it is meant that the velocity of some critical point
of the tool is constant. The location of this point depends on
the task, and in most cases is a point on the surface, which
is the case for welding, coating, etc.

1.4 1.6 1.8 2 2.2 2.4 2.6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

y

Samplepoints
turning points
Surface
Path

θ
ψ

0

Figure 3: A simple path in the xy-plane. The dotted
lines show two examples on how the cross
section of the visualising quaternion volume
in Section 8 can be chosen.

desired orientation by

Q⊗

d = Qd ∗Q
⊗

z (48)

where Qd can be set as a rotation of π about the y-
axis (makes the end effector orthogonal to the sur-

face) given by Qd =
[
0 0 1 0

]T

and Q⊗
z =

[
cos (ψ2) 0 0 sin (ψ2)

]T

is a rotation by ψ about the

z-axis and does not affect the orthogonality. Q⊗

d is then

given byQ⊗

d =
[
0 sin (ψ2) cos (ψ2) 0

]T

and some re-
striction on ψ. A simple and efficient way to choose ψ
is by

ψ = arctan2
(y
x

)
(49)

where x and y are the desired positions in the xy-plane
for the current time step. The physical interpretation
of ψ is given in Figure 3.

7 Orientation Error

The freedom represented by the pointing task can be
extended somewhat, so that, instead of a set of allowed
orientations about the central axis, a cone or pyramid
of allowed orientations pointing in approximately the
same direction as the central axis can be allowed. See
Section 3 and From and Gravdahl (2007) for details
on how to construct such quaternion volumes.

Let ψ be found in the same way as in the previous
section, but instead of a rotation about the z-axis (in
the end-effector coordinate frame), a rotation about
the x-axis is added. This will, unlike the approach from
the previous section, add an orientation error. This
orientation error will push the wrist of the manipulator
towards the y-axis so that it allows the first joint to
move less.

46

From and Gravdahl., “Functional and Kinematic Redundancy”

−25 −20 −15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Error about y−axis [degrees]

E
rr

or
 a

bo
ut

 x
−

ax
is

 [d
eg

re
es

]

Figure 4: The orientation error by the method de-
scribed in Section 7.

The same approach is done with the y-axis. From
Figure 3, θ will add an orientation error that pushes
the wrist towards the vertical line dividing the surface
into two equal parts.

In many applications like coating, welding and
steaming, a small orientation error will not reduce the
quality of the job performed. Figure 4 shows how the
orientation error around the y- and z-axes changes for
the given path. Note that this closely resembles the
path in the xy-plane.

8 Quaternion Volume

The approach presented above is suitable for simple
cases as the one presented. Consider the more general
case when the end effector must follow a given path on
some surface. Much work has been done one finding
an optimal path on a surface, and it is assumed that
this path is given. The path given in Figure 3 is a good
example of such a path for heating or coating a surface.
Assume a plane or approximately plane surface. Fur-
ther, the functional redundancy should be investigated
(pointing task, orientation error, etc) and represented
by an appropriate quaternion volume.

Assume the restriction on the allowed orientations
are given by the quaternion volume in Equation (11).
Then Q⊗

s represents the freedom from the orientation
error while Q⊗

z is the freedom about the end-effector
z-axis. The procedure can be summarised in two steps:

• Functional redundancy analysis: Given the sur-
face and the specifications of the end-effector po-
sition/orientation, determine the quaternion vol-
ume.

• Integrated inverse geometric problem: Define
some rule to chose the optimal or sub-optimal ori-
entation that is inside the quaternion volume and

solve the inverse geometric problem for this orien-
tation, the desired position and subject to some
cost function.

The functional redundancy analysis can again be di-
vided into two parts, to determine Q⊗

s and to deter-
mine Q⊗

z . A test to verify that a quaternion satisfies
the restrictions given by the quaternion volume is given
in From and Gravdahl (2007).

Assume, without loss of generality, that the surface
is in the xy-plane. As Q⊗

s describes the orientation er-
rors, it can be visualised in this plane. This is done by
looking at the effect the quaternion has on the central
axis, see Section 3 and From and Gravdahl (2007).
The quaternion volume is a continuous set of orien-
tations, so the effect that this set has on a vector is
a continuous set of vectors, represented by the visu-
alising quaternion volume. The cross section of this
set with the xy-plane gives much information about
the quaternion volume. Let ε be the projection of the
orientation error η into the cross section of the visu-
alising quaternion volume. Some shapes of the cross
section of special interest are listed in the following,
where ε = d sin (η) and d is the distance from the end
effector to the surface and θmin < η < θmax.

Orientation Error xy-plane cross section
ηx about the x-axis The line from [0,-εx] to [0,εx]
ηy about the y-axis The line from [-εy,0] to [εy,0]
The two previous Square [-εy,-εx], [εy,-εx],

[εy,εx], [-εy,εx]
Relative error η The circle with radius ε

Q⊗
z is the rotation about the central axis. For the

pointing task, this can be set freely.
The quaternion volume can be chosen in many dif-

ferent ways according to the surface. The first step is
to choose the shape of the cross section of the visualis-
ing quaternion volume. The shape of the cross section
should resemble the shape of the surface. Two exam-
ples of how this cross section can be chosen is given in
Figure 3.

When the shape of the cross section of the quater-
nion volume is chosen, the path is simply placed inside
the cross section. This “path” then represents the ori-
entation error. The idea behind this approach is the
same as in the previous section. As the orientation
error follows the same “path” as the end-effector posi-
tion, it forces the wrist closer to the centre of the sur-
face, which again requires less torque, especially from
the main axes. The last step is to add the orientation
about the central axis. This can be set by Equation
(49).

The advantage of the algorithm presented above is
that it requires very little information about the path

47

Modeling, Identification and Control

and can thus be integrated in the inverse geometric
algorithm. It exploits the functional redundancy, de-
termined by the programmer, and finds the orientation
of the end effector that allows the manipulator to tra-
verse the trajectory with a higher velocity. The inputs
required to the inverse geometric algorithm are:

• The coordinates of the centre of the surface and
the maximum and minimum values of the surface
(the corners if the surface is a square, or the radius,
if the surface is a circle.)

• The shape and restrictions on the quaternion vol-
ume.

The desired orientation is found from the limited infor-
mation about the surface and the current end-effector
position only.

Note that if the cross section of the visualising
quaternion volume is chosen as the square in Figure
3, this will result in approximately the same orienta-
tion error as in the previous section.

9 Numerical Examples

9.1 Inverse Geometric Algorithms

All the inverse geometric algorithms have been tested
for a great variety of problems with the cost function
given in Section 5.2. For comparison, the same test
has also been done for a inverse Jacobian-based inverse
geometric algorithm.

The conventional CCD is computationally fast and
convergence is very good in the beginning. Gauss-
Southwell is computationally slower as it finds the min-
imum for all the joints but only one joint is chosen for
decrease. The maximum rate and maximum decrease
of cost function as criteria for choosing the joint give
approximately the same convergence, but maximum
rate is preferred as this gives a better configuration
of the manipulator, i.e. each joint moves less when the
previous configuration is used as the initial guess. The
convergence are about the same as for the Jacobian-
based algorithm.

The three approaches that resemble steepest descent,
and move all joints for every iteration, have better con-
vergence, as expected. However, they are computa-
tionally more demanding and a good choice of weights
(“step size”) is required for stability and good con-
vergence. When this is chosen appropriately, the con-
vergence is better than for coordinate descent and the
Jacobian-based algorithm.

All the algorithms have also been tested with an ex-
panded cost function representing some additional re-
quirement, in this case the elbow position. All the

algorithms have the same, or approximately the same,
performance for the two cases.

9.2 Functional Redundancy

A robot, similar to the one in Figure 2 is set to follow
the path in Figure 3. Three simulations are done:

1. The orientation is set constant.

2. The orientation is set as in Section 6.

3. The orientation is set as in Section 7/8.

The torques needed for the first two joints for the
three cases are shown in Figure 5. The maximum
speeds that the manipulator can follow the path for
the three cases were:

End-effector Orientation Or. Error Max speed
Constant 0◦ 0.91 m/s
As in Section 6 0◦ 1.13 m/s
As in Section 7/8 10◦ 1.35 m/s

0 0.5 1 1.5 2 2.5
−2000

−1500

−1000

−500

0

500

1000

1500

2000
Torques Joint 1

Time [s]

T
or

qu
e

[N
m

]

0 0.5 1 1.5 2 2.5
−2000

−1500

−1000

−500

0

500

1000

1500

2000

Time [s]

T
or

qu
e

[N
m

]

Torques Joint 2

Conventional v
max

 = 0.91m/s

Pointing Task v
max

 = 1.13m/s

Quaternion Volume v
max

 = 1.35m/s

Torque Limit

Figure 5: The torques of joints 1 and 2 for the given
path.

10 Conclusions

A new class of solutions to the inverse geometric prob-
lem is presented. For a large class of cost functions, an
analytical solution to the sub-problem can be found,
which guarantees computational efficiency. Conver-
gence is found to be about the same or a little better
than for Jacobian-based algorithms. The main advan-
tage is that a secondary objective can be included into
the cost function without increasing the computation
time.

A very simple framework on how to integrate the
path planning into the inverse geometric algorithms is
presented. By adding very little information to the in-
verse geometric algorithm, some sub-optimal path is

48

From and Gravdahl., “Functional and Kinematic Redundancy”

found, without increasing the computation time no-
tably. It is also shown that an optimisation scheme
based on the complete path information can be im-
plemented in the inverse geometric algorithms in real-
time. It is shown that the speed of the end effector
can be increased by more than 20% for the pointing
task, and by almost 50% if a small orientation error is
accepted.

References

Ahuactzin, J. M. and Gupka, K. K. The kinematic
roadmap: A motion planning based global approach
for inverse kinematics of redundant robots. IEEE

Trans. on Robotics and Automation, 1999. 15.

Alpern, B., Carter, L., Grayson, M., and Pelkie, C.
Orientation maps: Techniques for visualizing rota-
tions (a consumers guide). IEEE Conference on Vi-

sualization, 1993. pages 183–188.

From, P. J. Modelling and Optimal Trajectory Planner

for Industrial Spray Paint Robots. Master’s thesis,
NTNU, 2006.

From, P. J. and Gravdahl, J. T. Representing attitudes
as sets of frames. Proc. American Control Confer-

ence, 2007. pages 2465–2472.

Grudic, G. Z. and Lawrence, P. D. Iterative inverse
kinematics with manipulator configuration. IEEE

Transactions on Robotics and Automation, 1993. 9,
no. 4:476–483.

Gwak, S., Kim, J., and Park, F. C. Numerical opti-
mization on the euclidean group with applications to
camera calibration. IEEE Transactions on Robotics

and Automation, 2003. 19:65–74.

Johnson, M. P. Exploiting Quaternions to Support Ex-

pressive Interactive Character Motion. Ph.D. thesis,
MIT, 1995.

Khalil, W. and Dombre, E. Modeling, Identification

and Control of Robots. Hermes Penton, 2002.

Kuipers, J. B. Quaternions and Rotation Sequences.
Princeton University Press, 2002.

Luenberger, D. G. Linear and Nonlinear Programming.
Kluwer Academic Publishers, 2003.

Perdereau, V., Passi, C., and Drouin, M. Real-time
control of redundant robotic manipulators for mo-
bile obstacle avoidance. Robotics and Autonomous

Systems, 2002. 41.

Wang, L.-C. T. and Chen, C. C. A combined opti-
mization method for solving the inverse kinematics
problem of mechanical manipulators. IEEE Trans.

on Robotics and Automation, 1991. 7, no. 4.

49

