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Abstract 

Dinoflagellates are one of the most ubiquitous and diverse groups of phytoplankton in the 

marine ecosystem, playing a crucial role in the nutrient cycle of the world oceans. Some 

lineages of dinoflagellates form symbiotic relationships with corals and coral reef animals, 

while other are free-living, including those that cause harmful algal blooms, or inhabit brine 

channels in polar sea ice. To better understand the molecular mechanisms that underpin 

the diversification of these species, an approach to genome-data generation that 

incorporates a diverse array of species is required. However, due to the immense size of 

free-living dinoflagellate nuclear genomes (up to 250 Gbp) little data has been generated. 

Their genomes also possess highly idiosyncratic features, e.g. non-canonical splice sites. 

In this thesis, I sequenced and analysed the genomes of two isolates of Polarella glacialis, 

a psychrophilic free-living dinoflagellate species that is sister to the symbiotic lineage 

Symbiodiniaceae (the coral reef symbionts). These genomes represent the first draft 

assemblies from free-living (and psychrophilic) dinoflagellates, and provide unparalleled 

insights into the genomes of these organisms.  

In Chapter 1, I establish the significance, hypotheses and aims of my thesis research. In 

Chapter 2, I present a detailed literature review, in which I set out the current state of 

dinoflagellate genomic research (including an overview of dinoflagellate genome data 

already published) and research into cold adaptation. I cover the current state of genome 

and transcriptome sequencing, including the challenges that must be considered when 

designing a sequencing experiment. I also cover the challenges facing the ab initio 

prediction of genes in non-model eukaryotic organisms, highlighting the methods 

previously applied to dinoflagellates. 

In Chapter 3 (the first research chapter), I detail the development and application of a 

comprehensive gene-prediction workflow tailored for the idiosyncratic features in 

dinoflagellate genomes. This workflow, incorporating both ab initio and evidence-based 

gene-prediction strategies, is the most comprehensive yet developed for dinoflagellates. I 

adopt this workflow in a comprehensive analysis of genomes from two Symbiodiniaceae 

species, one of which is the first isolate sequenced from the Great Barrier Reef. Through 

comparative genomics using two other Symbiodiniaceae genomes, my results reveal 2460 

nuclear gene families showing evidence of positive selection, including genes involved in 

photosynthesis, transmembrane ion transport, synthesis and modification of amino acids 
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and glycoproteins, and stress response. The results also reveal an extensive set of genes 

for meiosis and response to light stress.  

In Chapter 4 (the second research chapter), I present my analysis of all available 

dinoflagellate transcriptomes, in which I identify genes and functions that are conserved 

across all dinoflagellate lineages, or are lineage-specific. I demonstrate the abundance of 

dark genes (that have no annotated function) in dinoflagellates, and show that they are 

potentially a result of lineage-specific adaptation. I also identify distinctive sequence 

features (e.g. protein domains) enriched among cold-adapted dinoflagellate species. One 

such domain, DUF3494, has been extensively characterised as being ice-binding. 

In Chapter 5 (the third research chapter), I present the assembled and annotated genomes 

of the two P. glacialis isolates, generated using both short- and long-read sequence data. 

These genomes are diploid (~3 Gbp), and encode a large number of repetitive elements, 

with a high proportion of simple and complex repeats. They also showed a high proportion 

of tandem repeated single-exon genes, which appears to facilitate the expansion of gene 

families related to photosynthetic functions, particularly rhodopsin and chlorophyll-binding 

proteins. The two isolates share high sequence similarity but possess genomes of differing 

sizes, likely a result of uneven repeat expansion. I found the ice-binding protein domain 

DUF3494 identified in Chapter 4 to be encoded in tandem repeated single-exon blocks, 

similar to other functionally important gene families. 

This research represents the first comprehensive genome-scale analysis of any free-living 

psychrophilic dinoflagellate, and the first comparative genomic analysis within a single 

species. The data and established analytical workflows generated from this research 

represent a foundational reference for comparative analyses of dinoflagellate genomes, 

encompassing the coral reef symbionts of Symbiodiniaceae and bloom-forming species.   
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Chapter 1  
 

Introduction 

1.1. Dinoflagellates 

Dinoflagellates (phylum Dinoflagellata) are a specialised group of unicellular eukaryotes 

that are ubiquitous in fresh and marine water environments. They are broadly 

characterized by their two flagella1,2 used to facilitate movement, and their distinctive cell 

covering (theca) (Figure 1.1B)3. One flagellum is contained within the longitudinal groove 

(sulcus) and one within the transverse groove (cingulum). In armoured dinoflagellates e.g. 

Alexandrium tamarense and Prorocentrum minimum, flattened vesicles (amphiesma) filled 

with cellulose are located under the cell membrane, forming the armoured thecal plates. In 

comparison, the unarmoured or naked species e.g. Gymnodinium minutulum and 

Gymnodinium guttiforme possess amphiesma void of cellulose (Figure 1.1A).  

 

 

Figure 1.1: Major dinoflagellate morphologies, (A) unarmored dinoflagellate and (B) 
armored dinoflagellate with thecal plates. Image modified from Lin4.  
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Dinoflagellates are a member of the monophyletic grouping of Alveolata, which also 

contains the distinct phyla of Ciliophora and Apicomplexa; Perkinsea, a group of parasites 

in mollusks, forms the basal lineage to all dinoflagellates (Chapter 2; Figure 2.2). 

Dinoflagellates diversified as the major photosynthetic lineages in Alveolata. The origin of 

plastid (chloroplast) in dinoflagellates traced back to multiple endosymbiotic events 

involving both prokaryote and eukaryote sources, during which lateral genetic transfer5,6 

from the endosymbiont to the host nuclear genome has been postulated7 (Chapter 2; 

Section 2.2.4). Ciliates are obligate predators that feed on a variety of organisms such as 

phytoplankton, bacteria, other ciliates and microzooplankton8. Apicomplexans are animal 

parasites which infect a wide range of hosts, the most well-known being Plasmodium 

falciparum which is the primary cause of malaria in humans9.  

Dinoflagellates are highly diverse with (as of 2012) 2,377 described species, which occupy 

a variety of ecological niches10. About half of known dinoflagellate species are 

photoautotrophic (e.g. Prorocentrum) and are important primary producers in ocean 

ecosystems. The other dinoflagellates are heterotrophic (e.g. Pfiesteria), feeding on both 

dissolved organic matter or other algal cells (e.g. diatoms)11. Parasitic dinoflagellate 

species (e.g. order Syndiniales) infect a wide range of hosts, including crustaceans and 

other dinoflagellate species12,13. While the majority of dinoflagellate lineages are free-

living, some (predominantly from the family Symbiodiniaceae) form symbiotic relationships 

with cnidarian animals e.g. corals, sea anemones, jellyfish and giant clams, and other 

microbial eukaryotes, e.g. ciliates and foraminiferans.  

Some bloom-forming dinoflagellates e.g. Alexandrium fundyense14 and Karenia brevis are 

toxin-producers that cause harmful algal blooms (i.e. “red tides”)15. During a bloom, the 

high amount of toxins produced by these species can be accumulated by shellfish, which 

upon human consumption can lead to paralytic or diuretic poisoning. Toxin production in 

dinoflagellates does not appear to have arisen from a single ancestor, suggesting that this 

characteristic has been acquired multiple time during dinoflagellate evolution, or it has 

been lost in all non-toxic species4. Some bloom-forming species (e.g. Lingulodinium 

polyedrum) are bioluminescent, fluorescing blue when induced by physical stimuli.  
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1.1.1. Suessiales 

Suessiales is an order of dinoflagellates, characterised by thecal plates that are arranged 

in seven to ten latitudinal series; this Order consists of diverse species from distinct 

environmental niches, including those from the family Symbiodiniaceae and the genus 

Polarella. Species from Symbiodiniaceae are predominantly symbionts, best-known for 

their association with reef-building corals in tropical and subtropical marine waters, while 

species from Polarella are free-living psychrophiles found in the polar regions. Members of 

the family Symbiodiniaceae were colloquially known in the literature as the single genus 

Symbiodinium that contains nine distinct clades (A through I). Due to their high extent of 

genetic divergence, these taxa were recently (August 2018) reclassified as the family 

Symbiodiniaceae comprising 15 or more clades, with seven genera named; Symbiodinium 

now refers to the basal lineage (former clade A)16, see Figure 1.2 for more detail. 

Symbiodiniaceae are predominantly found in symbiosis with benthic organisms, e.g. 

protists and invertebrate metazoans17,18, although free-living isolates from Symbiodinium 

and Effrenium have been identified19-22. 
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Figure 1.2: Large subunit rRNA phylogeny of the order Suessiales, highlighting the 
recently revised Symbiodiniaceae family. Image modified from LaJeunesse et al.16. 
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1.1.2. Polarella glacialis 

Polarella, one of the free-living sister lineages to Symbiodiniaceae, has only one described 

species. This species, Polarella glacialis, is a psychrophile that has been isolated from 

both the Arctic and Antarctic23,24. During sea-ice formation, saline liquid (brine) is trapped 

between freezing ice crystals, creating an intricate three-dimensional network of channels, 

i.e. the sea-ice brine channels25. P. glacialis can inhabit the upper layer of these channels 

with other psychrophilic organisms, including diatoms and bacteria. The cellular structures 

of P. glacialis match the general morphology observed in other dinoflagellates (Figure 1.1); 

they possess two flagella located in the cingulum and sulcus (Figure 1.3A)23. Thin thecal 

plates can be observed only after the outer membrane is removed (Figure 1.3B). P. 

glacialis is able to form spiny resting cysts (Figure 1.3C), which may provide them with 

resistance to adverse conditions.  

 

Figure 1.3: Images of Polarella glacialis cells. (A) Ventral view of the sulcus (black arrow) 
and cingulum (red arrow). (B) Apical-ventral view of amphiesma (red arrow) after partial 
cell membrane removal, remaining membrane indicated by the black arrow. (C) Apical-
ventral view of resting cysts. Images modified from Montresor et al.23,24. Scale bar: (A) 1 
µm, (B) 1 µm, (C) 5 µm. 

 

1.2. Dinoflagellate genomics  

Genomes of dinoflagellates present many idiosyncratic features that make genome 

assembly and gene prediction challenging. The immense genome size of some free-living 

species, reaching up to 233.2 Gbp per haploid genome (Prorocentrum micans), makes 

generation of draft genomes using current technologies impractical. In dinoflagellate 

genomes genetic duplication is common, RNA editing is extensive, gene number can be 

large, non-coding, and repetitive elements are abundant. Thus, it is unsurprising that the 

only available comprehensive genome assemblies are from symbiotic and parasitic 

A B C
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species, which have much smaller genome sizes, between 120 Mbp to 4.8 Gbp (see 

Section 2.2.2). These data provide valuable insights into the genomics of dinoflagellates 

and of the symbiotic species, and how these genomes adapt to environmental changes in 

the coral reef ecosystems26-29.They also reveal a high level of genome-sequence 

divergence among dinoflagellate species, precluding the use of a single dinoflagellate 

reference for comparative genomic analyses. Although the genomes of free-living 

dinoflagellates remain scarce, a wealth of transcriptome data has been generated from 

species that occupy a variety of ecological niches. 

1.3. Research problems 

To better understand the molecular mechanisms underlying the diversification of 

dinoflagellates, an approach to genome data generation that incorporates a diverse array 

of species is required. With the scale of sequencing data that can be generated ever 

increasing, it is now feasible to sequence larger genomes (such as those from free-living 

species) and sequence a larger number of small genomes (such as those from the diverse 

symbiotic species).  

Currently, multiple research groups around the world are actively generating, or have 

already published, assemblies for different dinoflagellate species, particularly of 

Symbiodiniaceae. The published draft genomes thus far have largely been generated 

using only short-read sequencing technology; they remain fragmented into tens of 

thousands of genome scaffolds, and the repetitive genomic regions remain poorly 

resolved. In addition, genes reported in these studies were predicted using different 

approaches. This is particularly problematic in comparative genomics, given the vast 

genome-sequence diversity observed in dinoflagellates, and that the dinoflagellate 

genomes utilise non-canonical intron-exon splice signals atypical of eukaryotes (Chapter 

2; Section 2.2.3.2). Most available computational tools for ab initio gene prediction are 

incapable of, or are biased against, incorporating alternative splice signals while predicting 

genes. A standardised approach tailored to the idiosyncratic features of dinoflagellate 

genomes and incorporating multiple sources of evidence, would help predict high-quality 

gene models, and minimise methodological biases that can confound downstream 

comparative analysis.  

Comprehensive genome assemblies for free-living dinoflagellate species are important for 

us to understand the genome evolution of these species, and how they evolve to become 
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some of the most ubiquitous and successful species in the world’s oceans. P. glacialis, 

which has an estimated (haploid) genome size (using 4',6-diamidino-2-phenylindole 

fluorescence) of ~7 Gbp30, represents a feasible first step into the sequencing of free-living 

(and psychrophilic) dinoflagellates. The position of P. glacialis as one of the closely related 

lineages to Symbiodiniaceae also makes it a useful outgroup for comparative genomics to 

assess early divergence of Symbiodiniaceae, and thus the evolutionary transition of 

dinoflagellates from free-living to the symbiotic lineages of coral reef symbionts. Genomes 

of the two geographically distinct P. glacialis isolates (the Arctic versus Antarctic) provide 

an excellent analysis platform to assess for the first time within-species divergence in 

dinoflagellates.  

Transcriptome data from distinct dinoflagellate lineages (and some limited genome data) 

allow for a systematic assessment of gene-functions that are common to or unique in the 

specific lineage, e.g. psychrophilic, symbiotic, and toxin-producing taxa, and thus those 

that relate to environmental adaptation to the diverse ecological niches.  

The main hypotheses I will test in this thesis are:  

1. Genomes of Polarella glacialis possess structural features that are specific to free-

living dinoflagellates. 

2. Genomes of Polarella glacialis possess functional characteristics that are relevant 

to their adaptation to psychrophilic conditions. 

3. The genome of the Arctic Polarella glacialis is divergent from that of the Antarctic 

isolate. 

1.4. Thesis aims 

1. To generate and assemble genome and transcriptome data from Polarella glacialis 

using both short-read and long-read technologies. 

2. To develop and implement a customised ab initio gene-prediction workflow for 

dinoflagellate genomes including that of Polarella glacialis. 

3. To identify and characterize structural features in Polarella glacialis genomes that 

are specific to dinoflagellates. 

4. To systematically assess functional characteristics in Polarella glacialis genes that 

underpin adaption of the alga to psychrophilic conditions. 

5. To assess the genome divergence between the Arctic and Antarctic Polarella 

glacialis isolates. 
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1.5. Scope and limitations 

This thesis focuses on the genomes of Polarella glacialis as the representative genomes 

of a free-living, and of a psychrophilic dinoflagellate species. The associated comparative 

analyses in this thesis were based on genome and transcriptome data that are publicly 

available, and those generated as part of this thesis. As dinoflagellates species are highly 

diverse, and closely related taxa have high genome-sequence divergence, the results from 

this thesis work are restricted by the sampled taxa included in the analyses, and should be 

interpreted as such. Genome and gene features of P. glacialis identified from this thesis 

work represent a useful reference for studying the genomics of free-living (and of 

psychrophilic) dinoflagellates versus the symbiotic lineages of Symbiodiniaceae. However, 

the prevalence of these features in all other free-living taxa (e.g. in non-Suessiales) remain 

to be systematically investigated as more genome-scale data become available.  

The de novo genome and transcriptome data generated from this thesis work were 

designed based on current standard practice to generate high-quality data using both 

short- and long-read sequencing technologies. These assembled genomes and 

transcriptomes, although in a draft state, are the best quality available for any free-living 

dinoflagellates to date. To generate a finished genome (at chromosomal level) for 

dinoflagellates (of >1 Gbp in size) is beyond the reasonable time-frame for the completion 

of this thesis work. 

This thesis work presents the development and refinement of a customised gene-

prediction workflow tailored for dinoflagellates, and its successful implementation on a 

number of de novo assembled genomes. As more genome-scale data from other 

dinoflagellates and more-efficient gene-prediction algorithms become available, this 

workflow may need to be further refined to better suit other dinoflagellate genomes.  

1.6. Significance of Research 

This research represents the first comprehensive genome-scale analysis of any free-living 

and of any psychrophilic dinoflagellates, and the first comparative genomic analysis within 

a single species of dinoflagellate. The data and established analytical workflows generated 

from this research provide a foundational reference for comparative analyses of 

dinoflagellate genomes, encompassing the coral reef symbionts of Symbiodiniaceae, 

psychrophilic and bloom-forming species. 
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1.7. Thesis outline 

This thesis is presented in six chapters. In Chapter 1, I present an overview of the thesis 

work by introducing the dinoflagellates, Suessiales, the focus subject Polarella glacialis, 

and the current status quo of genome research in dinoflagellates. I also outline the 

research problems and hypotheses on which this thesis work is based, as well as the 

specific aims, scopes and limitations.  

In Chapter 2, I present an in-depth review of the fields critical to this thesis work. I describe 

the known molecular mechanisms of cold adaptation, the genome features of 

dinoflagellates and the availability of genome scale data for these organisms. I review the 

current state of sequencing technology and tools for gene prediction, highlighting how they 

have been applied previously to dinoflagellates. I then finish by providing an overview of 

comparative genomics methods with specific relevance to dinoflagellates.  

In Chapter 3, I present a new, customised gene-prediction workflow designed specifically 

to accommodate the idiosyncratic features of dinoflagellate genomes. This workflow was 

successfully implemented on the de novo genomes of two Symbiodiniaceae species, 

producing high-quality gene models for comparative genomic analyses. I further discuss 

conserved gene functions in Symbiodiniaceae and their adaptive selection relevant to the 

establishment and maintenance of symbiosis with corals.  

In Chapter 4, I further assessed the conserved (and unique) gene functions in diverse 

dinoflagellate lineages, using publicly available transcriptome data. Focusing on symbiotic, 

cold-adapted, and toxin-producing lineages, I evaluate gene functions that are common in 

these lineages, and in all analysed dinoflagellate lineages. I discuss the prevalence of dark 

genes (with unknown function) that are evolutionarily conserved and lineage-specific. I 

further assess gene functions related to cold adaptation in psychrophilic dinoflagellates 

including P. glacialis.  

Chapter 5 presents the de novo assembled genomes and predicted genes of two P. 

glacialis isolates. I report the genome features in these isolates, including repeat content 

and gene functions associated with cold adaptation. Comparing with other genomes of 

Symbiodiniaceae, I discuss genome features and gene functions in P. glacialis versus 

symbiotic species. I further discuss for the first time intra-species genome divergence in 

dinoflagellates using these data. 
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Finally in Chapter 6, I revisit the hypotheses in Section 1.3 based on the results from this 

thesis work, and summarise the novel insights gained from this work. I conclude this thesis 

by presenting future directions, highlighting the remaining questions and issues that 

remain to be addressed in relation to this work.   
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Chapter 2  
 

Current state of dinoflagellate genomics 

Dinoflagellates represent some of the most ubiquitous and diverse phytoplankton found in 

the freshwater and marine environments. Polarella glacialis represents an excellent 

representative of free-living dinoflagellates for genomic studies for two reasons. First, they 

are closely related to the largely symbiotic lineages of Symbiodiniaceae and they have 

been described only in the polar regions. Their genomes thus provide a first glimpse into 

molecular mechanisms that underlie the evolutionary transition of dinoflagellates from free-

living to symbiotic lifestyle, and their adaptation to cold. Second, genomes of P. glacialis 

are potentially in the smaller range compared to those of the other dinoflagellate taxa; this 

presents a technical advantage. In the first part of this chapter (Section 2.1), known 

molecular mechanisms underlying cold adaption will be discussed within the context of 

dinoflagellates. Known features of dinoflagellate genomes will then be discussed (Section 

2.2), highlighting the availability of genome-scale data (or the lack thereof) from these 

ecologically important organisms. Data generation using the major genome-sequencing 

technologies and the relevant approaches for analysing these high-throughput sequence 

data, from genome assembly to annotation, will be discussed in Section 2.3. This chapter 

is concluded in Section 2.4 with an overview of comparative genomics methods with 

specific relevance to dinoflagellates.  

2.1. Mechanisms for cold adaptation in psychrophiles 

Psychrophilic organisms, which thrive at low temperatures (often below freezing), have 

been described extensively among bacteria, archaea, and also eukaryotes (e.g. snow 

algae, fungi and fish). Psychrophilic species, such as P. glacialis that thrive in sea-ice 

brine channels, have evolved a range of mechanisms to mitigate the effects of life in 

subzero temperatures.  
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2.1.1. Conditions in sea-ice brine channels 

The extreme conditions of sea-ice brine channels pose significant challenges to the 

inhabiting organisms. As the temperature in sea-ice brine channels decreases (as low 

as -20˚C), ice crystals begin to form, potentially damaging cell membranes and increasing 

the brine salinity (Figure 2.1)25,31. The opposite is true during warmer periods, thus 

creating an environment with a dynamic range of extreme conditions. A decrease in 

enzyme activity can lead to imbalances in cellular chemistry, leading to accumulation of 

UV damage and membrane solidification. Organisms that survive under such extreme 

conditions possess a variety of adaptive mechanisms, including the synthesis of 

unsaturated fatty acids, antifreeze proteins and UV protectant molecules. 

 

Figure 2.1: Temperature, salinity and brine volumes gradients established across polar 
sea-ice. Image from Thomas and Dieckmann25. 

 

2.1.2. Lipid biosynthesis and membrane fluidity  

Membrane fluidity is important for proper cellular function, especially for psychrophiles. 

Low temperatures increase rigidity and reduce the membranes’ ability to mediate 

processes including transport, signal transduction and energy generation32,33. To regulate 

fluidity, cold-adapted organisms modify the polyunsaturated fatty acid (PUFA) composition 

of the phospholipids in their cellular membrane. Photosynthetic organisms also alter the 

concentration of PUFAs in the galactolipids of thylakoid membrane (in the chloroplast)34-37. 

The presence of PUFAs in a membrane promotes a looser packing of the phospholipids, 

increases membrane fluidity and counteracts solidification due to a decrease in 

temperature. The length of the fatty acids (FAs) that compose a membrane also has an 
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effect on its fluidity; short FAs have fewer intermolecular interactions compared with long 

FAs, thus promoting membrane flexibility. Genome analysis of a psychrophilic green alga, 

Coccomyxa subellipsoidea, revealed an enrichment of gene families related to FA 

synthase, elongase, ligase, lipase and desaturase38. These enzymes control the formation 

and structure (e.g., length and saturation) of the fatty acids that are incorporated into the 

cell membranes.  

FA desaturases act to increase the PUFA concentration by altering the bond structure of 

saturated FA molecules. A psychrophilic green alga, Chlamydomonas sp. ICE-L, is known 

to up-regulate at least three desaturase enzymes (∆9CiFAD, ω3CiFAD1 and ω3CiFAD2) 

when exposed to freezing (0°C) conditions39. One of the FA desaturase enzymes, 

ω3CiFAD2, is also found to be up-regulated as a mechanism for long-term adaptation to 

salt-stress40. Dinoflagellates typically have high levels of PUFAs, with the major types 

being stearidonic acid (18:4 (n-3)), octadecapentaenoic acid (18:5 (n-3)), 

eicosapentaenoic acid (20:5 (n-3)), and docosahexaenoic acid (22:6 (n-3))41,42. 

Specifically, in Polarella up to 76.3% of fatty acids are PUFAs (between C14 and C22 in 

length)43. This proportion is much higher than what is observed in temperate species such 

as Symbiodinium microadriaticum, which has 52.7% PUFA concentration in the 

membranes42. The predominant types of FAs present in Polarella are octadecapentaenoic 

acid (<49%) and docosahexaenoic acid (<19%)43. 

2.1.3. Antifreeze proteins and cryoprotectants 

Psychrophiles condition their intracellular environments by regulating the concentration of 

compatible solutes (i.e. osmoprotectants). Under cold-stress conditions, enzymes can 

denature or have reduced activity due to suboptimal ionic concentrations. By controlling 

the concentration of compatible solutes in the cytoplasm, organisms can stabilize an 

enzyme’s structure, preventing a reduction in enzymatic reaction rates. Solutes regulate 

the internal turgor pressure of the cell, counteracting the external osmotic pressure from 

the environment (e.g. during salt stress); they also prevent the formation of ice crystals 

that would puncture the cell membranes. Compatible solutes such as sucrose, glycerol, 

mannitol, proline, glycine betaine, floridoside, isofloridoside and 

dimethylsulfoniopropionate (DMSP) are commonly accumulated in microalgae44,45. Genes 

for the proline synthesis pathway have been shown to be up-regulated in ice diatoms 

under salt- and cold-stress46,47. This indicates the importance of proline as an intracellular 

solvent under polar conditions. The molecule DMSP, an important compatible solvent, 
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stabilizes enzymes during cold shock, preventing enzyme denaturation48. Produced by a 

large number of marine organisms including dinoflagellates, DMSP is metabolised into 

dimethyl sulfide (DMS)49. DMS is key in the global sulphur cycle, and can decompose into 

sulphur-containing aerosols that can impact global climate by inducing cloud formation50. 

The cold-shock response proteins, found across a large variety of organisms, are 

important for adaptation to rapid cold-stress51. A sudden decrease of temperature induces 

the binding of cold-shock proteins to single-stranded nucleic acids and the upregulation of 

genes related to cold-adaptation. This allows for a rapid metabolic response to counteract 

the sudden change in environment. Other proteins e.g. the late embryogenesis abundant 

proteins, found in many photosynthetic organisms including Chlorella, increase enzyme 

stability during cold-stress by stabilising hydrogen bonds52. 

Regulation of the extracellular environment is another mechanism for adaptation to cold- 

and salt-stress conditions. Extracellular polymeric substances (EPS), composed primarily 

of polysaccharides and proteins, are produced by ice microorganisms; these molecules 

form a protective microhabitat53. EPS have been shown in diatoms to help adapt to salt- 

and cold-stress54. The dinoflagellate Gonyaulax polyedra has been shown to produce 

EPS55. Ice-binding proteins (IBPs), which bind to the surface of ice crystals, have been 

identified in a diverse range of organisms including diatoms and the green algae56,57. The 

IBPs disrupt the formation of ice crystals that can potentially damage the cell membrane58, 

and when exported into the extra cellular space can help maintain brine volume in the ice 

channels. IBPs have been suggested to have arisen in algae via lateral genetic transfer 

from bacteria56. One of the most well-studied ice-binding motifs is the Pfam domain 

DUF3494 (domain of unknown function 3494), which has been found in bacteria, yeast, 

fungi and microalgae59. 

2.1.4. UV protectants 

Photosystem II (PSII), located in the thylakoid membrane of photosynthetic organisms, is a 

critical protein complex involved in the generation of the proton gradient used for ATP 

synthesis. Under high-light conditions the rate at which damage is accumulated by PSII 

can exceed the rate at which PSII is repaired, resulting in photoinhibition60. PSII repair is 

reduced under cold conditions, making photoinhibition a problem for photosynthetic cold 

adapted species. Dinoflagellates are known to use both xanthophyll-cycle pigments and 

mycosporine-like amino acids (MAA) as photoprotective mechanisms under ultraviolet 
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(UV) B radiation61. The xanthophyll cycle carries out a type of non-photosynthetic 

quenching, in which energy from the photosystem proteins is dissipated as heat energy, 

reducing the potential for photosystem damage. The MAA proteins act like sunscreen, 

protecting cellular proteins (such as the photosystem proteins) from damage by absorbing 

and dissipating light energy. Reactive oxygen species (ROS), which can be produced by 

UV radiation, oxidise DNA, proteins and lipids, posing a major hazard to photosynthetic 

organisms. The enzyme catalase, which detoxifies ROS, has been found to be active in 

the psychrophilic fresh water dinoflagellate Borghiella dodgei during UV radiation stress62. 

The compatible solvents DMSP and proline also act as antioxidants that help prevent ROS 

formation32. 

2.2. Genomes of Dinoflagellates 

2.2.1. Organisation of nuclear genomes 

Genomes of dinoflagellates present many structural features not typical of eukaryote 

genomes. Based on chromosomal staining of cellular DNA content using 4',6-diamidino-2-

phenylindole (DAPI) fluorescence, the sizes of dinoflagellate genomes have been 

estimated to be from 1.5 Gbp (in Symbiodiniaceae taxa) to 250 Gbp (Prorocentrum) 

(Figure 2.2). These estimates are in stark contrast to those of other alveolate taxa, i.e. 

0.07-0.1 Gbp in ciliates (macronuclear genome), and 0.02-0.06 Gbp in apicomplexans. 

Genomes of P. glacialis (~7 Gbp) are larger than those of Symbiodiniaceae but still 

relatively small compared to those of other dinoflagellates (Figure 2.2).  

The chromosomes of dinoflagellates are present in a permanently condensed liquid crystal 

structure (Figure 2.3)63. The number of chromosomes in dinoflagellates is currently 

unknown, with estimates range between two to over 200 chromosomes64-67. Initially it was 

thought, due to their liquid crystal chromosomes, that dinoflagellates did not contain 

histones. However RNAs for all four core histone proteins (H2A, H2B, H3 and H4), as well 

as histone deacetylase and histone-associated proteins, have since been found in the 

transcriptomes of many dinoflagellate species68,69 including Symbiodinium, Breviolum70 

and Alexandrium catenella71. The H1-type linker histone has also been recovered72. 

Despite Symbiodiniaceae being shown to be haploid in culture (vegetative phase)73, 

sexual recombination is known to occur. Meiotic genes have been found74 and the 

recovered allele frequencies suggest sexual recombination75-77 in Symbiodiniaceae.  
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Figure 2.2: Simplified tree of Alveolata showing relationships among ciliates, Apicomplexa 
and dinoflagellates, where available, the range of estimated genome sizes for members 
with each group are noted in brackets30,78-81. Groups with transcriptome68-70,82-85 and/or 
genome12,13,26-29 assemblies available are denoted using black and red circles 
(respectively). Tree topology based on earlier studies16,86. 

 

 

Figure 2.3: Chromosomes of K. brevis stained with Hoechst 33258 (blue). Image adapted 
from Figueroa et al.87. 
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2.2.2. Availability of genome scale data 

Excluding those generated as a part of this thesis (Chapters 3 and 5), seven draft genome 

assemblies from seven dinoflagellate species are publicly available (Table 2.1). Five of 

these are from Symbiodiniaceae isolates, which is unsurprising given their small genome 

sizes (compared with free-living species) and importance as symbionts to reef-building 

corals. These assemblies have been key in the exploration of coral-dinoflagellate 

symbiosis and the first-hand characterization of the dinoflagellate genomes. Reciprocal 

read-to-scaffold mapping showed that fewer than 1% of reads were shared between the 

Breviolum minutum and Fugacium kawagutii genomes29, indicating a high level of genome 

divergence between the different genera of Symbiodiniaceae. This high level of divergence 

highlights the need for reference genome data to be generated for all species of interest. 

While the generation of these genomes represents a critical advance in the field, the 

assemblies differ significantly in their recovery rates. For example, the B. minutum 

assembly is just 41% of the estimated genome size, while the F. kawagutii assembly is 

79%. The number of predicted genes also varies significantly, with the Symbiodinium 

tridacnidorum genome predicted to encode almost 20,000 more genes than Symbiodinium 

microadriaticum, despite both being of similar size and from the same genus. F. kawagutii, 

which was originally thought of as a symbiont of corals29, has since been shown not to be 

associated with any host88,89. Therefore, the F. kawagutii genome assembly is technically 

the first to be generated for any free-living dinoflagellate species. However, as F. kawagutii 

is one of the more-recently diverged lineage within the largely symbiotic Symbiodiniaceae, 

its genome features may not be a good representation for genomes of most other free-

living dinoflagellates external to Symbiodiniaceae.  

Two of the available assembled genomes are from Order Syndiniales, a lineage comprised 

exclusively of parasitic taxa. One of these species, which has an estimated genome size of 

only 120 Mbp12, is Amoebophrya ceratii, a parasite of the toxic dinoflagellate Alexandrium 

catenella. Remarkably, despite having a functioning mitochondria, this species does not 

appear to have a mitochondrial genome; all mitochondrial encoded genes have either 

been transferred to the nuclear genome or lost. The small genome size and low number of 

predicted genes (19,925; compared to Symbiodiniaceae) might be linked to the parasitic 

lifestyle of A. ceratii. The other sequenced genome is that of Hematodinium sp., a common 

parasite of crustaceans13. This assembly, 4,769 Mbp in size, was described in a 

publication in 201513, but the data remain unavailable to date. 
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Table 2.1: Statistics for available genome assemblies of dinoflagellates. 

 Symbiodinium 
microadriaticum 

Symbiodinium 
tridacnidorum 

Breviolum 
minutum 

Cladocopium 
C92 

Fugacium 
kawagutii 

Amoebophrya 
ceratii 

Hematodinium 
sp.a 

Reference Aranda et al.27 Shoguchi et al.28 Shoguchi et al.26 Shoguchi et al.28 Lin et al.29 John et al.12 Gornik et al.13 

Formerly Clade A Clade A Clade B Clade C Clade F - - 

Lifestyle Symbiont of coral Symbiont of 
coral 

Symbiont of 
coral 

Symbiont of 
coral 

Free-living16 Parasite of 
Alexandrium 
catenella 

Parasite of 
crustaceans 

Estimated 
genome size 

1,100 Mbp - 1,500 Mbp - 1,180 Mbp 120 Mbp 4,800 Mbp 

Assembly 
size 

808 Mbp 767 Mbp 616 Mbp 705 Mbp 935 Mbp 87.7 Mbp 4,769 Mbp 

No. 
scaffolds 

9,695 16,176 21,899 6,686 30,040 2,351 118,385 

N50 573.5 Kbp 133.4 Kbp 125.2 Kbp 348.9 Kbp 380.9 Kbp 84 Kbp 17 Kbp 

No. 
predicted 
genes 

49,109 69,018 41,925 65,832 36,850 19,925 - 

a. Genome statistics for Hematodinium sp. are as reported in Gornik et al.13; genome data remains unavailable. 
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Although the generation of genome data for free-living dinoflagellates has not been 

practical for many species due their immense genome sizes, shallow (<0.5% of the 

estimated genome size) genome-sequencing surveys have been conducted90-92. For 

instance, Jaeckisch et al.90 generated 6.21 Mbp (0.0059% of the estimated genome size) 

of genome-sequence data from Alexandrium ostenfeldii, >50% of which was tandem 

repeats and ~13% simple repeats. This suggests in-part that the large genomes of many 

free-living dinoflagellates are composed of a high proportion of repeats. Furthermore, 

some species from the genus Karenia, which are known for producing toxic blooms, 

possess an entire chromosome that is primarily composed of AG repeats93. While genome 

data for free-living dinoflagellates are currently limited, transcriptome data for many 

ecologically significant species have been published (Table 2.2). The generation of these 

data was largely driven by The Marine Microbial Eukaryote Transcriptome Sequencing 

Project (MMETSP) which generated 64 transcriptomes from a diverse range dinoflagellate 

species82. Differential expression analysis has shown that dinoflagellate genes are 

constitutively expressed regardless of abiotic stress70,94, but in the presence of bacteria, 

dinoflagellate differentially express a number of genes95. 

2.2.3. Features of dinoflagellate genomes 

Dinoflagellate genomes are highly idiosyncratic, and our current knowledge of 

dinoflagellate genomes remains scarce. Some genome features of dinoflagellates have 

been uncovered in a number of studies. These include a distinctive telomeric motif, non-

canonical splice signals, spliced leader sequences, tandemly repeated genes, and peculiar 

organellar genomes. Each of these features is discussed below. 

2.2.3.1. Telomeric and other motifs in dinoflagellates 

Telomeres are repetitive regions that protect both ends of a chromosome from 

deterioration and from fusing with neighbouring sequences. Telomeric regions which follow 

the repetitive pattern of (TTTAGGG)n up to n times, have been observed in 

Symbiodiniaceae29 and other free-living dinoflagellates96. No canonical TATA box has 

been observed in dinoflagellates4,29. A TATA-box-binding-like protein has been identified in 

dinoflagellates; this protein shows a high-affinity for a TTTT motif97. This TTTT motif has 

been found approximately 30 bp upstream of most predicted genes in F. kawagutii, 

supporting its validity as a binding site.
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 Table 2.2: Available transcriptome assemblies from dinoflagellates. 

Taxon Order Taxon Order 

Dinophysis acuminate DAEP0182 Dinophysiales Heterocapsa sp. RCC151698 Peridiniales 

Alexandrium andersonii CCMP222282 Gonyaulacales Heterocapsa triquestra CCMP44882 Peridiniales 

Alexandrium catenella OF10182 Gonyaulacales Kryptoperidinium foliaceum CCMP132682 Peridiniales 

Alexandrium fundyense CCMP171982 Gonyaulacales Lessardia elongate SPMC 10482 Peridiniales 

Alexandrium margalefi AMGDE01CS-32282 Gonyaulacales Peridinium aciculiferum PAER-282 Peridiniales 

Alexandrium minutum CCMP11382 Gonyaulacales Scrippsiella hangoei SHTV582 Peridiniales 

Alexandrium monilatum CCMP310582 Gonyaulacales Scrippsiella hangoei-like SHHI-482 Peridiniales 

Alexandrium tamarense CCMP159884 Gonyaulacales Scrippsiella trochoidea CCMP309982 Peridiniales 

Alexandrium tamarense CCMP177182 Gonyaulacales Prorocentrum hoffmannianum99 Prorocentrales 

Azadinium spinosum 3D982 Gonyaulacales Prorocentrum lima CCMP68482 Prorocentrales 

Ceratium fusus PA16110982 Gonyaulacales Prorocentrum micans CCCM84582 and 
CCMP158999 

Prorocentrales 

Crypthecodinium cohnii Seligo82 Gonyaulacales Prorocentrum minimum CCMP132982 Prorocentrales 

Gambierdiscus australes CAWD 14982 Gonyaulacales Prorocentrum minimum CCMP223382 Prorocentrales 

Gambierdiscus caribaeus83 Gonyaulacales Prorocentrum sp. CCMP312299 Prorocentrales 

Gonyaulax spinifera CCMP40982 Gonyaulacales Pyrocystis lunula CCCM51782 Pyrocystales 

Lingulodinium polyedra CCMP173882 Gonyaulacales “Symbiodinium” sp. Mp82 Suessiales 

Protoceratium reticulatum CCCM535-
CCMP188982 

Gonyaulacales Symbiodinium sp. CCMP243082 Suessiales 

Pyrodinium bahamense pbaha0182 Gonyaulacales Symbiodinium sp. A (CassKB8)70 Suessiales 

Akashiwo sanguinea99 Gymnodiniales Symbiodinium sp. clade A82 Suessiales 

Akashiwo sanguinea CCCM88582 Gymnodiniales Breviolum aenigmaticum (mac04-487)100 Suessiales 

Amphidinium carterae CCMP131482 and 
EF102101 

Gymnodiniales Breviolum minutum (Mac703, Mf1.05b, 
rt002, rt351)100 

Suessiales 

Amphidinium massartii CS-25982 Gymnodiniales Breviolum minutum (Mf1.05b)70 Suessiales 

Gymnodinium catenatum GC74482 Gymnodiniales Breviolum muscatinei102 Suessiales 

Gymnoxanthella radiolariae (RCC3507)98 Gymnodiniales Breviolum pseudominutum sp. B 
(rt146)100 

Suessiales 
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Gyrodinium dominans SPMC 10382 Gymnodiniales Breviolum psygmophilum (HIAp, 
Mf10.14b.02, PurPFlex, rt141)100 

Suessiales 

Gyrodinium instriatum99 Gymnodiniales Breviolum sp. B (SSB01)103 Suessiales 

Karenia brevis CCMP222982 Gymnodiniales Cladocopium sp. C104 Suessiales 

Karenia brevis SP182 Gymnodiniales Cladocopium sp. C105 Suessiales 

Karenia brevis SP382 Gymnodiniales Cladocopium sp. C106 Suessiales 

Karenia brevis Wilson82 Gymnodiniales Cladocopium sp. C182 Suessiales 

Karlodinium micrum CCMP228382 Gymnodiniales Cladocopium sp. C1 (MI-SCF055)107 Suessiales 

Karlodinium veneficum CCMP197499 Gymnodiniales Cladocopium sp. C1 (WSY)107 Suessiales 

Polykrikos lebouriae108 Gymnodiniales Cladocopium sp. C1582 Suessiales 

Togula jolla CCCM72582 Gymnodiniales Durusdinium sp. D104 Suessiales 

Noctiluca scintillans82 Noctilucales Durusdinium sp. D1a (Durusdinium)82 Suessiales 

Oxyrrhis marina CCMP178882 Oxyrrhinales Effrenium sp. CCMP42182 Suessiales 

Oxyrrhis marina CCMP179582 Oxyrrhinales Fugacium kawagutii CCMP246882 Suessiales 

Oxyrrhis marina LB197482 Oxyrrhinales Pelagodinium beii RCC149182,98 Suessiales 

Oxyrrhis marina82 Oxyrrhinales Polarella glacialis CCMP138382 Suessiales 

Brandtodinium nutricula RCC346898 Peridiniales Polarella glacialis CCMP208882 Suessiales 

Brandtodinium nutriculum RCC338782 Peridiniales Yihiella yeosuensis YY1405109 Suessiales 

Durinskia baltica CSIRO CS-3882 Peridiniales Amoebophrya sp. Ameob282 Syndiniales 

Glenodinium foliaceum CCAP1116/382 Peridiniales Amoebophrya spp. (from two different 
hosts) 99 

Syndiniales 

Heterocapsa arctica CCMP44582 Peridiniales Thoracosphaera heimii CCCM670-
CCMP106982 

Thoracosphaerales 

Heterocapsa rotundata SCCAP K-048382 Peridiniales   
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2.2.3.2. Non-canonical splice sites 

The donor splice site (positioned at the 5′-end of introns) and the acceptor splice site (at 

the 3′-end) are important motifs for RNA splicing, as they act as a recognition signal for the 

spliceosome complex. These motifs are almost universal in eukaryotes: GT and AG 

respectively encode the donor and acceptor splice sites (Figure 2.4). Interestingly, 

Symbiodiniaceae26-29 and free-living dinoflagellate species110-112 (including Polarella113) 

possess non-canonical GC and GA donor splice sites (the red box in Figure 2.4), setting 

them apart from even the closely related apicomplexans.  

 

Figure 2.4: Splice site motifs in a set of representative eukaryotes, highlighting the 
distinctive motif in dinoflagellates. Image adapted from Shoguchi et al.26. 
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2.2.3.3. Spliced leader sequence 

The addition of a spliced leader sequence, which is trans-spliced onto the 5′-untranslated 

region of mRNA, has been described in unrelated groups of eukaryotes, including 

dinoflagellates. The dinoflagellate spliced leader (DinoSL) sequence, encoded by 

DCCGUAGCCAUUUUGGCUCAAG (where D is U, A, or G), is conserved across a diverse 

range of dinoflagellate lineages and is added onto all nuclear encoded mRNA114. Trans-

splicing in dinoflagellates is believed to serve as a mechanism for production of 

monocistronic transcripts from polycistronic transcripts and for regulation of gene 

expression114. 

 

 

Figure 2.5: The cyclic process of gene transcription, DinoSL addition and mRNA re-
integration. Panel (1) transcription of pre-mRNA, (2) addition of a DinoSL (red line) onto 
pre-mRNA, (3) reverse transcription of mRNA to cDNA, (4) insertion of cDNA into the 
genome through recombination. The bottom of each panel shows the addition of a second 
spliced leader sequence (blue line) on to the transcribed integrated transcript (from panel 
4). Image adapted from Slamovits and Keeling115. 

 

DinoSL trans-spliced mRNA can undergo reverse transcription and be inserted back into 

the nuclear genome115 (Figure 2.5). The new gene, when transcribed, will create 

transcripts that encode the old “relic” DinoSL. The 5′-end of the new transcript will have a 

spliced leader sequence added to an AG-acceptor site within the relic DinoSL, resulting in 

a new mRNA with one complete DinoSL and one truncated, relic DinoSL. This process 

can occur multiple times during the evolution of the genome, resulting in genes with 

multiple relic DinoSL sequences at the 5′-ends. The relic DinoSL sequences degrade over 

time; older DinoSL sequences show higher levels of degradation than those originating 

from more-recent events.  
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2.2.3.4. Tandem repeated genes 

Dinoflagellates appear to regulate a large proportion of their genes post-transcriptionally. 

Most transcripts are transcribed continually and are unaffected by changes in protein 

expression levels116,117, with the exception of species under biotic stress, which show 

higher levels of differential gene expression95. Genes in dinoflagellates have been found to 

be present in multiple copies, often contained within tandem arrays. It is estimated that 

over 100 copies of the luciferase and form II Rubisco genes are encoded in the 

Alexandrium tamarense and Prorocentrum minimum genomes, respectively118,119. The 

mitotic cyclin and peridinin-chlorophyll a-binding protein genes are estimated to be present 

over 5000 times each in Lingulodinium polyedrum120,121. In F. kawagutii ~9% of the 

predicted genes form tandem arrays, with between two and ten repeats per array29. A 

study of 47 genes in Amphidinium carterae also revealed that highly expressed genes 

tend to be encoded as tandem arrays111, suggesting that gene amplification might play a 

role in increasing expression levels of important gene families.  

2.2.3.5. Organellar genomes 

Organellar genomes of dinoflagellates are unusual when compared with those in other 

eukaryotes. Plastid genomes of dinoflagellates consist of small circular plasmid-like 

sequences (1-3 Kbp) called “minicircles”, each with up to four protein-coding genes4,122. 

The core photosystem subunits, cytochrome b6f, the ATP synthase complex and four 

other proteins (ycf16, ycf24, rpl28, rpl23) are encoded in some dinoflagellate plastids4. The 

gene content of plastid genomes varies between dinoflagellate species; Cladocopium C3 

(formerly Symbiodinium sp. Clade C3) possess a highly reduced plastid genome that 

encode only seven photosystem proteins: the ATP synthase subunits, the cytochrome b6f 

complex and two ribosomal proteins123. Minicircles also contain core regions (between 48-

196 bp) which are highly conserved within a species. Chimaeric minicircles which contain 

the conserved core region and fragments of unrelated plastid-encoded genes have been 

described in Heterocapsa triquetra124. Minicircles which do not encode any identifiable 

genes but still contain the conserved core region (i.e. “empty minicircles”) have been 

described in free-living dinoflagellates125-127, but remain to be verified in 

Symbiodiniaceae123.  

Similarly, the mitochondrial genome of dinoflagellates is divergent from that observed in 

other eukaryotes128. The mitochondrial genome in dinoflagellates encodes only three 

protein-coding genes: cox1, cox3 (cytochrome oxidase subunits 1 and 3 of complex IV) 
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and cob (cytochrome b of complex III); fragmented versions of the large and small rRNA 

subunit genes are interspersed among the encoded genes129,130. These genes are present 

in multiple copies; many genes lack in-frame stop codons, and some utilize non-canonical 

start codons129. The mitochondrial genome of dinoflagellates is known to be longer than 33 

Kbp, is AT rich, and contains inverted repeats130. The generation of complete 

mitochondrial genomes for diverse dinoflagellate species is required before we can start to 

understand the functional implications and evolution of such unusual mitochondrial 

features. 

2.2.4. Lateral genetic transfer in genome evolution of dinoflagellates 

Dinoflagellates are largely photoautotrophs10. The evolutionary history of dinoflagellate 

plastids is known to be complicated131: multiple endosymbiotic events are postulated to 

have occurred, giving rise to the peridinin- and fucoxanthin-containing plastids (named 

after their characteristic accessory pigments)131 (Figure 2.6). Peridinin-containing plastids, 

the most common plastid type in dinoflagellates, putatively arose via secondary 

endosymbiosis in which a free-living red algal cell (already containing a primary plastid of 

cyanobacterial origin) was engulfed and retained by a heterotopic host. The genes from 

the red alga endosymbiont would have been lost outright or transferred to the host nuclear 

genome. An additional (tertiary) endosymbiotic event involving a haptophyte-like cell is 

believed to have given rise to the fucoxanthin-containing plastids132. Each event of 

endosymbiosis would have induced lateral genetic transfer from the engulfed 

endosymbiont to the host. Therefore, the nuclear genomes of dinoflagellates are expected 

to contain genes derived from a myriad of sources of both prokaryote and eukaryote 

origins. Extensive lateral genetic transfer comparable to that known among prokaryotes 

was demonstrated in an earlier phylogenetic study using transcriptome data from the 

bloom-forming dinoflagellate, Alexandrium tamarense84. 
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Figure 2.6: The current theories of primary, secondary, and tertiary endosymbiosis. Image 
adapted from Chan133.  

 

2.3. Generation and analysis of genome-scale data 

The generation and analysis of genome-scale data from dinoflagellates has been 

challenging, largely due to the relatively large genome sizes (1.5 Gbp or larger; Figure 2.2) 

and the large number of genes (tens of thousands) these genomes encode (Table 2.1). 

However, owing to the rapid advance of the sequencing technologies, the associated 

decrease in cost of sequencing, and the development of more-efficient computational 

algorithms in the analysis of genome-scale data, sequencing of (at least the smaller) 

dinoflagellate genomes is now feasible. The common sequencing technologies have been 

discussed in detail in a number of review articles134-136. In this section, the strategies for 

generating genome-scale data, assembling de novo genomes and transcriptomes, and 

predicting genes from de novo genomes are briefly discussed within the context of 

dinoflagellate genomics.  

2.3.1. Generation of genome-scale data 

Genome-scale data (e.g. whole genomes and transcriptomes) are commonly generated 

using high-throughput sequencing technologies. The premise of these technologies is that 

fragments of genome sequences (or transcripts in cDNA) are sampled (usually at random) 
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and sequenced at large scale, e.g. in hundreds of millions of sequence reads, in an 

automated, massively parallel manner. These technologies can be broadly categorised 

into two groups: the short-read (shotgun) sequencing and the long-read sequencing 

technologies. 

In short-read sequencing, the reference (e.g. genome) sequences are first broken into 

numerous small fragments (usually a few hundred bases in length), following which the 

ends (of fixed length, e.g. ~100 bases) of these fragments (usually both ends in pairs) are 

then sequenced. These short reads, together with the associated distances between each 

read pair, can then be used to reconstruct the original reference through an assembly 

process (Section 2.3.2). The complexity of the reconstruction process depends upon the 

length of the sequencing reads and the composition of the reference. Short-read 

sequencing technologies are commonly used for generating both genome and 

transcriptome data (see Sections 2.3.2.3 and 2.3.3.1). Illumina is the dominant provider of 

short-read sequencing technology. Illumina adopts a sequencing-by-synthesis approach135 

to generate short reads of high quality; these reads have the lowest error rates (1 

erroneous base in 10,000) of all commercially available next-generation sequencing 

technologies. Although longer reads (e.g. 250 or 300 bases) are now possible through the 

more-recent Illumina platforms (e.g. HiSeq 4000 and NovaSeq 6000), reads of 100 or 150 

bases in length remain the most common. The distance between the pairs of reads being 

sequenced can be varied, to better incorporate long range information. Reads generated 

using the Nextera Mate Pair Library Prep Kit (known as mate-pair reads) can have 

distances of up to 12 Kbp, compared with the reads from the standard protocol which have 

distances of only around 500 bp (known as paired-end reads). Generation of short-read 

genome data is relatively less costly than long-read data (below); this enhances one’s 

capacity to generating these data in high sequencing depth (e.g. many reads covering the 

same genome region), thus increasing the accuracy of the assembled genome. However, 

because these reads are short, they are usually unable to resolve the repetitive regions 

that are present in large eukaryotic genomes (such as those of dinoflagellates). 

Long-read sequencing is a strategy in which longer (commonly >20,000 bases) fragments 

of the reference (e.g. genome) sequences are sequenced. These long-reads dramatically 

simplify the reconstruction (assembly) process, resulting in a more-contiguous assembly 

that captures problematic regions, especially highly repetitive genomic regions, that would 

be otherwise difficult to assemble using short-reads. There are two common long-read 
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sequencing technologies available: PacBio Single-Molecule Real-Time (SMRT) 

technology, which uses a sequencing-by-synthesis approach (Figure 2.7), and Oxford 

Nanopore technology, which uses the ionic changes as DNA bases go through a 

nanometre-scale channel (“nanopore”) to effect the sequencing.  

 

 

Figure 2.7: Sequencing using PacBio SMRT technology. The double stranded template 
fragment being sequenced (purple and yellow) is ligated to SMRTbell adapters (green), 
forming a circular sequence. A DNA polymerase incorporates fluorescently labeled 
nucleotides as it traverses the circular sequence, which is recorded by a camera and used 
to construct the polymerase read. The regions of the polymerase read that are from the 
template can be extracted (known as subreads) and used to correct sequencing error, 
generating circular consensus sequence (black). Image adapted from http://pacb.com/. 

 

The PacBio SMRT technology is based on the circularisation of the long DNA fragments 

being sequenced, allowing for small fragments to be sequenced multiple times in the same 

reaction (the purple and yellow lines in Figure 2.7). The multiple copies of the same 

fragment can be used for error correction and enables the generation of high-quality 

circular consensus sequence. The recently developed R2C2 technique, used for transcript 

sequencing with Nanopore technology, enables sequencing of the same fragment multiple 

times through circularisation and rolling circle amplification137.  

Long-read technologies, when applied to transcriptome sequencing, can produce near full-

length transcript isoforms. The TeloPrime Full Length cDNA Amplification kit, designed for 

use with the PacBio technology, amplifies only transcripts that have complete 5-prime and 
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3-prime ends (Figure 2.8). This amplification removes transcripts that have degraded 

during sample preparation, resulting in more complete transcripts for downstream analysis. 

Transcripts are often small enough to produce multiple subreads when sequenced using 

PacBio, resulting in corrected sequences with very high consensus accuracy (Figure 2.7). 

The sequencing of native RNA (direct from the cell, without amplification) can be 

performed using the Nanopore technology138. This eliminates the biases introduced by 

sequence amplification during transcriptome sequencing, yielding a better picture of the 

expressed transcripts in a sample.  

 

Figure 2.8: Schematic of TeloPrime Full Length cDNA Amplification kit workflow. 5-prime 
cap adapter (pink) and 3-prime poly-T primes (green) are shown amplifying full-length 
transcripts Cartolano et al.139.  

 

The available long-read technologies have a lower throughput and produce reads that are 

of lower quality than the available short-read technologies, which is why Illumina is still 

dominant in the sequencing market. As of 2017, PacBio long-reads had an error rate of 

~14% and Nanopore long-reads ~20%140, compared to the <0.01% error rate of Illumina 

short-reads. The Nanopore technology also has problems resolving homopolymeric 

regions. The error rate and throughput of PacBio and Nanopore has been improving 

rapidly as the technologies are further developed, a trend which can be expected to 

continue.  
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2.3.2. Genome assembly 

De novo assembly of large genomes is computationally challenging and time consuming, 

requiring a large amount of data that requires specialized infrastructure to process. Large 

genomes of eukaryotes also tend to contain low-complexity and highly repetitive regions, 

which further hinder the assembly process. There are currently multiple technologies on 

the market for generating genome sequence, each with its own caveats including cost, 

read length and data quality134.  

2.3.2.1. Read quality assessment and filtering 

Before short-read data are used in downstream analysis it is important to assess the 

quality of the dataset and to filter unwanted sequences. Read quality can be assessed 

using tools e.g. FastQC to ensure that the data are of the expected quality and that no 

artefacts were introduced during the sequencing process (See Table 2.3). Adapters, low-

quality regions, and short sequences should be filtered using tools such as Trimmomatic141 

(for paired-end data) or NextClip142 (for mate-pair data). A user may at this stage decide to 

perform short-read error correction, which aims to identify and correct sequencing errors. 

These tools usually work by identifying low abundant k-mers (short sub-sequences at 

defined length k; these k-mers are assumed to have arisen via sequencing error) and 

replace them using a similar k-mer of higher abundance143.  

For long reads the quality assessment process will often depend on the technology used 

and the provider through which the data were generated. Long-read genome data from 

PacBio and Nanopore may not require adapter trimming, as this is normally done by the 

sequencing provider. It is, however, advisable to check with the sequencing provider to 

determine if adapters have been trimmed, and that the data received are as expected. 

Circular consensus sequences are often not computed for PacBio genome data as the 

template fragments being sequenced are often too large for multiple subreads to be 

generated (Figure 2.7). 

 

Table 2.3: Common tools for processing of short-read sequencing data  

Program Functionality 

Trimmomatic Short-read quality and adapter trimming141 

SeqPurge Short-read quality and adapter trimming144 

CutAdapt Short-read quality and adapter trimming145 
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AdapterRemoval 
v2 

Short-read quality and adapter trimming, merging of 
overlapping reads146 

NextClip Mate-pair adapter trimming142 

NxTrim Mate-pair adapter trimming147 

Skewer Mate-pair and paired-end quality and adapter 
trimming148 

FastQC Quality read report (Available from 
https://www.bioinformatics.babraham.ac.uk/projects/fast
qc/) 

Musket Short-read error correction149 

QuorUM Short-read error correction150 

BayesHammer Short-read error correction151 

 

2.3.2.2. Estimation of genome size using short read data 

The use of k-mers in the analysis of genome scale data is common. In this context, the 

term k-mers refers to the set of all possible sub-sequences of length k present in a 

sequence. Virtually all assembly programs, for both genome and transcriptome data, and 

for both short- and long-read data, use k-mers at some stage of the assembly process. A 

count distribution, constructed using k-mers generated from the trimmed short read data, 

can be used to estimate the genome size and read coverage of a de novo genome152. The 

proportion of high frequency k-mer in this distribution can be used to estimate the repeat 

content of the genome. This distribution can also be used to identify the ploidy of the 

genome153 which, as described in Sections 2.3.2.3 and 2.3.2.4, has implications for the 

assembly strategy. In the instance of diploid genomes, the GenomeScope tool154 can be 

used to calculate many of these k-mer statistics, including the estimates heterozygosity of 

the two haplotypes.  

2.3.2.3. Short-read-only genome assembly 

Available genome assembly programs for short-read data include Minia155, CLC Genomics 

Workbench (https://www.qiagenbioinformatics.com/) and ALLPATHS-LG156 (see Table 

2.4). Once contigs have been assembled, mate-pair data and the associated distance 

between the paired reads can be used to join contigs into larger scaffolds, e.g. using 

SSPACE157. Some assembly programs such as ALLPATHS-LG accept mate-pair data and 

attempt scaffolding during assembly. The resulting gapped regions on genome scaffolds, 

represented by a series of N’s, can be resolved by extending from each end of the gapped 

regions using the sequence data, as implemented in programs such as GapFiller158.  

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.qiagenbioinformatics.com/
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The most commonly used assembly algorithms for short-read data are based on De Bruijn 

graphs159. In brief, short reads are decomposed into k-mers that represent the nodes in a 

graph, and these nodes are connected if they share a common k-1 mer134; these nodes 

are then traversed from one to another with the aim of achieving the shortest common 

superstring (sequence)159. For diploid genomes the assembly process is more complex. 

When an assembly algorithm, not designed for diploid genomes, is given reads generated 

from heterozygous genome regions, it will produce a fragmented assembly, with a size 

approaching twice that of the haploid genome. This is a result of how assembly programs 

resolve heterozygous regions: by creating “bubbles” in the De Bruijn graph, which are 

resolved as two contigs, one for each allele. Programs such as dipSPAdes160 (a variant of 

the SPAdes161 assembler), ALLPATHS-LG156 (which can be run for diploid genomes) and 

Platanus153 have been designed to assemble diploid genomes. Other programs such as 

Haplomerger2162 and Redundans163 are designed for post-processing of assembled 

genomes, attempting to separate or remove the heterozygous contigs produced during 

assembly.  

 

 

Table 2.4: Common tools used during genome assembly. 

Program Functionality 

Minia Short-read-only assembler155 

CLC Genomics 
Workbench 

Short-read and long-read assembler, can do reference based 
assembly (Available from https://www.qiagenbioinformatics.com/) 

ALLPATHS-LG Short-read-only assembler, can perform scaffolding using mate-pair 
reads, diploid aware156 

SPAdes Short-read-only assembler, can perform scaffolding using mate-pair 
reads161 

hybridSPAdes Hybrid assembler version of the SPAdes assembler164 

dipSPAdes Diploid aware version of SPAdes160 

Platanus Short-read-only assembler, diploid aware153 

SOAPdenovo2 Short-read-only assembler, can perform scaffolding using mate-pair 
reads and gap filling165 

Canu Long-read assembler, can be provided with long-reads corrected 
using short-read data166 

FALCON Long-read-only assembler, diploid aware167 

FALCON-Unzip Haplotype resolution and phasing using long-reads167 

FALCON-Phase Haplotype resolution and phasing using Hi-C168 

MaSuRCA Hybrid and short-read-only assembler, diploid aware169 

HGAP Long-read-only assembler170 

Chromosomer Reference-based assembler171 

https://www.qiagenbioinformatics.com/
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SSPACE Contig scaffolding using mate-pair reads157 

SSPACE-
LongRead 

Contig scaffolding using PacBio long reads172 

GapFiller Gap filling using short-read data158 

LR_Gapcloser Gap filling using long-reads173 

GapCloser Gap filling using short-read data165 

Haplomerger2 Reconstruct haploid sub-assemblies162 

Redundans Collapse heterozygous contigs, can perform scaffolding and gap 
filling using mate-pair and long-read data163 

Proovread PacBio long-read error correction using short-read data174 

Pilon Identification and correction of assembly errors using short-read 
data175 

Arrow Error correction using PacBio long-reads 
(https://github.com/PacificBiosciences/GenomicConsensus) 

REAPR Identification and correction of assembly errors using short-read 
data176 

CEGMA Estimation of assembly completeness using core conserved 
genes177 

BUSCO Estimation of assembly completeness using core conserved 
genes178 

 

2.3.2.4. Long-read-only genome assembly 

Assemblers for long-read data are able to resolve repetitive and low-complexity regions 

better than can short-read-only assemblers. Although the exact implementation varies, 

long-read assemblers rely on computing all overlaps between a given set of sequence 

reads179. Computing the overlap between all reads is a computationally intensive process; 

many assemblers use a mixture of heuristics (such as reducing the input dataset) and k-

mer-based search strategies to increase the speed and efficiency of this process. The 

computed overlaps are loaded into a graph structure and a consensus sequence is then 

constructed. Assemblers such as HGAP170 and Canu166 use the computed overlaps to 

correct errors in long-reads before attempting the assembly process, reducing the 

complexity of the data and improving the assembly quality. Tools such as Arrow 

(https://github.com/PacificBiosciences/GenomicConsensus) can polish the final long-read-

only assembly by using remapped long-reads to correct for assembly errors. Tools such as 

Pilon175 can be used to correct long-read-only assemblies with mapped short-reads. 

When applied to data from diploid genomes, long-read assemblers can attempt either to 

resolve or to collapse the heterozygous regions. When heterozygosity is uneven across 

the genome, programs such as FALCON167 (which attempts to resolve diploid assemblies) 

will collapse regions of low heterozygosity and produce two sequences in regions of high 

https://github.com/PacificBiosciences/GenomicConsensus
https://github.com/PacificBiosciences/GenomicConsensus


 

34 

heterozygosity (Figure 2.9A). FALCON-Unzip, a utility for post-FALCON run, attempts to 

identify and separate the two sequences produced from regions of high heterozygosity 

and to correct the phasing of the final assembly, ensuring that variants from the same 

haplotype are in the same contig (Figure 2.9B-C). On the other hand, assembly programs 

such as Canu166 can be used to aggressively collapse the heterozygous regions, 

simplifying the assembly process but producing an assembly that is an un-phased mosaic 

of the different haplotypes.  

 

Figure 2.9: FALCON-Unzip assembly. (A) Initial assembly generated by FALCON from 
diploid genome data (B) phasing of heterozygous regions and grouping of reads (C) 
FALCON-Unzip using the phasing of heterozygous regions to construct primary contigs 
and associated haplotigs. Figure adapted from Chin et al.167. 

 

2.3.2.5. Hybrid genome assembly 

Hybrid genome assembly programs such as DBG2OLC180 and MaSuRCA169 leverage both 

short- and long-read data to form an assembly with higher quality and contiguity than if 

either dataset were assembled separately. Hybrid assemblers follow one of two strategies: 

they either assemble short-read-corrected long reads (e.g. MaSuRCA), or scaffold a short-

read-only assembly using long reads (e.g. hybridSPAdes)179. Hybrid assemblers, due to 

the scale of data be processed (both short and long reads), are computationally intensive, 

especially when assembling large genomes (>1 Gbp). 

A C

B
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2.3.2.6. Reference-based assembly 

Reference-based assemblers use information from an already available genome 

assembly, often from the same or closely related species, during the assembly process. 

Short reads can be either pre-assembled and scaffolded using the reference (e.g. 

Chromosomer171), or mapped against the reference and a new genome inferred from the 

mapped and unmapped reads181. The lack of a good reference genome, and the high level 

of divergence observed among closely related dinoflagellate taxa, preclude the application 

of this technology to dinoflagellates.  

2.3.2.7. Other genomic technologies 

Other available genomic technologies can aid in the generation of highly contiguous 

genome assemblies. Optical mapping works by digesting immobilised DNA fragments 

using a restriction enzyme and observing the resulting fragments using florescent dye182. 

This produces a map of restriction sites that can then be used to scaffold genome 

assemblies183 or to identify structural rearrangements184. Another technology based on 

chromosomal conformational changes, e.g. Hi-C, links spatially proximal regions of DNA 

and performs high-throughput (e.g. short-read) sequencing of these linked regions185. The 

resulting read pairs, which were generated from the same chromosome up to 1 Mbp apart, 

can be used for long-range genome scaffolding or to study chromosome conformation. 

Both technologies can be used to generate chromosome-level genome assemblies, where 

each scaffold represent a chromosome. Hi-C can also be used by tools such as FLACON-

Phase168 to phase haplotypes in diploid genome assemblies.  

Other approaches, which aim to create long-reads using the available Illumina short-read 

technology, have also been developed. The Illumina SLR and 10X genomics technologies, 

which create synthetic long-reads, work broadly in two steps. In the first step they partition 

long (>10 Kbp) fragments of DNA; with each partition containing a unique barcode and 

one fragment. In the second step the long fragments are sheared, barcoded, and 

sequenced using the available Illumina sequencing platforms136. The reads from each 

partition can be de-multiplexed and assembled separately, creating one synthetic long 

read per partition. These synthetic long-reads have the same low error rate as the Illumina 

short-reads and can be used for de novo genome assembly and haplotype phasing. 

Although more robust than normal short-read sequencing, the construction of synthetic 

long-reads is confounded by repetitive regions, thereby reducing the applicability of these 

technologies to highly repetitive genomes. 
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2.3.2.8. Quality of genome assembly 

Once a genome assembly has been generated, its quality can be assessed based on read 

mapping, for which assembly errors can be identified using e.g. REAPR176. Commonly for 

eukaryote genomes, programs such as CEGMA177 or BUSCO178 are used to assess 

completeness based on the recovery of core eukaryotic genes (highly conserved in a 

limited number of model eukaryote genomes) in the genome assembly. The proportion of 

transcriptome sequences that maps to the assembled genome can also be used to assess 

this completeness. A full recovery of these core genes in a genome assembly generally 

indicates that the assembly is complete. However, because the core gene sets were 

based on a limited number of model eukaryote genomes whereas dinoflagellate genomes 

are highly divergent from other known genomes, full recovery is unlikely to be indicated. 

Other core gene sets e.g. in BUSCO (derived from limited genomes of stramenopiles or 

protists) may be more appropriate.  

2.3.3.  Transcriptome assembly 

Transcriptome data can be a valuable tool for investigating genes and their functional 

features encoded by a genome, especially when it is not feasible (as for free-living 

dinoflagellates) to generate complete genome data. The exact procedure for assembling 

transcriptome data largely depends on the sequencing technology used. 

 

Table 2.5: Commonly used tools for assembling transcriptome data. 

Program Functionality 

Trimmomatic Short-read quality and adapter trimming141 

SeqPurge Short-read quality and adapter trimming144 

CutAdapt Short-read quality and adapter trimming145 

AdapterRemoval v2 Short-read quality and adapter trimming, merging of 
overlapping reads146 

Trinity Short-read de novo and reference-based transcriptome 
assembly186 

Oases Short-read de novo transcriptome assembly187 

BinPacker Short-read de novo transcriptome assembly188 

Cufflinks Short-read reference-based transcriptome assembly189 

Scripture Short-read reference-based transcriptome assembly190 

IsoSeq3 Workflow for CCS generation, adapter trimming and read 
clustering (https://github.com/PacificBiosciences/IsoSeq3) 

TAMA Construct gene models from IsoSeq data using a reference 
genome (https://github.com/GenomeRIK/tama) 
 

https://github.com/PacificBiosciences/IsoSeq3
https://github.com/GenomeRIK/tama
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PASA CCS reads (from the IsoSeq3 workflow) can be incorporated 
and used to construct gene models191 

Flair Analysis of full-length isoforms using Nanopore data 
(mapped to a reference genome)192 

Mandalorion 
Episode II 

Analysis of full-length isoforms using Nanopore data 
(mapped to a reference genome) generated using the R2C2 
protocol (https://github.com/rvolden/Mandalorion-Episode-II) 

 

2.3.3.1. Assembly of short-read transcriptome data 

Several short-read technologies have been developed to generate transcriptome data, 

among which Illumina RNA-Seq is by far the most common and has the most tools 

available for down-stream analysis. The first step before assembling a transcriptome is to 

remove adapter sequences and low-quality bases using tools such as Trimmomatic141 

(see Table 2.5). The filtered reads can then be assembled de novo into transcripts using 

tools such as Trinity186; these tools, adopting a similar method to de novo genome 

assembly, generally decompose the reads into k-mers and use De Bruijn graphs to 

construct contig sequences. The difference, however, is that transcriptome assemblers 

aim to achieve full-length transcripts (and transcript isoforms) as much as possible, rather 

than full-length chromosomes in a genome assembly. If available, a reference genome can 

be used to guide the assembly process, e.g. using Cufflinks189 or the genome-guided 

mode of Trinity. RNA-Seq data generated from the same species under different 

conditions can be analysed to identify differentially expressed genes. This was previously 

done using microarray experiments, which require a reference transcriptome and could not 

be applied to non-model organisms such as dinoflagellates. Genes identified as being 

differentially expressed (up- or down-regulated) may be linked to functions that play a role 

in that species response to the assessed condition.  

2.3.3.2. Processing of long-read transcriptome data 

Recently, long-read technologies have also been used to generate transcriptome data, 

particularly for eukaryotes, targeting full-length transcript sequences (Section 2.3.1). These 

transcripts are commonly shorter than the long-reads we expect from genome data (i.e. 

typically >20,000 bases). The process of assembly from these data is not necessary, 

because each long read represents a single transcript. However, these data are subjected 

to a series of processing steps, including the filtering for low-quality bases, error 

correction, and removal of redundant sequences.  

https://github.com/rvolden/Mandalorion-Episode-II
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A dominant long-read technology for generation of transcriptome data is PacBio IsoSeq, 

for which full-length eukaryote transcripts are captured before sequencing (Figure 2.8). 

These data are commonly processed (when no genome reference is available) using the 

IsoSeq3 workflow (https://github.com/PacificBiosciences/IsoSeq3). This workflow, 

developed and maintained by Pacific Biosciences, the manufacturer of the PacBio 

sequencing technology, details the generation of high-quality circular consensus 

sequence, adapter trimming, and clustering of reads from the same transcript. If a 

reference genome is available, clustering of error-corrected reads can be performed using 

other existing workflows, e.g. TAMA (https://github.com/GenomeRIK/tama) or PASA191. In 

comparison, because data generated using Oxford Nanopore technology have higher 

error rates (than data from PacBio), these data are commonly mapped against a reference 

genome using tools such as Flair192. For generation of de novo full-length transcriptome 

data without a genome reference, PacBio IsoSeq remains the better option than 

Nanopore.  

2.3.4. Gene prediction and functional annotation of genomes 

Gene prediction in genomes of eukaryotes is more complicated than that in those of 

prokaryotes. For the latter, identification of open-reading frames would generally suffice, 

because prokaryote genes have no introns and little intergenic sequence. Eukaryote 

genes feature exons interrupted by (commonly larger) introns, long intergenic regions, 

distinct intron/exon splice signals, and alternatively spliced isoforms. The size and number 

of introns are highly variable among eukaryotes; some species also use non-standard 

initiation, termination and intron/exon splice sites (e.g. dinoflagellates: Section 2.2.3.2), 

and the resulting alternative transcript isoforms complicate the gene-prediction process193. 

Broadly, eukaryotic gene prediction programs can be classified into two categories: 

similarity-based and ab initio (Table 2.6). 

 

Table 2.6: Commonly used gene-prediction programs for eukaryote genomes. 

Program Functionality 

PASA Transcript similarity-based prediction191 

AUGUSTUS Ab initio gene prediction – can be trained using high-quality genes 
or using an already trained model from a closely related species194 

SNAP Ab initio gene prediction – trained using high-quality genes195 

GeneMark-ES Ab initio gene prediction196 

GlimmerHMM Ab initio gene prediction – trained using high-quality genes197 

https://github.com/PacificBiosciences/IsoSeq3
https://github.com/GenomeRIK/tama
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GeneZilla Ab initio gene prediction – trained using high-quality genes197 

Exonerate Protein and transcript similarity based198 

Funannotate Gene prediction pipeline, utilises multiple ab initio gene prediction 
tools and transcriptome data 
(https://funannotate.readthedocs.io/en/latest/index.html)  

JAMG Gene prediction pipeline, utilises multiple ab initio gene prediction 
tools and transcriptome data (http://jamg.sourceforge.net/) 

Genewise Protein similarity-based prediction199 

Maker Gene prediction pipeline, utilises multiple ab initio gene prediction 
tools, transcriptome data and protein similarity200 

EvidenceModeler Combines predicted genes from multiple sources into a final set of 
gene prediction201 

GLEAN Combines predicted genes from multiple sources into a final set of 
gene prediction202 

 

2.3.4.1. Similarity-based gene prediction 

Similarity-based methods rely on evidence from other sources of sequence data to help 

guide prediction of genes, including transcriptome data or known genes from the target or 

other closely related species. In general, these methods are based on the mapping of 

transcriptome data from the target genome, or the associated homologous proteins from 

closely related taxa. Some ab initio prediction methods can be guided using current 

knowledge of the expected gene structures. Transcriptome data provide direct evidence of 

the structure of encoded genes. Short-read transcriptome data can be mapped directly 

onto the assembled genome, or first assembled de novo (using programs e.g. Trinity186) 

prior to genome-mapping. As inherent to all short-read technologies, the reconstruction of 

the transcript sequences is complicated by alternatively spliced variants; this issue 

commonly results in highly fragmented transcripts, thus limiting their use as evidence for 

downstream prediction of full-length gene models. In this regard, long-read technologies 

provide a potential solution, as they are capable of sequencing transcripts in full length 

(thus recovering complete spliceoforms), removing the need to reconstruct the transcript 

sequences. Once these transcripts are analysed and assembled on the genome using 

established programs such as PASA191, the resulting full-length transcripts that incorporate 

alternative spliced sites and their associated isoforms can be used as direct evidence for 

encoded genes for subsequent gene prediction and analysis.  

When high-quality reference annotations are available from a closely related species (or 

the same species), a reference-based annotation tool such as RGAAT203 can be used to 

annotate the new genome, i.e. regions aligned by sequence identity between the 

https://funannotate.readthedocs.io/en/latest/index.html
http://jamg.sourceforge.net/
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reference and the new genome would share the same annotated function. This approach 

is expected to yield the fewest mis-identifications when used in genome re-sequencing 

from multiple isolates of the same species. Dinoflagellates genomes generally share a 

high level of sequence divergence even among closely related species, and no good 

genome reference is available; transcriptome data represent the best available evidence 

for gene prediction in de novo genomes, and reference-based tools are not appropriate. 

2.3.4.2. Ab initio gene prediction 

Ab initio methods are the most commonly used gene prediction tools for de novo 

genomes. The supervised ab initio methods can be guided (or supervised) using other 

evidence to yield more realistic predictions than can the unsupervised methods. Common 

tools such as AUGUSTUS194 and SNAP195 can use transcriptome-based gene models 

(Section 2.3.4.1) to estimate gene features including codon usage and intron density. 

When transcriptome data are unavailable, unsupervised methods such as GeneMark-

ES196 or AUGUSTUS can be used to predict genes based on general eukaryotic gene 

features within a hidden Markov model framework. Multiple sources of evidence for gene 

prediction in a novel genome can often be combined into a final gene set using programs 

such as GLEAN202, Maker, or EvidenceModeler201. EvidenceModeler allows the user to 

designate a weighting for each evidence source, providing control over the final predicted 

genes. For example, a user may choose to weigh high-confidence evidence-based 

predictions (e.g. transcriptome alignments) higher than unsupervised ab initio predictions. 

This integrated approach represents the most comprehensive available, and is suitable for 

predicting genes from de novo dinoflagellate genomes.   

2.3.4.3. Functional annotation of predicted genes 

The functions of predicted genes are usually inferred at the protein level, based on the 

coded proteins of these genes. Until evidence is presented that states otherwise, 

dinoflagellates are assumed to use the standard genetic code. A common approach is 

based on Gene Ontology (GO) terms that are associated with known proteins to which the 

coded protein share high sequence similarity, e.g. using Blast2GO204. GO terms represent 

a universal, standardized, structured/hierarchical glossary that describes gene products 

(i.e. proteins) based on three principal categories: Biological Process, Molecular Function 

and Cellular Component205. By comparing GO terms between an annotated dataset 

against a background reference, one can identify terms (and thus functions) that are over- 
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or under-represented at a level of confidence based on statistical significance. Functions 

of these proteins can also be linked to the associated metabolic pathways in the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database206. KEGG pathways are manually 

curated maps that represent molecular interaction and reaction networks. By annotating 

predicted genes with KEGG identifiers (using the KofamKOALA tool207), these pathways 

can be reconstructed, allowing for the identification of pathways that are present or absent 

in the dataset. When applied to genome data from dinoflagellates, these tools can be used 

to identify functions that are enriched in a target lineage, e.g. pathways related to cold-

adaptation in psychrophilic species. 

2.4. Genome data available from dinoflagellates 

Currently available genome data from dinoflagellates (Section 2.2.2; Table 2.1) have 

greatly advanced our understanding of the biology and evolution of these ecologically 

important taxa, especially among Symbiodiniaceae taxa that are critical partner in coral-

dinoflagellate symbiosis. In this section, the adopted approaches used for generating 

these data are briefly highlighted, and the use of these published data as a reference for 

studying other de novo dinoflagellate genomes is discussed from a technical perspective.  

2.4.1. Available draft genomes from dinoflagellates 

All available dinoflagellate genomes are assembled using short-read data, primarily 

generated using the Illumina technology12,13,26-29. These assemblies are highly fragmented 

(i.e. between 2,351 scaffolds in A. ceratii and 869,500 scaffolds in Hematodinium sp.; 

mostly in tens of thousands of scaffolds) and often have low genome cover (41.07% in B. 

minutum and 79.24% in F. kawagutii). This is likely caused by repetitive regions that 

cannot be resolved using a short-read-only assembly strategy. The generation of long-

read data for these species, which can be combined with the available short-read data, 

would help resolve these repetitive regions and result in a more-contiguous assembly with 

improved genome cover.  

2.4.2. Current gene prediction strategies deployed in dinoflagellates 

Among the published de novo genomes of dinoflagellates, different gene-prediction 

approaches have been adopted by the different research groups. For the two genomes of 

parasitic species, the A. ceratii genes were predicted using AUGUSTUS, guided by a set 

of 16 known genes with support from mapped transcripts, while no predicted genes were 
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reported for the Hematodinium species. Among the Symbiodiniaceae genomes, gene 

prediction strategies differ from one research group to another.  

Shoguchi et al.26,28 predicted genes in B. minutum, S. tridacnidorum and Cladocopium sp. 

C92 using AUGUSTUS that had been trained with the 500 longest gene models derived 

from PASA; aligned transcripts were used as “hints” during prediction. Aranda et al.27 

predicted genes in S. microadriaticum using AUGUSTUS trained with stringently filtered 

PASA-derived gene models; aligned transcripts were used as “hints” during prediction and 

gene models were further refined, based on transcriptome evidence, using PASA. Lin et 

al.29 predicted genes in F. kawagutii using GLEAN202, which combines evidence from, 

AUGUSTUS de novo prediction, Genewise199 protein alignments, and PASA-mapped 

transcripts. The use of different methods for gene prediction is likely, in part, to be 

responsible for the difference in number of predicted genes observed among the distinct 

Symbiodiniaceae (Table 2.1); some of these gene models (~30%) lack transcriptome 

evidence, and remain to be validated. With five dinoflagellates genomes already available 

and more being sequenced, there is a need for a standardized comprehensive gene 

prediction workflow, to ensure comparability of the predicted genes in downstream 

comparative genomic studies. 

2.5. Comparative Genomics 

Comparative genomics is the study of genome features across different organisms. In 

dinoflagellates, features of interests in comparative genomics include repeat content and 

divergence, prevalence of alternative splice sites, tandem repeated genes and 

conservation of gene functions related to adaptation. In P. glacialis the features of interest 

are those related to cold adaptation and adaptation to a free-living lifestyle.  

Evolutionary relationship among distinct taxa can be inferred, usually in a gene-by-gene 

approach84,95. To do this, sets of homologous proteins can be clustered, using a suitable 

algorithm, and multiple sequence alignments constructed for each208. Phylogenetic trees 

can be inferred from the multiple sequence alignment using an appropriate method, e.g. 

Bayesian209 or maximum-likelihood approaches210. These trees can then be used to infer 

the evolutionary history of the organism, potential highlighting cases of lateral genetic 

transfer. These homologous sets can also be used to identify genes in a given organism 

that have undergone positive selection. In a gene, if a nucleotide substitution causes a 

non-synonymous change in the encoded amino acids that offers an adaptive advantage it 
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may become fixed211. The ratio of non-synonymous to synonymous substitutions (which 

have no effect on the encoded amino acids, so act as a baseline mutation rate in this 

analysis) can be used to estimate selection. A ratio >1 implies positive selection, as the 

frequency of non-synonymous mutations is relatively high, and a value <1 implies negative 

selection, as the rate of non-synonymous mutations is relatively low. More-robust methods 

such as the McDonald-Kreitman test can be used to account for potential variation or 

linkages in the mutation rates212. Packages such as PAML version 4 can test for adaptive 

selection using phylogenetic trees constructed from protein-coding genes213, as described 

above.  

For P. glacialis, the genes of interest could be those related to cold adaption, including 

those that catalyse he production of unsaturated fatty acids, or ice-binding proteins or UV 

protective molecules. Ice-binding proteins are hypothesized to have arisen in multiple 

eukaryotic lineages via lateral genetic transfer from bacteria59. The close proximity of P. 

glacialis in brine channels to bacteria could lead to a similar exchange, and should be 

examined further once data is available.  

2.6. Concluding remarks 

In this chapter, I have reviewed the basics of cold adaptation and dinoflagellate genomics, 

focusing on the availability and challenges of generating genome scale data for these 

organisms. In the next chapter I present a customised gene-prediction workflow designed 

specifically to accommodate the idiosyncratic features of dinoflagellate genomes. I also 

describe in detail the successfully implementation of this workflow on the de novo 

genomes of two Symbiodiniaceae species, producing high-quality gene models for 

comparative genomic analyses. 
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Chapter 3  
 

A new robust workflow for predicting genes in 
dinoflagellate genomes 

Genomic studies of non-model eukaryotes routinely involve the prediction of protein-

coding genes in de novo genome assemblies. These predicted genes are then used in 

downstream comparative genomic studies to gain biological insights about the target 

organism relative to other related taxa. Such a study commonly includes the analysis of 

the presence or absence of genes, and the assessment of enriched gene functions in the 

target organism(s). Given the significant impact of these predicted genes on comparative 

genomics, more effort is needed to ensure that the genes predicted are biologically 

realistic (thus of high quality). This impact is intensified in de novo genomes of highly 

divergent taxa that are atypical of other eukaryotes. 

The prediction of genes in eukaryotic organisms is non-trivial. There are many different 

prediction programs available each with their own strengths, and non-model organisms 

often encode genes in a non-standard way. The genomes of dinoflagellates encode many 

idiosyncratic features, such as non-canonical splice sites, that preclude gene prediction 

using available tools. The seven genome assemblies available for dinoflagellates have 

genes predicted using a variety of strategies, resulting in substantially different numbers of 

encoded genes. In this chapter, I present the development of a comprehensive, robust 

gene-prediction workflow designed specifically for the idiosyncratic features of 

dinoflagellate genomes. 

This chapter is presented as two manuscripts, addressing Aim 2 (Section 1.4). The first 

manuscript (Section 3.1) details the implementation of my customised gene prediction 

workflow on two dinoflagellate genomes of Symbiodiniaceae (Cladocopium goreaui and 

Fugacium kawagutii). This work was published in Communications Biology (doi: 

10.1038/s42003-018-0098-3) and reformatted for this thesis. The two species presented in 
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this work were formerly known as Symbiodinium goreaui (clade C1) and Symbiodinium 

kawagutii (clade F); these names as published were used in this chapter. The 

supplementary material for this publication is presented in Appendix A. As the second 

author of this paper, I designed, developed, iteratively optimised and implemented the ab 

initio gene-prediction workflow used in this study. I also conducted and interpreted the 

results of downstream comparative analysis; this workflow represents the first that is 

tailored for any dinoflagellate genomes. I also systematically assessed the organelle 

genomes of both species, comprehensively annotated the genome features, and 

compared against those publicly available. I generated all associated figures and tables. 

The second manuscript (Section 3.2) represents a research note about how the function of 

certain parameters of the NCBI BLAST alignment tool have been grossly misunderstood 

by the community, and how this might affect the assumptions made about the results. This 

work is built on my observations in the results based on BLAST searches during my earlier 

analysis in characterising organellar sequences (Section 3.1). This work was published as 

a Letter to Editor in Bioinformatics (doi: 10.1093/bioinformatics/bty1018) and formatted for 

this thesis. As the joint first-author of this paper, I conceived the idea and wrote the 

manuscript.  

3.1. Symbiodinium genomes reveal adaptive evolution of functions related 
to coral-dinoflagellate symbiosis 

3.1.1. Abstract 

Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals 

forms the trophic foundation of the world’s coral reef ecosystems. Here we present the first 

draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most 

ubiquitous endosymbionts associated with corals, and an improved draft genome of 

Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp) to further elucidate genomic 

signatures of this symbiosis. Comparative analysis of four available Symbiodinium 

genomes against other dinoflagellate genomes led to the identification of 2460 nuclear 

gene families (containing 5% of Symbiodinium genes) that show evidence of positive 

selection, including genes involved in photosynthesis, transmembrane ion transport, 

synthesis and modification of amino acids and glycoproteins, and stress response. 

Further, we identify extensive sets of genes for meiosis and response to light stress. 

These draft genomes provide a foundational resource for advancing our understanding 

Symbiodinium biology and the coral-algal symbiosis. 



 

46 

3.1.2. Introduction 

Coral reefs provide habitats for one-quarter to one-third of all marine species214. Although 

typically surrounded by nutrient-poor waters, coral reefs show high rates of primary 

productivity, with the fixed carbon supporting not only the biomass of reef organisms but 

also commercial and recreational fisheries. Reef-building corals rely on the symbiosis 

between the coral animal per se and photosynthetic dinoflagellates of the genus 

Symbiodinium. This symbiosis is based on mutual nutrient exploitation, with corals 

providing shelter and inorganic nutrients to their algal partners, while Symbiodinium supply 

their coral hosts with photosynthates that can meet up to 95% of the corals’ energy 

requirements215.  

The relationship between Symbiodinium and their host determines not only the rate of 

coral-reef growth (calcium carbonate deposition), but also how the system responds to 

environmental stress215. Many studies have shown that coral-Symbiodinium mutualism is 

susceptible to environmental factors including temperature, light and salinity216. Exposure 

to ultraviolet radiation, thermal stress or a combination of both can initiate photoinhibition, 

decoupling of carbon flow between symbiont and host, oxidative damage and breakdown 

of the symbiosis, a phenomenon known as coral bleaching. Unless the symbiosis is soon 

re-established the coral host is at risk of starvation, disease and eventual death. In recent 

decades, coral bleaching has led to large-scale mortality on coral reefs around the world, 

with the most recent global coral bleaching event (2014-2017) now confirmed as the 

longest and most severe on record217. 

Despite the critical importance of this coral-dinoflagellate symbiosis, little is known about 

the underlying molecular mechanisms (apart from photosynthesis and carbon exchange), 

largely due to the lack of comprehensive understanding of what molecules, pathways and 

functions Symbiodinium can contribute. Genomes of dinoflagellates are known for their 

idiosyncratic features including non-canonical splice sites, extensive methylation4 and 

large sizes, up to 250 Gbp30. Their plastid genomes occur as plasmid-like minicircles122; 

their mitochondrial genomes harbour only three protein-coding genes and lack stop 

codons128, and both mitochondrial and nuclear94 transcripts are extensively edited. 

Symbiodinium are classified into nine clades218, with members of Clades A, B, C and D 

responsible for the vast majority of associations with scleractinian corals219. Draft genomes 

have been published for representatives of Clades A, B, C and F26-29, with sequence 
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comparisons demonstrating Symbiodinium isolates (and clades) to be highly divergent29,220 

. With the exception of a recently published draft genome of the foraminifera-associated 

Symbiodinium sp. Y10328, genome sequences are still lacking for Clade C, the most 

ubiquitous and diverse clade associated with tropical reef corals221, at least some sub-

clades (types) of which are ecologically partitioned76. 

Here we report draft genomes of two Symbiodinium from the Pacific Ocean: S. goreaui 

(type C1; isolated from the acroporid coral Acropora tenuis) from the Great Barrier Reef, 

and S. kawagutii CS-156 (=CCMP2468, Clade F) from Hawaii. Symbiodinium type C1 is 

one of two “living” ancestors (along with type C3) of Clade C221, and one of the most 

dominant types associated with reef corals in both Indo-Pacific and Caribbean waters. S. 

goreaui has been reported from >150 coral species on Australia’s Great Barrier Reef, 

representing >80% of the studied coral genera in this region across environments from 

reef flats to lower mesophotic depths222,223. In contrast, S. kawagutii CS-156 

(=CCMP2468) was isolated during attempts to culture the symbiont from Montipora 

verrucosa (Todd LaJeunesse, personal communication). This isolate has yet to be verified 

to occur in mutualistic symbiosis with any coral, and appears incapable of establishing 

experimental symbiosis with cnidarian hosts88. Instead S. kawagutii may be exclusively a 

symbiont of foraminifera, or occur free-living at low environmental densities but proliferate 

opportunistically in culture. As some genome data have been published for S. kawagutii 

CCMP246829, we used these in combination with new data from the present study to 

generate a refined genome assembly. The genomes of S. goreaui and S. kawagutii offer a 

platform for comparative genomic analyses between two of the most-recently diverged 

Symbiodinium lineages Clades C and F, and published genome sequences in the more-

basal Clades A and B. 

Adopting a comparative approach using both genome and transcriptome data, we 

systematically investigated genes and functions that are specific to Symbiodinium in 

relation to other dinoflagellates, and their association with the establishment and 

maintenance of symbiosis. We computationally identify genes and functions for which 

there is evidence of adaptive selection in Symbiodinium. We also identify extensive sets of 

genes for meiosis and response to light stress. Our results indicate adaptive selection in 

Symbiodinium gene functions that are related to establishment of cnidarian-dinoflagellate 

symbiosis, and provide compelling genomic evidence (i.e. based on gene repertoire) that 

Symbiodinium is, or has recently been, capable of meiosis. To our knowledge, this is the 
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most comprehensive comparative analysis so far of Symbiodinium genomes, and the first 

to include a prominent endosymbiont of corals of Indo-Pacific and Caribbean reefs. 

3.1.3. Results 

3.1.3.1. Genomes of S. goreaui and S. kawagutii 

We sequenced and generated two draft Symbiodinium genome assemblies de novo, for S. 

goreaui (Clade C, 1.03 Gbp) and for S. kawagutii (Clade F, 1.05 Gbp). Details of data 

generation and assembly statistics are shown in Supplementary Tables 1 and 2 (Appendix 

A) respectively. Our S. goreaui assembly consists of 41,289 scaffolds (N50 length 98,034 

bp). For S. kawagutii, we first verified that our data (from isolate CS-156) and the 

published data (from the synonym isolate CCMP2468) are indeed from the same culture of 

origin (see Methods and Appendix A Supplementary Fig. 1). Compared to the published 

assembly by Lin et al.29, independent mapping of their ten fosmid sequences29 onto our 

preliminary CS-156 assembly yielded up to 43-fold and 37-fold fewer gaps and 

mismatches respectively (Appendix A Supplementary Fig. 2). We later combined both 

datasets in a single de novo assembly, yielding 16,959 scaffolds (N50 length 268,823 bp). 

Genome-size estimates based on k-mer coverage are 1.19 Gbp for S. goreaui and 1.07 

Gbp for S. kawagutii (Appendix A Supplementary Table 3), comparable to those for other 

sequenced Symbiodinium genomes. We also recovered sequences putatively derived 

from their plastid genomes (Appendix A Supplementary Tables 4, 5 and 6) including their 

distinct core conserved regions (Appendix A Supplementary Table 7), and from their 

mitochondrial genomes; see Supplementary Note 1 (Appendix A) for details.  

The repeat content of the assembled genomes ranged from 16.0% (S. kawagutii) to 27.9% 

(S. microadriaticum); a large peak in transposable element (TE) abundance observed at 

high divergence (Kimura distance224 15-25) in all genomes (Appendix A Supplementary 

Fig. 3) suggests that most extant transposable elements are remnants of an ancient burst 

of TE activity that had occurred before the diversification of Symbiodinium. In all genomes, 

the proportion of long interspersed nuclear elements is larger than that of long terminal 

repeats. TE activity has been broadly linked to genome size in plants225, so reduced TE 

activity may be connected with the relative compactness of Symbiodinium genomes in 

comparison to those of other dinoflagellates. However, as these genomes are still in draft, 

the impact of assembly completeness on the patterns of repeat divergence cannot be 

dismissed.  
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Using a stringent threshold to remove genome scaffolds of potential bacterial or viral origin 

(Methods), we predict 35,913 and 26,609 high-quality gene models respectively for S. 

goreaui and S. kawagutii (Appendix A Supplementary Table 8). Usage profiles of codons 

and amino acids are shown in Supplementary Figs 4 and 5 (Appendix A) respectively, and 

non-canonical splice sites in Supplementary Table 9 and Supplementary Fig. 6 (Appendix 

A). Although we report fewer genes than in the published Symbiodinium genomes26,27,29, 

most (67.0% and 64.4% respectively for S. goreaui and S. kawagutii) have transcriptome 

support, and we generally recovered more (Appendix A Supplementary Fig. 7) of the 458 

conserved core eukaryote genes (e.g. 436 in S. goreaui compared to 410 in the published 

S. microadriaticum27 based on TBLASTX; Appendix A Supplementary Fig. 7C). Of these, 

371 are common to all four Symbiodinium based on the predicted gene models (Fig. 3.1; 

Appendix A Supplementary Data 1); similar results are observed for the corresponding 

genome sequences (Appendix A Supplementary Fig. 7). About 94% of the predicted 

genes have introns, similar to S. microadriaticum (98.2%) and S. minutum (95.3%); the 

earlier S. kawagutii genome assembly29 may have underestimated the proportion of intron-

containing genes (Appendix A Supplementary Table 8) due to a less-stringent approach to 

gene prediction. All coding sequences have higher G+C content (56.7% in S. goreaui and 

55.0% in S. kawagutii) than does the genome overall, comparable to coding sequences 

from other Symbiodinium (57.7% in S. microadriaticum and 52.7% in S. minutum).  
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Figure 3.1: Comparison of Symbiodinium genomes. Number of recovered core eukaryote 
genes in each genome based on CEGMA, out of the 458 core genes.  

 

3.1.3.2. Sequence divergence and synteny 

Despite the seemingly high number of protein-coding genes, an earlier analysis of syntenic 

blocks27 found only several hundred blocks conserved in a pairwise manner among three 

published Symbiodinium genomes. Here we included our two new genome sequences in 

this analysis, and focused further on syntenic collinear blocks, requiring each block to 

contain the same genes in the same order and orientation with no gene losses (Methods). 

The S. goreaui and S. kawagutii genomes share the most collinear blocks with 889 blocks 

implicating 8621 genes; 62 of these blocks are of size >15, with the largest containing 76 

genes (Appendix A Supplementary Table 10). Thus substantial proportions of genes in 

these two genomes occur in clusters: for cluster size ≥ 5 genes, 32.4% and 24.0% of S. 

kawagutii and S. goreaui genes respectively. These are likely to be underestimates, as the 

assemblies remain fragmentary. At the other end of the spectrum, the genomes of S. 

microadriaticum and S. goreaui share only 86 collinear blocks of size  5, with maximum 

size 12 and implicating 588 genes in total (Table 3.1; Appendix A Supplementary Table 
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10). These results suggest that (a) although Clades C and F are divergent, they are the 

most-closely related among the four analysed Symbiodinium genomes (in line with their 

phylogenetic relationship); and (b) C and F are more divergent from Clade A than from 

Clade B (in line with their phylogenetic relationship). Therefore, gene synteny supports 

and extends earlier conclusions, based on common marker sequences, about 

phylogenetic relationships among Symbiodinium clades218,219. The remarkable sequence 

divergence among Symbiodinium lineages (with < 20% genome-sequence reads of S. 

goreaui and S. kawagutii respectively mapped to a genome of a different clade; Appendix 

A Supplementary Fig. 1A) lends support to earlier observations27,29. 

 

Table 3.1: Number of syntenic collinear blocks in Symbiodinium genomes. 

 S. microadriaticum, 
clade A 

S. minutum, 
clade B 

S. goreaui, 
clade C 

S. minutum, 
clade B 

370 
(2816) 

- - 

S. goreaui, 
clade C 

86 
(588) 

155 
(1125) 

- 

S. kawagutii, 
clade F 

121 
(893) 

173 
(1323) 

889 
(8621) 

The number of identified syntenic collinear blocks for each pair of genomes (excluding 

self-comparisons) is shown, with the corresponding number of implicated genes in 

parentheses. 

3.1.3.3. Genome duplication and evolution 

To assess the extent of genome-fragment duplication in the Symbiodinium genomes, we 

further assessed the syntenic collinear blocks within each of the four Symbiodinium 

genomes (as opposed to those shared between two genomes; above); these blocks likely 

imply duplication of genome fragments. We recovered 3289 blocks implicating 5498 genes 

in the genome of S. goreaui, compared to 472 blocks (2833 genes) in S. microadriaticum, 

121 blocks (497 genes) in S. kawagutii, and only 1 block (12 genes) in S. minutum (Fig. 

3.2a); most of these blocks in S. goreaui and S. kawagutii contain genes annotated with 

metabolic functions (Appendix A Supplementary Data 2). The draft genome of S. minutum 

covers only 616 Mbp of the estimated 1.5 Gbp genome26, thus the scarcity of collinear 
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blocks within this genome is not surprising. While these results do not relate directly to 

whole-genome duplication, the genome of S. goreaui has the highest extent of genome-

fragment duplication among the four, involving 15.31% (5498 of 35,913) of the predicted 

genes (Fig. 3.2a). This percentage compares to 5.77% and 1.87% in S. microadriaticum 

and S. kawagutii, respectively.  

To assess the extent of adaptive selection of these duplicated genes within a genome, we 

further assessed the ratio (ω) of substitution rates in non-synonymous (dN) to synonymous 

(dS) sites226 between each pair of homologous genes located in the collinear blocks within 

a genome (Fig. 3.2b). Excluding S. minutum due to incomplete genome data, we observed 

the highest average ω in S. goreaui (2.04; based on 23,499 pairwise comparisons), 

followed by S. kawagutii (1.90; 745 comparisons), and S. microadriaticum (1.75; 1688 

comparisons). Our mean/median results suggest that most of the duplicated genes have 

undergone positive selection (mean ω > 1; Fig. 3.2b), potentially leading to diversification 

of metabolic functions. 
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Figure 3.2: Genome duplication and evolution. (a) Percentage of genes that are implicated 
in syntenic collinear blocks within each genome as an indication of genome-fragment 
duplication. (b) The probability density of the dN/dS ratio for each pair of homologous 
genes found within syntenic collinear blocks in the genomes of S. microadriaticum (red: 
1688 comparisons, mean 1.75, median 1.36), S. goreaui (yellow: 23499 comparisons, 
mean 2.04, median 1.65) and S. kawagutii (blue: 745 comparisons, mean 1.90, median 
1.47). The S. minutum genome was excluded from this analysis due to incomplete data. 
Ratios between 0 and 6 are shown. The proportion of gene-pairs with dN/dS ratio > 1 is 
0.70-0.85 for these three genomes; the proportion of those with a ratio > 6 is less than 
0.02. 
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3.1.3.4. Gene and protein functions 

All annotated genes from S. goreaui and S. kawagutii genomes are listed in 

Supplementary Data 3 and 4 respectively (Appendix A). Of the 35,913 proteins predicted 

in S. goreaui, 31,646 (88.1%) show similarity (BLASTP, E ≤ 10-5) to sequences in UniProt; 

among these, 29,198 (81.3% of 35,913) and 19,718 (54.9%) are annotated with Gene 

Ontology (GO) terms or Pfam domains (Appendix A Supplementary Table 11 and 

Supplementary Data 3). For S. kawagutii, 21,947 of 26,609 proteins (82.5%) find a match 

in UniProt (Appendix A Supplementary Table 11 and Supplementary Data 4). Protein 

kinase (Pfam PF00069), reverse transcriptase (PF07727), ion transport protein (PF00520) 

and ankyrin repeats (PF12796) are among the most-abundant domains in Symbiodinium, 

appearing among the ten most abundant for each of the four genomes (Appendix A 

Supplementary Table 12). Ankyrin repeat motifs are important in the recognition of surface 

proteins, and more generally in protein-protein interactions and have been implicated in 

mediating host-symbiont interactions across a variety of endosymbiotic associations227. 

Thus proteins potentially involved in host-symbiont interaction (with phosphorylation, ion 

transport and protein recognition/interaction domains) are well represented in the 

predicted Symbiodinium proteomes. When these proteins were compared against those 

from S. microadriaticum and S. minutum, 35.1% of the identified homologous protein sets 

were recovered in all four genomes (Appendix A Supplementary Fig. 7E).  

We compared functions of proteins predicted from these four Symbiodinium genomes to a 

set of 27 eukaryotes (scoped more narrowly): 17 alveolates (ten other dinoflagellates, four 

ciliates, two apicomplexans and Perkinsus marinus), stramenopiles (two diatoms) and 

Archaeplastida (four rhodophytes, three chlorophytes and Arabidopsis). This 31-taxon set 

(1,136,347 proteins; Appendix A Supplementary Tables 13 and 14) represents lineages in 

which one or more endosymbioses are implicated in plastid origin228; these proteins were 

clustered (based on sequence similarity) into 56,530 groups of size two or greater 

(Appendix A Supplementary Table 14; see Methods). Using this 31-taxon dataset as 

background, we assessed the over- or under-representation of protein domains within our 

various groups of Symbiodinium proteins. We found 270 domains (Appendix A 

Supplementary Data 5) to be significantly overrepresented (hypergeometric test, 

Benjamini-Hochberg229 adjusted p ≤ 0.05) in Symbiodinium. Interestingly, many domains 

e.g. C-5 cytosine-specific DNA methylase (PF00145), planctomycete cytochrome c 

(PF07635) and sigma-70 region 2 (PF04542) of RNA polymerase are also 
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overrepresented in the four Symbiodinium genomes in a similar comparison against 

880,909 proteins in a 15-taxon set that includes ten other dinoflagellates and the 

immediate outgroup Perkinsus marinus (Appendix A Supplementary Data 6). Therefore, 

compared to related eukaryotes and to other dinoflagellates, Symbiodinium is enriched in 

functions involved in methylation of cytosine, (photosynthetic) energy production and RNA 

polymerisation. Hydroxymethylation of uracil is common (12-70%) in dinoflagellate 

genomes4; while cytosine methylation has been described in Symbiodinium230, our findings 

suggest that cytosine methylation is more prominent in Symbiodinium than in these other 

dinoflagellates.  

Activation of some retrotransposons is part of the stress-response mechanism in diatoms, 

plants and other eukaryotes231. The reverse transcriptase domain (PF07727) is enriched in 

Symbiodinium compared to both the 31-taxon and 15-taxon sets, suggesting that 

retrotransposition could be a prominent mechanism of stress response in Symbiodinium 

and dinoflagellates. Although we set a stringent threshold for removing putative bacterial 

or viral sequences (see Methods), 40 (~0.1%) of the final 41,289 genome scaffolds of S. 

goreaui have significant hits (BLASTN E ≤ 10-20) to the virus genomes232 isolated from the 

same S. goreaui (type C1) strain, with 16 identical regions (76-609 bp) distributed in nine 

scaffolds of lengths ranging from 1092 to 7,338,656 bp. Whether this indicates 

introgression of viral sequences remains to be determined. 

3.1.3.5. Positive selection of Symbiodinium genes 

Using a branch-site model based on the ratio of dN/dS226 (Methods and Appendix A 

Supplementary Fig. 8) and a reference species tree, we identified Symbiodinium genes 

under positive selection in comparison to ten other dinoflagellates, with P. marinus as the 

outgroup (15 taxa: Appendix A Supplementary Tables 13 and 14). The reference species 

tree (Fig. 3.3a) was computed following Price and Bhattacharya86, based on a 

concatenated protein alignment with partition-specific maximum-likelihood model testing 

(see Methods). We then based our analysis of adaptive evolution on all orthologous sets 

plus those homologous sets for which the protein tree is topologically congruent with our 

reference tree.  
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Figure 3.3: Testing for positive selection acting on Symbiodinium genomes. (a) The 
reference 15-species tree of Symbiodinium, dinoflagellates and Perkinsus marinus (as 
outgroup) based on single-copy orthologous genes, reconstructed based on a 
concatenated protein alignment with partition-specific maximum-likelihood model testing 
using IQtree, following Price and Bhattacharya86. Support based on 2000 rapid bootstraps 
is shown on each internal node, and the branch length is the number of substitutions per 
site. (b) Percentage of the 1069 positively selected gene sets in Symbiodinium that are 
annotated with GO (level 3) terms, shown for principal hierarchies Biological Function, 
Molecular Function and Cellular Component. The corresponding number of gene sets is 
shown on each bar. 

 

The 880,969 proteins from the 15-taxon set were first clustered into 310,617 homologous 

sets. We then adopted a stringent set of criteria (Appendix A Supplementary Fig. 8) to filter 

these sets to yield the final 5675 sets: 1656 single-copy (orthologous) sets, and 4019 
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multi-copy sets for which the genus-level tree topology of each set, with Symbiodinium in 

an exclusive monophyletic clade, is congruent to the reference species phylogeny. Of the 

5675 homologous sets, 2460 containing 7987 Symbiodinium proteins (5.0% of all 158,645 

Symbiodinium proteins) show evidence of positive selection in one or more Symbiodinium 

lineages; 1069 of these sets are annotated with GO terms (Appendix A Supplementary 

Data 7). Fig. 3.3b shows the terms (level 3) in the three GO hierarchies that are shared by 

≥ 5% of these 1069 sets. In the Biological Process hierarchy, metabolic processes are 

highly represented (primary metabolic process [292] and macromolecule compound 

metabolic process [243] are among the four most-frequent terms), followed by oxidation 

reduction [96] and transport (establishment of localization [90], transport [90], and 

transmembrane transport [80]). Highly represented terms in the Molecular Function 

hierarchy point to binding of diverse molecules and ions e.g. protein binding [173] and 

metabolism (hydrolase [390], transferase [344]). In Cellular Component, cell part [113], 

membrane [86] and membrane part [59] are the most frequent. Thus in Symbiodinium as 

represented by these four assemblies, broad aspects of metabolism, and transport 

including across membranes, show evidence of positive selection, in line with their 

recognised importance in cnidarian-dinoflagellate symbioses27. 

We further assessed the enrichment of annotated GO terms among these 7987 

Symbiodinium genes against all annotated terms in the four Symbiodinium genomes 

(Appendix A Supplementary Data 8) in this study. Based on the enriched Biological 

Process terms, we observe four emergent themes among positively selected functions in 

Symbiodinium genes. The first theme is that functions associated with photosynthetic light 

reactions are enriched among the positively selected Symbiodinium genes; 

photosynthesis, light reaction and Photosystem II assembly are significantly over-

represented (Benjamini-Hochberg229 adjusted p ≤ 0.05), as are Cellular Component terms 

related to plastid functions e.g. thylakoid, photosynthetic membrane, intracellular 

membrane-bounded organelle (Appendix A Supplementary Data 8). Coral bleaching has 

been associated with the loss of light-harvesting proteins and the subsequent inactivation 

of photosystem II (PSII) in Symbiodinium under combined light and temperature stress233. 

These earlier results suggest that coral bleaching associated with algal photobleaching 

can be ameliorated, at least in part, by thermal acclimation of Symbiodinium to improve the 

thermal tolerance of PSII. Therefore, these genes may have been selected to increase 

thermal resilience. Alternatively, this may reflect the adaptation of Symbiodinium to specific 

light and nutrient regimes imposed by symbiosis. 
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The second emergent theme involves the transport of ions and metabolites across 

membranes. Intracellular transport, cytosolic transport, transition metal ion transport and 

copper ion transport as well as terms related to transmembrane transport of amino acids, 

organic acids and carboxylic acids are significantly enriched (hypergeometric test, 

Benjamini-Hochberg229 adjusted p ≤ 0.05; Appendix A Supplementary Data 8); these 

functions underpin multiple physiological processes, including but not limited to pH 

regulation, calcification and photosynthetic carbon fixation234. Symbiodinium investigated 

to date are enriched in bicarbonate and ammonium transporters compared with other 

dinoflagellates27. These biological processes are especially relevant to the maintenance 

and regulation of coral-dinoflagellate symbiosis234, possibly including its sensitivity and/or 

response to environmental stress.  

The third theme is the enrichment of functions related to the biosynthesis and modification 

of amino acids and glycoproteins (Appendix A Supplementary Data 8) e.g. protein 

phosphorylation, peptide biosynthesis process, protein ADP-ribosylation, protein 

glycosylation, D-amino acid metabolic process and glycoprotein biosynthetic process. 

Corals lack the capacity to synthesise a number of amino acids (e.g. cysteine in Acropora 

digitifera235), thus selection acting on the synthesis of amino acids may indicate the critical 

role of Symbiodinium in supplying amino acids both for self-preservation and for the coral 

host. Glycoprotein molecules are often surface-localised and in microbes form the basis of 

microbe-associated molecular patterns (MAMPs) which, in conjunction with a host-

associated pattern recognition receptor, mediate recognition by a host216. Both in culture 

and in hospite, Symbiodinium exude glycoconjugates216. Where investigated, cell-surface 

glycan profiles are stable over time within a Symbiodinium culture but can differ between 

clades within a host236. N-acetyl and mannosyl residues are prominent constituents of 

Symbiodinium cell-surface glycans, making them candidates for MAMPs that could 

participate in the establishment of symbiosis. Lin et al.29 reported a S. kawagutii glycan 

biosynthesis pathway distinct from that of S. minutum, again pointing to a possible role of 

glycans in specificity of host recognition236. Neubauer et al.237 demonstrated that the 

thrombospondin type 1 repeat (TSR) from the sea anemone Aiptasia pallida contains 

binding sites for glycosaminoglycan, and that blocking TSR led to decreased colonisation 

by S. minutum. Our results offer, to our knowledge, the first evidence of positive selection 

of functions underlying the biosynthesis and modification of amino acids and 

glycoproteins, suggesting that these functions are critical in the establishment of cnidarian-

dinoflagellate symbioses.  
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Our fourth emergent theme relates to stress response. Enriched terms annotated for the 

positively selected genes include cell redox homeostasis, translation initiation and 22 

terms describing the negative regulation of gene expression, transcription, RNA 

biosynthesis and cellular biosynthetic and metabolic processes (Appendix A 

Supplementary Data 8). Environmental stressors can disrupt the cellular redox 

homeostasis and break down the coral-dinoflagellate symbiosis. Negative regulation of 

transcription may represent a stress response that safeguards the genome from 

accumulating DNA damage238; a similar stress response has been observed in coral239. 

Other enriched functions that may be related to stress response include mitotic nuclear 

division, translation, and various processes of nucleotide biosynthesis and modification 

e.g. RNA methylation, rRNA methylation, DNA replication, RNA processing, and 

deoxyribonucleotide biosynthetic process. Our results thus provide evidence that stress 

response is under positive selection in Symbiodinium, presumably (given their lifestyle) in 

relation to the establishment and/or maintenance of symbiosis.  

3.1.3.6. Do Symbiodinium have sex? 

Symbiodinium have been hypothesised to reproduce sexually and to have a diploid life 

stage240 but definitive evidence for sex, e.g. karyogamy and meiosis, has yet to be 

observed78. The ability to reproduce sexually offers increased efficiency of selection and 

adaptation241. So far, the strongest evidence supporting meiotic potential in Symbiodinium 

comes from patterns of population-genetic variation revealed in allozymes, randomly 

amplified polymorphic DNA and other molecular markers78,242. Indeed, for some markers a 

higher degree of genetic variation has been observed in certain Symbiodinium clades than 

in dinoflagellates known to reproduce sexually242. More recently, differential gene 

expression analysis107 using a heterologous culture from which our sequenced S. goreaui 

was derived revealed an enrichment of gene functions related to meiosis under thermal 

stress, suggesting a switch from mitosis to meiosis under stress conditions. 

Schurko and Logsdon243 described a meiosis detection toolkit, a set of 51 genes74 specific 

or related to meiosis that collectively point to a capacity for meiosis even in divergent or 

specialised eukaryotic genome. Incomplete genome coverage or assembly, sequence 

divergence, paralogy, patterns of overlapping function and evolutionary specialization 

mean that not all 51 need to be present or detectable for a lineage to be assessed as 

probably sexual, or only recently asexual243. Thirty-one of these genes were earlier 
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identified in Symbiodinium Clades A and B74. Here, BLASTP search (E ≤ 10-5) of predicted 

proteins in these four Symbiodinium genomes recovered matches corresponding to 48 of 

the of 51 toolkit genes in S. microadriaticum, 47 in S. minutum and S. goreaui, and 46 in S. 

kawagutii (Fig. 3.4a; Appendix A Supplementary Data 9). Eight of the 11 meiosis-specific 

proteins were detected in all four Symbiodinium. REC114, SAD1 and XRS2 found weaker 

matches (E ≥ 10-14) in one to two genomes, although confirmatory UniProt domains were 

usually present (Appendix A Supplementary Data 9). RAD17 is the Schizosaccharomyces 

pombe homolog of S. cerevisiae RAD24244, for which we find highly significant matches (E 

≤ 10-127) in all four Symbiodinium. Moreover, 15 of the 51 genes show evidence of positive 

selection in Symbiodinium against other dinoflagellates (Appendix A Supplementary Data 

9). Our data imply that these four Symbiodinium are, or until recently have been, capable 

of meiosis. 
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Figure 3.4: Recovery of genes in Symbiodinium. (a) Meiosis-related genes recovered in 
the genomes of S. microadriaticum (Clade A), S. minutum (Clade B), S. goreaui (Clade C) 
and S. kawagutii (Clade F). The first 11 genes are noted as meiosis-specific in Chi et al.74. 
(b) Scytonemin biosynthesis genes in Symbiodinium genomes relative to the coral 
Acropora digitifera, sea anemone Nematostella vectensis, hydra (Hydra magnipapillata) 
and the green plant Arabidopsis thaliana. The order of the 18-gene cluster (shown in 
green arrows) in the cyanobacteria Nostoc punctiforme is used as a reference, with 
presence (+) and absence (-) of a gene in each species are shown. Figure modified from 
Shinzato et al.245. 
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3.1.3.7. Response to light stress 

Mycosporine-like amino acids (MAAs) are ultraviolet (UV)-protective compounds that, in 

corals and other marine organisms, also act as antioxidants scavenging reactive oxygen 

species (ROS). Up to five MAAs have been reported in Symbiodinium (Clades A, B and C) 

isolated from cnidarian hosts246. The MAA biosynthetic pathway involves dehydroquinate 

synthase (DHQS), O-methyltransferase (O-MT), an ATP-grasp and non-ribosomal peptide 

synthetase (NRPS)247. In cyanobacteria, a short-chain dehydrogenase may play a role in 

converting shinorine to palythine-serine248. Genes encoding these four MAA-biosynthetic 

enzymes were reported absent from the S. kawagutii genome29. Here, using known 

proteins in bacteria, fungi and cnidarians as queries, we recovered all five enzymes 

including the short-chain dehydrogenase from the S. microadriaticum, S. goreaui and S. 

kawagutii genomes (Appendix A Supplementary Table 15); ATP-grasp was not found in S. 

minutum. These enzymes were earlier reported absent from S. kawagutii, and it was 

proposed that their absence can be compensated via coral-Symbiodinium co-evolution29; 

this hypothesis remains to be investigated, but we note that this S. kawagutii isolate has 

not been observed in association with an animal host88.  

Scytonemin is a UV-blocker first reported in terrestrial cyanobacteria, and in contrast to 

MAAs was thought to be synthesised exclusively by cyanobacteria247. The cyanobacterial 

genome of Nostoc punctiforme contains a UV-inducible 18-gene operon249 that specifies 

proteins of scytonemin biosynthesis and regulation, including proteins for the synthesis of 

aromatic amino-acid precursors such as chorismate. Homologs of six of these 18 genes 

have been described in the coral Acropora digitifera, and were considered putative 

instances of lateral genetic transfer245. We find 12 of these 18 genes in the genomes of S. 

goreaui and in S. kawagutii, 11 in S. microadriaticum and ten in S. minutum (Fig. 3.4b; 

Appendix A Supplementary Table 16). 

Genes responsible for biosynthesis of the aromatic amino acid tryptophan (trpA, trpB, trpC, 

trpD and trpE) and the two key enzymes of chorismate biosynthesis, aroG and aroB 

(dehydroquinate synthase, also important for MAA biosynthesis), are found in all 

Symbiodinium genomes, albeit so far in different scaffolds; these genes are also present in 

Arabidopsis thaliana although not in corals or Hydra which, like most other animals, are 

unable to synthesise tryptophan. The recovery of more of these 18 genes in Symbiodinium 

than in corals or other animals (Fig. 3.4b) could reflect the impact of endosymbiotic 

association of ancestral cyanobacteria during the course of plastid evolution in 
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photosynthetic eukaryotes228. The presence of multiple gene copies (Appendix A 

Supplementary Table 16) also implicates genetic duplication. Our findings suggest that 

Symbiodinium has the capacity to produce scytonemin. 

3.1.4. Discussion 

Symbiodinium can form associations with a wide range of cnidarian hosts (as well as some 

other marine invertebrates and protists) across broad geographic and time scales219. The 

symbiosis between corals and Symbiodinium relies on compatible host-symbiont 

recognition and sustainable nutrient exchange, both of which are vulnerable to external 

environmental factors including temperature and light. A sustainable coral-Symbiodinium 

association requires an adaptive capacity in the face of environmental extremes. 

In this study, we generated the first draft genome of S. goreaui (Clade C), a much-

improved draft genome of S. kawagutii (Clade F) and high-quality gene models for both. 

Comparative analysis revealed high divergence among the genomes of Symbiodinium 

from four clades, consistent with previous single-gene phylogenetic relationships. We 

found that many gene families related to the establishment and/or maintenance of 

symbiosis appear to be under positive selection in Symbiodinium, including genes related 

to photosynthesis, host-symbiont interactions and nutrient exchange.  

In the absence of data from population genetics, the dN/dS ratio remains a valuable and 

widely used indicator of adaptive selection, including in host-symbiont relationships250. 

Artefacts and dS saturation may arise due to e.g. population size or structure, 

demographic history, gene flow, recombination or linkage, particularly when the ratio is 

computed within a population (or genome, as we do here); some of these artefacts can be 

avoided by use of branch-site models251. Moreover, Symbiodinium genomes may 

represent a favourable use case. Coral reef ecosystems have existed for ~240M years252, 

individual reefs can be stable for thousands of years, and Symbiodinium can be 

transported over long distances in ocean currents253, potentially escaping local 

bottlenecks. In addition, Symbiodinium is haploid over much of its life history73, so 

deleterious alleles will be removed quickly. 

We also identified complete, or near-complete, sets of genes indicative of the presence of 

meiosis and several mechanisms of stress tolerance, functions that have until now been 

considered absent from S. goreaui and S. kawagutii. S. goreaui (type C1) belongs to one 

of the most globally dominant clades (Clade C) on coral reefs, and analysis of its draft 
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genome has provided important new insights into coral-algal symbiosis. This genomic 

resource is already demonstrating utility in the identification of symbiont fractions in de 

novo sequencing of coral tissues254, and will provide a foundation for targeted studies into 

the molecular biology and physiology of this crucial symbiosis and its adaptation to a 

changing environment. 

3.1.5. Methods 

3.1.5.1. Biological materials and DNA extractions 

Symbiodinium goreaui (Clade C, type C1; AIMS-aten-C1-MI-cfu-B2, now AIMS culture 

collection SCF055-01) is a single-cell monoclonal culture first isolated from the coral 

Acropora tenuis at Magnetic Island (Queensland, Australia) at 3 m depth255; this culture is 

maintained at the Australian Institute of Marine Science, Townsville, Australia. Genomic 

DNA was extracted from these isolates using the Qiagen DNeasy Plant Mini Kit following 

the manufacturer’s protocol.  

Symbiodinium kawagutii CS-156 (also known as CCMP2468) was first acquired from the 

Australian National Algae Culture Collection (ANACC). Unique cells were first selected 

under the microscope and grown in 24-well plates, from which unique cells were 

transferred onto agar plates. Their growth was monitored under the microscope to ensure 

colony formation before a colony was selected for further culturing in liquid medium. 

Throughout the experiment, the cells were cultured in f/2 medium containing ampicillin 

(100 μg/mL), kanamycin (50 μg/mL) and streptomycin (50 μg/mL). PCR amplification using 

generic bacterial primers256 was performed regularly to identify potential bacterial 

contamination. High molecular-weight genomic DNA was extracted following the CTAB 

method described in Shoguchi et al.26. 

3.1.5.2. Generation and processing of sequencing data 

For each isolate, sequence data (2 × 150 bp reads) were generated using multiple paired-

end and mate-pair libraries on the Illumina HiSeq 2500 platform at the Australian Genome 

Research Facility, Melbourne. Details of insert length for each paired-end and mate-pair 

libraries are shown in Supplementary Table 1 (Appendix A). Specifically, one of the paired-

end libraries (of insert length 250 bp) was designed such that the read-pairs of 2 × 150 bp 

would overlap. In total, we generated 116.0 Gb (614.6 million reads) and 92.2 Gb (774.1 
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million reads) of sequence data for S. goreaui (type C1) and S. kawagutii (Clade F) 

respectively. Compared to S. goreaui, we generated fewer sequence data for S. kawagutii 

because some genome data of the same isolate29 are publicly available (see next section).  

Adapter sequences were removed from the raw sequence data using Trimmomatic141, and 

erroneous bases were corrected using Quake257. For reads generated from the paired-end 

libraries, pairs with overlapping reads were merged into longer, single-end reads using 

BBMerge (http://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/); we treated the 

other reads as bona fide paired-end reads. All reads generated from the mate-pair libraries 

were processed and classified using NXtrim147 based on read-orientation information (as 

observed based on the presence of adapter sequences in Nextera mate-pair libraries) into 

(a) paired-end, (b) single-end and (c) bona fide mate-pair reads. Due to the high standard 

deviation of estimated insert-lengths among the reads in (a), we treated both (a) and (b) as 

single-end reads. Details of all processed reads are shown in Supplementary Table 1 

(Appendix A). 

3.1.5.3. Comparative analysis of S. kawagutii genome sequence data 

To ensure that the sequence data we generated for S. kawagutii CS-156 (=CCMP2468) 

were indeed from the same source as the published data29, we compared the sequence 

reads between the two data sources by mapping our reads onto the assembled genome in 

Lin et al.29, and conversely the reads in Lin et al.29 against our SPAdes genome assembly 

(see De novo genome assembly below), using CLC Genomics Workbench v7.5.1 

(Qiagen). As shown in Supplementary Fig. 1A (Appendix A), about 89% of our reads 

mapped at high quality (MAPQ score ≥ 30) to the published genome assembly from Lin et 

al.29. In comparison, 96.0% and 87.2% of the reads respectively from our dataset and from 

Lin et al.29 mapped (MAPQ score ≥ 30) to our SPAdes genome assembly (Appendix A 

Supplementary Fig. 1B). We recovered identical sequences of the phylogenetic marker 

genes (18S ribosomal RNA and ITS2) from both genome datasets. To further assess 

assembly quality, we aligned the contigs from our preliminary genome assembly, and from 

the published assembly of S. kawagutii, against each of the ten fosmid sequences from 

Lin et al.29. Our SPAdes assembly has orders of magnitude fewer gaps and mismatches 

than the published assembly (Appendix A Supplementary Fig. 2). In subsequent genome 

assemblies (below), we combined both published sequence reads from Lin et al.29 and our 

processed reads as a single dataset. 

http://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/
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3.1.5.4. De novo genome assembly 

For each isolate we adopted a novel, integrative approach using multiple methods to 

assemble the genome de novo. First, to minimise assembly errors we systematically 

assessed the distances between read-pairs in all sequencing libraries. To do this, we first 

assembled all processed (single, paired-end and mate-pair) reads using CLC Genomics 

Workbench v7.5.1 (Qiagen) to generate an initial assembly; at this step, the insert-length 

information for each sequencing library was based on the estimate given by the 

sequencing provider. We then mapped all reads to the assembled contigs and derived a 

more-accurate estimate of read-pair distances (i.e. via size of insert-length) for each 

sequencing library using CollectInsertSizeMetrics tool in Picard 

(https://broadinstitute.github.io/picard/). 

Second, we assembled all processed reads using the more-accurate estimate of read-pair 

distances above, independently using (a) CLC Genomics Workbench v7.5.1 (Qiagen), (b) 

SPAdes161 and (c) ALLPATHS-LG156. For CLC and SPAdes, the contigs were further 

joined into longer scaffolds using mate-pair reads with SSPACE157; ALLPATHS-LG yielded 

genome scaffolds directly. Gaps within scaffolds were further filled using GapFiller258 at the 

default setting, thereby yielding three preliminary assemblies: the (a) CLC, (b) SPAdes and 

(c) ALLPATHS-LG assemblies (Appendix A Supplementary Table 17). In addition to 

assembly statistics, we further assessed the quality of each assembly based on (a) full-

length recovery of phylogenetic markers (18S ribosomal RNA and internal transcribed 

spacer region ITS2), (b) full-length recovery of coding sequences of known organellar 

genes, and (c) genome completeness based on conserved core eukaryote genes using 

CEGMA177 (Appendix A Supplementary Data 1). As reference, we used all publicly 

available Symbiodinium internal transcribed spacer (ITS) regions (both ITS1 and ITS2), 

mitochondrion-encoded genes and chloroplast-encoded genes in NCBI. While we 

recovered a high extent of CEGMA (eukaryote) genes (S. goreaui: 85.37%, S. kawagutii: 

74.89%; Appendix A Supplementary Table 17) in the SPAdes assemblies, these 

assemblies are highly fragmented (percentage of genome in scaffolds > 50Kb: 46.86% in 

S. goreaui, 74.89% in S. kawagutii). In comparison, we recovered a similarly high extent of 

CEGMA (eukaryote) genes (S. goreaui: 76.20%, S. kawagutii: 83.19% [the highest]; 

Appendix A Supplementary Table 17) in the CLC assemblies that are more contiguous 

(percentage of genome in scaffolds > 50Kb: 73.64% in S. goreaui, 76.06% in S. 

kawagutii). The ALLPATHS-LG assemblies yielded the least number of scaffolds (thus 

https://broadinstitute.github.io/picard/
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higher contiguity; Appendix A Supplementary Table 17), but many conserved genes and 

phylogenetic markers were misassembled (in fragments at multiple regions rather than in 

full-length). We therefore used the CLC assembly as the master assembly for each 

genome. 

Third, we refined these master assemblies using MUMmers in GMCloser259 by filling the 

gaps and merging scaffolds using contigs from the SPAdes and ALLPATHS-LG 

assemblies, followed by another step of gap-filling using GapFiller258. This gave us the 

refined master assemblies. 

3.1.5.5. Identification and removal of bacterial and viral sequences 

To identify putative bacterial and viral sequences in the genome scaffolds of S. goreaui 

and S. kawagutii, we followed the approach of Aranda et al.27 with some modifications. In 

brief, we first searched the scaffolds (BLASTN) against a database of bacterial and viral 

genomes (see Methods), and identified those with hits at bit score > 1000 and E ≤ 10-20; 

we considered these as significant hits. We then examined the sequence cover of these 

regions in each scaffold, and identified the percentage (in length) contributed by these 

regions relative to the scaffold’s full length. Aranda et al.27 used a threshold of 50% 

sequence cover as indication of putative bacterial or viral contaminant, and thus removed 

scaffolds containing >50% of putative bacterial or viral regions. Here, we systematically 

assessed the number of implicated genome scaffolds across the different thresholds of 

percentage sequence cover of putative bacterial or viral regions, and the corresponding 

gene models in these scaffolds (Appendix A Supplementary Fig. 9). At the most-stringent 

threshold (0% sequence cover) any scaffold with any significant bacterial or viral hits is 

considered a contaminant, here 333 and 90 scaffolds respectively in S. goreaui and S. 

kawagutii (Appendix A Supplementary Figs 9A and 9B); these represent <1% of the total 

assembled scaffolds in each genome. In contrast, at the lenient threshold of 90% 

sequence cover, only 32 and 2 scaffolds respectively from S. goreaui and S. kawagutii are 

considered contaminants. In both genomes, the number of scaffolds shows a sharp 

decrease from thresholds at 0% to 10% sequence cover, followed by a gradual decrease 

as the subsequent thresholds become less stringent. A similar trend is observed with the 

implicated gene models on these scaffolds (Appendix A Supplementary Figs 9C and 9D). 

The 0% threshold may be too strict in these cases, since bacterial-like genes are known to 

be present in dinoflagellates. Here we chose 10% as the deciding threshold, i.e. any 
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scaffold with significant bacterial or viral hits covering >10% of its length was considered a 

contaminant. In this way 129 and 33 scaffolds (and the gene models implicated within) 

were removed respectively from S. goreaui and S. kawagutii. 

3.1.5.6. Genome annotation and gene prediction 

We adopted a comprehensive ab initio approach for gene prediction using all available 

dinoflagellate proteins, as well as all Symbiodinium genes and transcriptomes, as guiding 

evidence. For each genome assembly, a de novo repeat library was first derived using 

RepeatModeler (http://www.repeatmasker.org/RepeatModeler/). All repeats (including 

known repeats in RepeatMasker database release 20150807) were masked using 

RepeatMasker (http://www.repeatmasker.org/).  

We used transcriptome data to guide functional annotation of assembled genomes. For S. 

goreaui, we used the published transcriptome data (NCBI accession GSE72763) from 

Levin et al.107. For S. kawagutii, we used the transcriptome data of CCMP2468 

(MMETSP0132; RNA-Seq reads after filtering for adapters and low-quality reads) available 

from MMETSP82, and the published transcripts (generated using the 454 platform) from 

Lin et al.29. For RNA-Seq data, we assembled the reads using Trinity186 independently in 

“de novo” mode and “genome-guided” mode, after which vector sequences were trimmed 

using SeqClean (https://sourceforge.net/projects/seqclean/) based on UniVec database 

(ftp://ftp.ncbi.nlm.nih.gov/pub/UniVec/; build v9.0). 

We used a customised PASA191 script (available at 

http://smic.reefgenomics.org/download/) that recognises an additional donor splice site 

(GA), and used the program alongside TransDecoder191 to predict coding sequences 

(CDS) in each genome. These CDS were searched (BLASTX, E ≤ 10-20) against a 

customised protein database that consists of RefSeq proteins release 76 and other 

annotated or predicted Symbiodinium proteins (total of 49,732,862 sequences; Appendix A 

Supplementary Table 18). Only near full-length CDS were included in the subsequent 

analysis; here we determine this based on near full-length alignment of a CDS to a protein 

in the database (>70%) CDS were isolated, using a script provided with Trinity.  

The near full-length gene models were checked for transposable elements using HHblits260 

(probability=80% and E-value=10-5) searching against the JAMg transposon database 

(https://sourceforge.net/projects/jamg/files/databases/), as well as with Transposon-PSI 

http://www.repeatmasker.org/RepeatModeler/
http://www.repeatmasker.org/
https://sourceforge.net/projects/seqclean/
ftp://ftp.ncbi.nlm.nih.gov/pub/UniVec/
http://smic.reefgenomics.org/download/
https://sourceforge.net/projects/jamg/files/databases/
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(http://transposonpsi.sourceforge.net/). Gene models containing transposable elements 

were removed from the gene set, and redundancy reduction was conducted using CD-

HIT261 (ID=75%). The remaining gene models were processed using the 

Prepare_golden_genes_for_predictors.pl (http://jamg.sourceforge.net/) script from the 

JAMg pipeline (altered to recognise GA donor splice sites). This script produces a set of 

“golden genes” which were used as a training set for the gene-prediction packages 

AUGUSTUS262 and SNAP195. We used a customised code of AUGUSTUS (available at 

http://smic.reefgenomics.org/download/) so it recognises GA donor splice sites, and 

trained it to predict both coding sequences and untranslated regions; SNAP was trained 

for both GT and GC donor splice sites. Soft-masked genomes were passed to GeneMark-

ES196 for training and gene prediction. 

UniProt-SwissProt (release 2016_01) proteins, MMETSP Suessiales proteins and the 

predicted Symbiodinium proteins (above) were clustered using CD-HIT (ID=100%). The 

clustered proteins were used to produce a set of gene predictions using MAKER263 with 

protein2genome; the custom repeat library was used by RepeatMasker as part of MAKER 

prediction. A primary set of predicted genes was produced using EvidenceModeler201 

which had been altered to recognise GA donor splice sites. This package combines the 

gene predictions from PASA, SNAP, AUGUSTUS, GeneMark-ES and MAKER 

protein2genome, as well as the masked repeats (using custom repeat library), into a single 

set of evidence-based predictions. The weightings used for the package were: PASA 10, 

Maker protein 8, AUGUSTUS 6, SNAP 2 and GeneMark-ES 2. The final genome 

assemblies, predicted gene models and proteins are available at 

http://refuge2020.reefgenomics.org/. 

We adopted multiple approaches to assess genome completeness. Established methods 

including CEGMA177 and BUSCO178 are based on conserved genes in a limited number of 

eukaryote model organisms that are distantly related to dinoflagellates. The use of these 

methods resulted in relatively low recovery of conserved eukaryote genes in Symbiodinium 

(e.g. 33-42% of BUSCO genes; Appendix A Supplementary Fig. 7B) when run at default 

setting. Following an earlier genome study of Symbiodinium27, we further assessed 

completeness using BLAST based on predicted proteins from the gene models and the 

assembled genome scaffolds. For each genome, we searched (BLASTP, E ≤ 10-5) against 

the predicted proteins using the 458 CEGMA proteins177. We also searched against the 

CEGMA proteins using the genome scaffolds (BLASTX E ≤ 10-5), against genome 

http://transposonpsi.sourceforge.net/
http://jamg.sourceforge.net/
http://smic.reefgenomics.org/download/
http://refuge2020.reefgenomics.org/
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scaffolds using the 458 CEGMA proteins (TBLASTN, E ≤ 10-5), and against genome 

scaffolds using the 458 CEGMA transcripts (TBLASTX, E ≤ 10-5) (Appendix A 

Supplementary Data 1 and Supplementary Fig. 7). 

3.1.5.7. Analysis of genome synteny and collinearity 

Using all predicted genes and their associated genomic positions, we assessed the 

number of syntenic collinear blocks (i.e. regions with the same genes coded in the same 

order, free from rearrangement or loss) shared pairwise among genomes of S. 

microadriaticum (Clade A)27, S. minutum (B)26, S. goreaui (C) and S. kawagutii (F). We 

used BLASTP (E ≤ 10-5) to search for similar proteins between each pairwise genomes for 

inter-genome comparisons, and to search for similar proteins within each genome for self-

genome (within-genome) comparisons. Next we used MCScanX264 with parameter -s 5 to 

sort the BLASTP matches (alignments) based on genomic positions; to minimise the 

number of collinear gene pairs arising from tandem repeats, we report only collinear blocks 

that consist of five or more genes. 

3.1.5.8. Analysis of plastid genomes 

Plastid genomes of dinoflagellates occur as minicircles. here we focused on our 

ALLPATHS-LG genome assemblies. To identify putative plastid genome fragments in our 

genome data, we used plastid gene sequences identified in Symbiodinium type C3123, 

Symbiodinium minutum265 and Heterocapsa triquetra122 as queries in BLASTN searches 

against our genome assemblies. To identify the conserved core regions in the putative 

plastid genome sequences, we set a high mismatch penalty (match score = 1, mismatch 

scores = -4, gap opening cost = 5, and gap extension cost = 2, E ≤ 10-10) in reciprocal 

BLASTN searches. The identified core region was then used to identify other genome 

scaffolds that were not previously identified by alignment with known plastid-encoded 

genes. These scaffolds were searched against the NCBI’s non-redundant nucleotide 

database (BLASTN at default parameters) to assess if they align to any known genes. All 

scaffolds identified as being of plastid origin, both those encoding known plastid genes 

and those encoding only core regions, were checked for circularisation using pairwise 

BLASTN (E ≤ 10-10). Artemis266 and Artemis Comparison Tool (ACT)267 were used to 

annotate the isolated scaffolds. The putative plastid genome sequences and their 

annotation are temporarily available at http://refuge2020.reefgenomics.org/. 

http://refuge2020.reefgenomics.org/
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3.1.5.9. Analysis of mitochondrial genomes 

Mitochondrial genes from the dinoflagellates Alexandrium catenella and Karlodinium 

micrum were used as queries to identify putative mitochondrial genome fragments within 

our ALLPATHS-LG assemblies using BLASTN (E ≤ 10-10). Nucleotide sequences of the 

cox1, cox3 (cytochrome oxidase subunits 1 and 3 of complex IV) and cob (cytochrome b of 

complex III) genes and fragments of the large subunit rRNA (LSU rRNA) and the small 

subunit rRNA (SSU rRNA) were retrieved from the NCBI non-redundant nucleotide 

database. Scaffolds with cox1, cox3 and cob hits were considered putative mitochondrial 

genome fragments and were assessed for evidence of circularisation using pairwise 

BLASTN. The putative mitochondrial genome sequences and their annotation are 

temporarily available at http://refuge2020.reefgenomics.org/.  

3.1.5.10. Functional annotation of gene models 

We adopted a similar approach to Aranda et al.27 to annotate gene models based on 

sequence similarity searches against known protein sequences. Protein sequences 

predicted using the standard genetic code were used as query (BLASTP, E ≤ 10-5) first 

against Swiss-Prot, and those with no Swiss-Prot hits subsequently against TrEMBL (both 

databases from UniProt release 2016_10). Gene Ontology (http://geneontology.org/) terms 

associated with Swiss-Prot and TrEMBL hits were obtained using the UniProt-GOA 

mapping (release 2016_10).  

3.1.5.11. Identification of homologous protein sets and gene families 

Our workflow for delineation of sets of putatively homologous proteins, multiple sequence 

alignment, generation of protein-family and reference trees, and analysis of selection is 

shown in Supplementary Fig. 8 (Appendix A). Protein sequences were generated 

computationally, using the standard genetic code, from genome and/or transcriptome 

sequences of 31 organisms including Symbiodinium (Appendix A Supplementary Table 

13; 31-taxon set). Similarly, a 15-taxon set (14 dinoflagellates and the outgroup Perkinsus 

marinus) was established. Sequences of length < 30 amino acids were removed, and sets 

of putatively homologous proteins were generated using OrthoFinder268. Sets that contain 

 4 proteins, including at least one from a Symbiodinium, were taken forward. We 

assumed that all proteins within each set (and thus the corresponding coding genes) share 

a common ancestor. We considered sequences within single-copy sets (i.e. those in which 

http://refuge2020.reefgenomics.org/
http://geneontology.org/
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each genome is represented no more than once) to be orthologs. Those in multi-copy sets 

may include co-orthologs and/or paralogs. We refer to sets that contain proteins only from 

Symbiodinium, plus the Symbiodinium singletons, as Symbiodinium-specific. For 

enrichment analysis of annotated features (GO terms or Pfam domains), we compared the 

features within the Symbiodinium-specific set against those in each background set (i.e. 

the 31-taxon set and, separately, the 15-taxon set below) using a hypergeometric test; 

features with Benjamini-Hochberg229 adjusted p-value ≤ 0.05 were considered significant. 

3.1.5.12. Analysis of positive selection in Symbiodinium genes 

For this analysis, we focus on homologous protein sets from the 15-taxon dataset. For the 

15-taxon set we sorted the 310,617 protein sets into 1656 single-copy (ortholog) and 

16,301 multi-copy sets. Multiple sequence alignments were carried out using MAFFT269 

v7.245 at -linsi mode; questionably aligned columns and rows were removed from these 

alignments using trimAl270 with the -automated1 option.  

Branch-site models (BSMs; see below) require a reference topology. We follow Price and 

Bhattacharya86 to generate a maximum-likelihood (ML) reference species tree using 

single-copy protein sets. The trimmed single-copy protein alignments were concatenated 

prior to ML inference of the species phylogeny using IQTREE271; each alignment 

represents a partition for which the best evolutionary model was determined 

independently. Support for each node was assessed using 2000 rapid bootstraps. The 

species tree so generated (Fig. 3.3a) is similar to that of Price and Bhattacharya86, with 

very strong support ( ≥ 96% bootstrap replicates) for all internal nodes; the Symbiodinium 

and Suessiales (Symbiodinium + Polarella glacialis) clades received 100% bootstrap 

support. 

Of all trimmed protein alignments, those with ≥ 60 aligned positions and ≥ 4 sequences 

were used in subsequent analysis. A total of 1656 single-copy protein sets satisfied these 

criteria. For multi-copy protein sets, we imposed further filtering criteria. We first inferred 

individual ML trees for the multi-copy sets using IQ-TREE, and each resulting protein tree 

was compared with the reference species tree. Those congruent with the reference 

species tree at genus level, and in which all Symbiodinium are resolved as an exclusive 

monophyletic clade, were judged paralog-free and used in subsequent BSM analysis 

(Appendix A Supplementary Fig. 8). Among the 16,301 multi-copy sets of the 15-taxon 

analysis, 1656 (10.2%) resolve all Symbiodinium sequences into an exclusive 
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monophyletic clade and are topologically congruent at genus level with the reference 

species tree (i.e. contain co-orthologs but not paralogs) and were retained, while the 

remaining 14,645 failed one or both of these filtering criteria (i.e. contain presumed 

paralogs) and were not analysed further (Appendix A Supplementary Fig. 8). The 

percentages of missing data and parsimoniously informative sites in all 5675 filtered 

protein alignments for the 15-taxon set are detailed in Supplementary Data 10 (Appendix 

A). For each filtered alignment, we used the corresponding coding-sequence alignment 

(codon alignment) generated using PAL2NAL272 in the BSM analysis.  Some predicted 

protein sequences in MMETSP82 do not match their corresponding CDS, sometimes due 

to problematic translation and other times due to a frameshift. For these, we used 

MACSE273 to derive the codon alignments.  

We applied the branch-site model (BSM) implemented in the codeml program in PAML 

4.9274 to detect positive selection signal unique to the Symbiodinium lineage. BSMs allow 

the dN/dS ratio (ω) to vary among both sites and branches, making it possible to infer 

selection at both. We computed two models: a null model with fixed ω = 1, and an 

alternative model that estimates ω in our defined foreground branches (here, the node that 

leads to all Symbiodinium lineages). We then compared the likelihoods of these two 

models to determine the better fit. To reduce false positives we applied q-value estimation 

for false discovery rate control, as implemented in R package qvalue to adjust p-values. 

Instances with an adjusted p ≤ 0.05 were considered significant.  

We also performed gain-and-loss analysis on the gene sets corresponding to the protein 

sets under a Dollo parsimony model275, using dollop as implemented in PHYLIP 3.69 

(http://evolution.genetics.washington.edu/phylip/). Here we focused on the Symbiodinium 

subtree (i.e. lineages for which genome data are available) with the immediate outgroup of 

Polarella glacialis. To assess the impact of Markov clustering granularity in OrthoFinder on 

our results, we analysed gene gain and gene loss using homologous protein sets that 

were generated independently using the inflation parameter I at 1.0, 1.5 and 2.0 (see 

Appendix A Supplementary Note 1 and Supplementary Fig. 10).  
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3.1.7. Data availability 

All sequence data generated from this study are available at the NCBI Short Read Archive 

(SRA) BioProject accession PRJEB20399, with SRA accessions ERS1940397 (for S. 

goreaui), and ERS1940392, ERS1940393, ERS1940394 and ERS1940395 (for S. 

kawagutii). Assembled genomes, predicted gene models and proteins are available at 

http://refuge2020.reefgenomics.org/. 

3.1.8. Code availability 

The customised scripts for AUGUSTUS and PASA used in this study were previously 

published in Aranda et al.27; they are available at http://smic.reefgenomics.org/download/. 

 

3.2. Commonly misunderstood parameters of NCBI BLAST and important 
considerations for users 

A recent editorial in Bioinformatics highlights the commonly misunderstood parameter of 

max_target_seqs in the BLAST alignment tool. The article raises the awareness of 

common misconceptions associated with a key parameter of BLAST. However, other key 

parameters, including the most commonly used evalue, have also been under scrutiny 

recently by the research community. A detailed documentation of these parameters 

remains lacking. Here we highlight and discuss the frequently misinterpreted feature of E-

value specification in BLAST, and how this and other features may not be intuitive to 

users. These issues underlie the importance for all users to be critical and mindful of the 

implication of these parameters when interpreting the final search results. 

http://refuge2020.reefgenomics.org/
http://smic.reefgenomics.org/download/
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The NCBI BLAST alignment tool276 is one of the most commonly used bioinformatic tools 

to identify shared sequence similarity based on local alignment between a query sequence 

and a target sequence found in a database. Recently, Shah et al.277 highlighted a 

commonly misunderstood key parameter of this tool. Specifically, they highlighted the 

common misconceptions of the parameter –max_target_seqs, and the implications of its 

specification on the final results; issues related to his parameter, previously reported as 

“bugs” in online posts (see https://gist.github.com/sujaikumar/504b3b7024eaf3a04ef5 and 

https://blastedbio.blogspot.com/2015/12/blast-max-target-sequences-bug.html), have not 

been widely appreciated in the research community. 

Another (and perhaps the most) frequently used option in BLAST is the filtering of results 

by the expect (E) value via parameter specification of –evalue. In BLAST, for each 

alignment between the query and a subject (target) sequence from a database, a bit-score 

(S) is calculated; an alignment and its S are determined by the specified parameters (e.g. 

word size, drop-off score for alignment extension, scoring/substitution matrix, and gap 

costs) in the search276,278,279. The E-value for an alignment with a calculated bit-score X 

represents the number of alignments with S ≥ X that one would expect by chance in the 

search. A lower E-value indicates a smaller likelihood of observing the alignment (of score 

S ≥ X) simply by chance in the database, thus a higher “significance” of the alignment (i.e. 

and of the match between the two sequences). The resulting E-value is dependent on the 

length of the query sequence, and the size of the database. According to the BLAST 

documentation (https://www.ncbi.nlm.nih.gov/books/NBK279690) and the frequently asked 

questions online 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYP

E=FAQ), the E-value is meant to provide a “convenient way to create a significance 

threshold for reporting results”. Indeed, this option has been broadly used in numerous 

studies for almost three decades now to confine sequence-similarity search to a 

“significant” threshold, and to identify significant similarity shared between two sequences. 

Many users assume that BLAST alignment hits with E-values less than or equal to the 

predefined threshold (e.g. 10-5 via the specification of –evalue 1e-5) are identified after the 

search is completed, in a final step to rank all alignments by E-value, from the smallest (on 

the top of the list of results) to the largest E-value (at the bottom of the list). 

However, the E-value filtering step does not occur at the final stage of BLAST; it occurs 

earlier during the scanning phase278,279. During this phase, a gapped alignment is 

https://gist.github.com/sujaikumar/504b3b7024eaf3a04ef5
https://blastedbio.blogspot.com/2015/12/blast-max-target-sequences-bug.html
https://www.ncbi.nlm.nih.gov/books/NBK279690
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=FAQ
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=FAQ
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generated using less-sensitive heuristic parameters279; alignments with an E-value that 

satisfies the defined cut-off are included in the subsequent phase of the BLAST algorithm 

(and eventually reported). During the final (trace-back) phase, these gapped alignments 

are further adjusted using more-sensitive heuristic parameters279, and the E-value for each 

of these refined alignments is then recalculated. Therefore, non-intuitively perhaps, 

alignments that would have a final E-value lower than the specified threshold might not be 

reported among the final results, because they had failed (i.e. E-value larger than this 

same E-value threshold) at the earlier gapped-alignment stage. 

The issues related to parameter specifications (that affect how target sequences are 

reported in the final results) have been reported in a number of online forums. In addition 

to –evalue and –max_target_seqs, these parameters include –num_descriptions (the 

number of descriptions), and –num_alignments (the number of alignments) (see 

https://bioinformatics.stackexchange.com/questions/3409/blast-hits101disappearing-after-

changing-evalue and https://bioinformatics.stackexchange.com/questions/2846/why-

doesa-very-strong-blast-hit-get-lost-when-i-change-num-alignments-num-desc). These 

parameters when specified are not filters applied to the final results as one commonly 

assumes, but they influence the final results indirectly. A good understanding of how these 

parameters are implemented is important, especially in cases where the query sequences 

are highly divergent from other known sequences in the database280. 

We concur with the call by Shah et al.277 to encourage all users to be critical and mindful of 

the implication of these parameter specifications on the final search results. Running 

BLAST searches following the “current standards” (e.g. following the approach described 

in numerous research publications) without an adequate understanding of how each 

parameter works is not ideal. When in doubts, one may run the program at default settings 

and apply the filtering criteria directly on the results after the search is completed. We also 

recommend that the development team of BLAST to provide a more-explicit 

documentation on the implementation of these options in the algorithm, and how they 

would affect the final results. 

3.3. Concluding remarks 

For the previously published genomes, genes were predicted using different approaches, 

resulting in a high level of variability between the datasets. The application of the 

standardised gene prediction approach, described in this chapter, will provide a more-

https://bioinformatics.stackexchange.com/questions/3409/blast-hits101disappearing-after-changing-evalue
https://bioinformatics.stackexchange.com/questions/3409/blast-hits101disappearing-after-changing-evalue
https://bioinformatics.stackexchange.com/questions/2846/why-doesa-very-strong-blast-hit-get-lost-when-i-change-num-alignments-num-desc
https://bioinformatics.stackexchange.com/questions/2846/why-doesa-very-strong-blast-hit-get-lost-when-i-change-num-alignments-num-desc
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robust analytic platform to predict gene models from the distinct dinoflagellate species, 

enhance data comparability in the subsequent comparative genomic analysis, from which 

biological inferences can be made. The workflow incorporates multiple sources of 

evidence (e.g. high-quality transcript evidence where available), using both ab initio and 

similarity-based methods, producing gene predictions that are more biologically realistic. 

This will minimise potential methodological biases from the different gene-prediction 

approaches. This workflow was utilised in Chapter 5 for predicting genes in P. glacialis. In 

the next chapter, I describe comparative analysis using transcriptome data from diverse 

dinoflagellate taxa. 
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Chapter 4  
 

Cold adaptation in free-living dinoflagellates 

Psychrophilic species have been described across the tree of life. While the strategies 

adopted by cold-adapted organisms vary, they share many common themes, including the 

regulation of membrane fluidity and production of cryoprotectant molecules. Ice-binding 

molecules bind to the surface of ice crystals disrupting their structure and preventing their 

growth, they are critical in psychrophiles to prevent the rupture of cells due to the growth of 

these ice crystals. Ice-binding protein domains have evolved independently in many 

species; some are known to have arisen via lateral genetic transfer from bacteria.  

Similarly, cold adaption in dinoflagellates has arisen multiple times in different lineages. 

While little is known about the cold-adaptation mechanisms in dinoflagellates, we can 

hypothesise that they share many similarities to the strategies employed by other 

eukaryotes, particularly cold-adapted algae. While genome data for free-living (including 

psychrophilic) dinoflagellates are lacking, multiple transcriptome datasets are available for 

a range of species from different ecological niches. This allows us to not only look for 

features of dinoflagellates that are common to all species, but also for the niche specific 

adaptations, such as those for psychrophilic, toxic and symbiotic species. In this chapter, I 

present my work to identify features enriched in cold-adapted dinoflagellates and to show 

how these features are encoded in the genome.  

This chapter is presented in the form of a manuscript, addressing Aim 4. This manuscript 

presents an analysis of publicly available dinoflagellate transcriptomes, which contains 

multiple psychrophilic species (including the two P. glacialis isolates of interest in this 

thesis). This work was published in Scientific Reports (doi: 10.1038/s41598-018-35620-z) 

and edited for this thesis. The supplementary material for this manuscript is presented in 

Appendix B. As the first author of this paper, I designed the study, prepared the 

manuscript, generated all figures and tables, and conducted all analyses. The features 
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enriched in cold adapted dinoflagellates are further explored in Chapter 5, within the 

context of the P. glacialis genomes. 

4.1. Core genes in diverse dinoflagellate lineages include a wealth of 
conserved dark genes with unknown functions 

4.1.1. Abstract 

Dinoflagellates are a diverse group of unicellular primary producers and grazers that 

exhibit some of the most remarkable features known among eukaryotes. These include 

gigabase-sized nuclear genomes, permanently condensed chromosomes and highly 

reduced organelle DNA. However, the genetic inventory that allows dinoflagellates to 

thrive in diverse ecological niches is poorly characterised. Here we systematically assess 

the functional capacity of 3,368,684 predicted proteins from 47 transcriptome datasets 

spanning eight dinoflagellate orders. We find that 1,232,023 proteins do not share 

significant sequence similarity to known sequences, i.e. are “dark”. Of these, we consider 

441,006 (13.1% of overall proteins) that are found in multiple taxa, or occur as alternative 

splice variants to comprise the high-confidence dark proteins. Even with unknown function, 

43.3% of these dark proteins can be annotated with conserved structural features using an 

exhaustive search against available data, validating their existence and importance. 

Furthermore, these dark proteins and their putative homologs are largely lineage-specific 

and recovered in multiple taxa. We also identified conserved functions in all 

dinoflagellates, and those specific to toxin-producing, symbiotic, and cold-adapted 

lineages. Our results demonstrate the remarkable divergence of gene functions in 

dinoflagellates, and provide a platform for investigations into the diversification of these 

ecologically important organisms. 

4.1.2. Introduction 

Dinoflagellates are a diverse group of phytoplankton that are ubiquitous in marine and 

fresh waters. About 2300 dinoflagellate species have been described281,282, most of which 

are photosynthetic. However, mixotrophy283,284 that combines phototrophy and ingestion of 

prey (heterotrophy) is common. Photosynthetic dinoflagellates form the base of food webs 

and sustain global aquatic ecosystems via primary production and cycling of organic 

carbon and nitrogen. Bloom-forming dinoflagellates, predominantly in the orders 

Gonyaulacales and Gymnodiniales, can cause “red tides” (harmful algal blooms) and 

produce toxins that pose serious human health risks285. Other dinoflagellates, particularly 
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Symbiodiniaceae16 (Suessiales), are crucial symbionts in corals and other coral reef 

animals219,286. Dinoflagellates are also found in extreme environments, with multiple cold-

adapted (psychrophilic) species described in the polar regions23,287. The capacity of 

dinoflagellates to thrive in diverse ecological niches, and the remarkable sequence 

divergence and complexity of their genomes when compared to other species, have led 

researchers to grumble that dinoflagellates are in fact aliens from “outer space”288. 

The genetic capacity and features that are common to all dinoflagellate lineages, or those 

related to niche-specialisation (e.g., bloom formation, symbiotic lifestyle and cold 

adaptation), remain poorly understood. Symbiodiniaceae species are the only 

dinoflagellates for which genome data are available26,27,29,289. However, the functional 

capacity of dinoflagellate genes is poorly understood when relying on the commonly used 

annotation approach, whereby predicted proteins are compared against a set of curated 

proteins of known function that are largely derived from model organisms. The often-

overlooked proteins of unknown function (i.e. “dark” proteins), and the corresponding dark 

genes, may be highly conserved in closely related species and represent unique lineage-

specific features. Whereas genome data from dinoflagellates are limited, transcriptome 

data provide an avenue for the exploration of gene functions that drive niche-specialisation 

in these species98,220. 

Here we use available dinoflagellate transcriptome data to systematically investigate gene 

functions that are common (and unique) to distinct dinoflagellate lineages, and identify the 

conserved dark proteins. We also investigate gene functions and pathways that are 

enriched in toxin-producing, symbiotic, and cold-adapted dinoflagellates. 

4.1.3. Results and discussion 

We retrieved 64 publicly available dinoflagellate transcriptomes and their predicted 

proteins82-84 (Appendix B Supplementary Table S1). To avoid potential biases arising from 

codon degeneracy, we restricted our analysis to proteins, using the amino acid sequences 

predicted from these transcriptomes. We filtered the datasets using stringent criteria, 

including the recovery of core conserved eukaryote proteins290 as an indicator of dataset 

completeness (see Methods). This approach resulted in the final 47 datasets, representing 

3,368,684 protein sequences from eight taxonomic orders (Table 4.1). 
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Table 4.1: The final 47 datasets used in this study.  

Taxon Order No. non-redundant 
protein sequences 

Dinophysis acuminata DAEP01 Dinophysiales 83,934 

Alexandrium catenella OF101 Gonyaulacales 68,889 

Alexandrium margalefi AMGDE01CS-322 Gonyaulacales 50,502 

Alexandrium monilatum CCMP3105 Gonyaulacales 87,380 

Alexandrium tamarense CCMP1771 Gonyaulacales 114,975 

Azadinium spinosum 3D9 Gonyaulacales 70,040 

Ceratium fusus PA161109 Gonyaulacales 68,969 

Gambierdiscus australes CAWD 149 Gonyaulacales 48,770 

Gambierdiscus caribaeus Gonyaulacales 290,362 

Gonyaulax spinifera CCMP409 Gonyaulacales 39,652 

Lingulodinium polyedra CCMP1738 Gonyaulacales 96,319 

Protoceratium reticulatum CCCM535-
CCMP1889 

Gonyaulacales 75,595 

Pyrodinium bahamense pbaha01 Gonyaulacales 99,554 

Amphidinium carterae CCMP1314 Gymnodiniales 35,832 

Amphidinium massartii CS-259 Gymnodiniales 49,240 

Gymnodinium catenatum GC744 Gymnodiniales 82,846 

Karenia brevis CCMP2229 Gymnodiniales 79,497 

Karenia brevis SP1 Gymnodiniales 83,816 

Karenia brevis SP3 Gymnodiniales 69,522 

Karenia brevis Wilson Gymnodiniales 90,529 

Karlodinium micrum CCMP2283 Gymnodiniales 57,487 

Togula jolla CCCM725 Gymnodiniales 42,196 

Noctiluca scintillans Noctilucales 40,801 

Oxyrrhis marina LB1974 Oxyrrhinales 34,348 

Oxyrrhis marina Oxyrrhinales 43,246 

Brandtodinium nutriculum RCC3387 Peridiniales 66,253 

Durinskia baltica CSIRO CS-38 Peridiniales 88,656 

Glenodinium foliaceum CCAP1116/3 Peridiniales 106,311 

Heterocapsa arctica CCMP445 Peridiniales 45,573 

Heterocapsa rotundata SCCAP K-0483 Peridiniales 43,925 

Heterocapsa triquestra CCMP448 Peridiniales 57,688 

Kryptoperidinium foliaceum CCMP1326 Peridiniales 161,360 

Peridinium aciculiferum PAER-2 Peridiniales 53,784 

Scrippsiella hangoei-like SHHI-4 Peridiniales 74,092 

Scrippsiella hangoei SHTV5 Peridiniales 74,862 

Scrippsiella trochoidea CCMP3099 Peridiniales 101,032 

Prorocentrum minimum CCMP1329 Prorocentrales 85,555 

Prorocentrum minimum CCMP2233 Prorocentrales 79,005 

Pelagodinium beii RCC1491 Suessiales 47,797 

Polarella glacialis CCMP1383 Suessiales 58,545 

Polarella glacialis CCMP2088 Suessiales 33,576 

Symbiodinium sp. C15 (Cladocopium)  Suessiales 37,221 

Symbiodinium sp. C1 (Cladocopium) Suessiales 45,710 

Symbiodinium sp. CCMP2430 
(Symbiodinium) 

Suessiales 43,277 
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Symbiodinium sp. CCMP421 (Effrenium) Suessiales 72,087 

Symbiodinium sp. D1a (Durusdinium) Suessiales 44,936 

“Symbiodinium” sp. Mp Suessiales 43,138 

 

4.1.3.1. Reference phylogeny and data completeness 

An earlier study by Price and Bhattacharya86 demonstrated the utility of constructing a 

phylogeny using high-throughput transcriptome data. Following a similar approach86, we 

inferred a maximum-likelihood tree using these data comprising 1043 single-copy protein 

sets (Fig. 4.1a; see Methods). The statistics of the concatenated alignment (209,857 

aligned positions) and the associated individual 1043 alignments used for inferring this 

tree are shown in Supplementary Tables S2 and S3 (Appendix B), respectively. On 

average, each taxon contributes 22.13% of the aligned residues in the concatenated 

alignment (Appendix B Supplementary Fig. S1A). The maximum-likelihood tree inferred 

from these sets (Fig. 4.1a) is largely topologically congruent to the published phylogeny86 

(normalised Robinson-Foulds291 distance = 0.17). The backbone node for each taxonomic 

order is strongly supported (bootstrap support [BS] >95% based on ultrafast bootstrap 

approximation292) in the tree (Fig. 4.1a) except for the Gonyaulacales and Gymnodiniales, 

as was also found in the earlier study86. Thus, phylogenetic signal from dinoflagellate 

transcriptomes is largely consistent in these two independent analyses. The sole member 

of the Dinophysiales, Dinophysis acuminata DAEP01, is placed as the basal lineage in the 

clade including Gonyaulacales, Prorocentrales, Peridiniales, and Suessiales (BS 72%; Fig. 

4.1a); this taxon was sister to Prorocentrum minimum in the earlier published trees86,293. 

The placement of Dinophysiales at the base of this clade of five orders lends support to 

the earlier phylogeny and the single origin of the theca in dinoflagellates (comparable BS 

72% in the tree of Janouškovec et al.293). The differential placement of Gonyaulacales and 

Suessiales relative to Peridiniales within this clade may be due to more aligned positions 

used for inferring the tree in Fig. 4.1a (based on 209,857 positions across 1043 protein 

sets) than those used in the earlier study293 (based on 29,400 positions across 101 protein 

sets). We note with caution that the high percentage of undetermined characters (on 

average 77.87% per taxon; Appendix B Supplementary Table S2 and Supplementary Fig. 

S1A) in our concatenated alignment may have resulted in a reduced information content, 

but 22.13% of this alignment, based on a larger number of protein sets, still comprises 

46,449 amino acid positions. Although we required that each orthologous set contains 

sequences from ten or more taxa (see Methods), we cannot exclude the possibility that 
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some sequences may have arisen from eukaryote prey of the mixotrophic taxa. However, 

the strong node support for each dinoflagellate order in the tree suggests that the impact 

of eukaryote contaminants on our inferred phylogeny is likely to be negligible. The 

presence of highly diverged homologs originating from non-dinoflagellate eukaryotic 

contaminants would weaken node support in the tree. 

 

Figure 4.1: (a) Maximum-likelihood phylogeny inferred using the 1043 orthologous protein 
sets. Support values, based on 2000 ultrafast bootstrap approximations292, are shown at 
the internal nodes. The unit of branch length is the number of substitutions per site. (b) 
The percentage of recovered alveolate + stramenopile BUSCO proteins and of dark 
proteins in each dataset. High- and low-confidence dark proteins are shown in red and 
yellow bars, respectively. 

 

On average, 208.6 (89.1%) of the 234 alveolate + stramenopile BUSCO proteins178 were 

recovered in each of these 47 datasets, indicating their high extent of completeness (Fig. 

4.1b). In an independent assessment at the order level (Appendix B Supplementary Table 

S1), we recovered a high proportion of these conserved proteins, e.g. 233 of the 234 

(99.6%) among the Peridiniales datasets. The sole dataset (Dinophysis acuminata) from 
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the order Dinophysiales is reasonably complete, with the recovery of 190 (81.2% of 234) 

alveolate + stramenopile BUSCO proteins. The recovery of multiple homologs in some of 

the taxa may be due to true gene duplications or alternatively, reflect alternative splicing 

events. 

4.1.3.2. Prevalence of dark genes in dinoflagellates 

Of all 3,368,684 proteins, 1,232,023 (36.57%) do not share significant sequence similarity 

to UniProt entries. The functions of these proteins are thus unknown, and we consider 

them as “dark” proteins. The average percentage of dark proteins in each dataset is 33%; 

the minimum is 15.2% in Symbiodinium sp. CCMP421 (now Effrenium), and the maximum 

is 63.5% in Gambierdiscus caribaeus (Fig. 4.1b). Although the number of dark proteins 

identified here may be somewhat dependent on the amount of data and the sequence 

length (low regression R2 values < 0.40 in Appendix B Supplementary Fig. S2), these 

aspects have minimal impact on our broader interpretation that dark proteins are common 

in dinoflagellates.  

We clustered the 3,368,684 protein sequences into 162,126 homologous sets of two or 

more sequences (see Methods). Of these sets (containing 2,554,321 proteins), 103,620 

(63.9%) containing 441,006 proteins (17.27% of 2,554,321) are dark (hereafter the high-

confidence set; see Methods). Within the 103,620 sets, 100,661 (97.14%) contain proteins 

from multiple taxa, whereas 2959 (2.86%) are taxon-specific; the latter must reflect 

alternative splice variants, because our approach excluded identical proteins from each 

taxon (Methods). The dark protein sets have an average size of 4.26, compared to the 

average size of 36.12 for the annotated sets, indicating that the dark protein families, 

although relatively more abundant, are smaller in size and more taxon-specific than 

annotated proteins. Of the 814,363 (unclustered) singleton proteins, 791,017 (97.13%) are 

dark (hereafter, the low-confidence set). These results suggest that dark proteins are 

prevalent in dinoflagellates and comprise an unexplored resource from which we can 

derive insights into the functional capabilities of these organisms. While we cannot dismiss 

the possibility that some of the dark genes may represent non-coding RNAs (i.e. not 

protein-coding genes), these transcribed (coding or non-coding) elements likely contribute 

to the functional divergence of dinoflagellate lineages. 
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4.1.3.3. Are dark genes in dinoflagellates from outer space? 

In the absence of functional annotation based on full-length protein sequences, conserved 

structural features such as protein domains can be used to illuminate the potential roles 

dark proteins play in dinoflagellate biology. The amino acid profile of the high-confidence 

dark proteins is largely similar to that of the annotated proteins; the proportions of four of 

the 20 amino acids are significantly different between the two sets (at 95% confidence 

interval of 10,000 comparisons of random subsamples; see Methods and Appendix B 

Supplementary Fig. S3). 

Putative functions of high-confidence dark proteins were further inferred though annotation 

of Pfam domains. Of the 441,006 proteins, only 6168 (1.4%) had Pfam annotations. In 

comparison, 31.38% of all proteins in this study were annotated with Pfam domains, 

indicating that these dark proteins are so highly diverged that their homologs (if any exist) 

are poorly represented in the curated databases. Although 202 (3.3%) of the 6168 Pfam-

annotated dark proteins share significant similarity (BLASTP, E ≤ 10-5) with sequences in 

the more-inclusive RefSeq protein database, the majority (78.2%) of recovered top hits 

(Appendix B Supplementary Table S4) are “hypothetical”, “uncharacterized”, “predicted”, 

“X-containing”, “X-like” or putative proteins. We therefore maintain that these proteins are 

dark. The dark proteins are shorter than average in these datasets (234.2 and 109.3 

amino acids respectively for high- and low-confidence dark proteins, compared to 291.8 

overall). This is likely not in itself sufficient to explain the inability to annotate dark proteins 

with functions294. It is possible (indeed likely) that some low-confidence dark proteins are 

artefacts arising from sequencing error or transcriptome mis-assembly. Of the 103,620 

dark homologous sets, most (100,661; 97.14%) have proteins from multiple taxa. The 

recovery of these proteins in multiple datasets suggests that their prominence in 

dinoflagellates is unlikely to have arisen primarily from artefacts.  

Figure 4.2 shows the proportion of 100,661 multi-taxon dark protein sets that are shared 

pairwise between taxa, with reference to the phylogenetic relationship of these taxa 

(based on Fig. 4.1a). We observed higher proportions of these sets among closely related 

taxa, such as among the strains of Karenia, Oxyrrhis, and Polarella, indicating that these 

dark proteins are lineage- or species-specific innovations. Interestingly, 403/1043 (38.6%) 

of the single-copy sets used to construct our reference phylogenetic tree (Fig. 4.1a) are 

dark. The maximum-likelihood tree inferred from these 403 dark protein sets is shown in 

Fig. 4.3. The statistics of the concatenated alignment (71,346 aligned positions) are shown 



 

86 

in Supplementary Table S5 (Appendix B). Each taxon on average contributes to 18.98% of 

the aligned residues in the concatenated alignment (Appendix B Supplementary Fig. S1B). 

Its topology is largely congruent with our reference phylogeny in Fig. 4.1a, indicating that 

these dark proteins and dark protein sets are indeed dinoflagellate proteins (and unlikely 

to be artefacts), are predominantly lineage-specific, and are more rarely shared between 

distantly related lineages. This latter observation suggests a more general insight. Shared 

phylogenetic information is lost with time and divergence, supporting the adage that 

adaptive evolution is local295 and its footprints (be it novel gene origin or lateral genetic 

transfer) are most obvious in recently split taxa. The use of BUSCO proteins is useful for 

assessing genome completeness or broad patterns of genome growth/reduction but 

provides little insight into how specialised functions or lineages evolve. This is the realm of 

dark proteins that still remain poorly characterised. 
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Figure 4.2: Heat map showing the proportion of dark protein sets shared between taxa 
used in this study. Each row is normalised by the total number of protein sets of which the 
taxon is a member. The order of the species on both axes and their associated 
dendrograms follow the phylogeny in Fig. 4.1a.  
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Figure 4.3: Maximum-likelihood phylogeny reconstructed using the 403 strictly orthologous 
dark protein sets. Support values, based on 2000 ultrafast bootstrap approximations292, 
are shown at the internal nodes. The unit of branch length is the number of substitutions 
per site. 

 

Enrichment analysis comparing the annotated Pfam domains in high-confidence dark 

proteins and those in all datasets shows that functions related to calcium binding, protein 

localisation, protein degradation, protein-protein interaction, cell cycle regulation, and 

photosynthesis are over-represented (Appendix B Supplementary Table S6). These 
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functions may play a role in the ability of dinoflagellates to adapt to a rapidly changing 

environment, and may represent the putative functions of dark proteins. Protein 

degradation could be important for removing misfolded proteins that result from rapid 

changes in the immediate environment.  

To further explore the conserved structural features of high-confidence dark proteins, we 

expanded our annotation strategy to include multiple methods and databases available via 

InterProScan. Using this approach, conserved features were annotated in 190,950 (43.3% 

of 441,006) high-confidence dark proteins. Of these, 37,270 proteins contain putative 

transmembrane domains (see Methods). We annotated conserved features in 36,352 

proteins using SUPERFAMILY, ProSiteProfile, Pfam, PANTHER and Gene3D (in 

comparison to 6168 using Pfam alone). The ten most abundant domains for each package 

are shown in Supplementary Table S7 (Appendix B). The EF-hand, ubiquitin, zinc finger 

and IQ (calmodulin-binding) motifs are among the most abundant domains. The remaining 

121,373 dark proteins are annotated with one or more secondary structures. Therefore, 

even though the functions of most dark proteins remain elusive, a substantial proportion of 

these proteins contain conserved structural features.  

4.1.3.4. Core functions in dinoflagellate lineages 

For all proteins in each dataset, we annotated function based on significant sequence 

similarity to known proteins in UniProt, protein domains in Pfam296, membrane 

transporters297, and Gene Ontology terms (Appendix B Supplementary Table S1). To 

assess the core protein functions in dinoflagellates, we identified the Pfam domains and 

membrane transporters that are the most abundant across all taxa (Appendix B 

Supplementary Fig. S4). The prevalent domains and transporters that were recovered 

among the top ten and top 20 in each taxon are shown in Table 4.2. The prevalence of 

protein kinase, RNA recognition and ankyrin repeat domains implicates functions in a 

diverse array of important cellular processes, including proliferation, cell cycle, signal 

transduction and RNA splicing. The prevalent membrane transporters (Table 4.2) include 

those related to transport of ions, metabolites, sugars and lipids is critical to all 

dinoflagellates (i.e., as in most mixotrophic lineages), potentially for nutrient uptake and 

osmoregulation. 
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Table 4.2: Prevalent protein domains and membrane transporters annotated in 
dinoflagellate proteins consistently recovered among the top ten and among the top 20 in 
each of the 47 taxa. 

Pfam domain (Pfam identifier) Membrane transporter (family identifier) 

Among top 10 in each taxon 

Protein kinase (PF00069) Eukaryotic Nuclear Pore Complex (E-NPC) 
Family (1.I.1)  

RNA recognition motif (PF00076) Mitochondrial Carrier (MC) Family (2.A.29) 

Ankyrin repeats (3 copies) 
(PF12796)  

Ankyrin (Ankyrin) Family (8.A.28) 

EF-hand domain pair (PF13499) ATP-binding Cassette (ABC) Superfamily (3.A.1) 

 Drug/Metabolite Transporter (DMT) Superfamily 
(2.A.7) 

Among top 20 in each taxon 

WD40 repeat (PF00400) Voltage-gated Ion Channel (VIC) Superfamily 
(1.A.1) 

MORN repeat (PF02493) The Major Facilitator Superfamily (MFS) (2.A.1) 

 P-type ATPase (P-ATPase) Superfamily (3.A.3) 

 

4.1.3.5. Core functions in toxic dinoflagellates 

To identify functions common to toxic dinoflagellates, protein annotations among taxa from 

Gonyaulacales and Gymnodiniales (hereinafter, the G+G dataset) were contrasted to 

those of all taxa. We found significant over-representations of the Voltage-gated Ion 

Channel (VIC) Superfamily (1.A.1) and the Monovalent Cation:Proton Antiporter-1 (CPA1) 

Family (2.A.36) in the G+G dataset (Appendix B Supplementary Table S8).  

The Voltage-gated Ion Channel (VIC) Superfamily (1.A.1) is the most over-represented 

membrane transporter family. These ion channels are critical in the maintenance of ion 

concentrations and gradients across cell membranes. The sodium and calcium voltage-

gated ion channels are also the target for the majority of dinoflagellate toxins15. In 

eukaryotes, these channels are highly glycosylated with sialic acid, which is known to 

modulate the excitability of voltage-gated ion channels298,299. Pfam domains of 

Glycosyltransferase family 29 (PF00777) and Kelch motif (PF01344), as well as GO terms 

sialylation (GO:0097503) and sialyltransferase activity (GO:0008373) are over-represented 

in the G+G dataset. This indicates that functions related to the processing and attachment 

of sialic acids to other macromolecules are prominent in toxic dinoflagellates. 

Whereas sialic acid had not been described in dinoflagellates300, it has been reported in 

other algae301,302. A gene related to sialyltransferase is differentially (more highly) 
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expressed in toxin-producing strains of Alexandrium minutum than in non-toxic species303. 

Sialic acid was previously reported to be absent from the symbiotic dinoflagellates304. Here 

we found that the glycosyltransferase domain was almost completely absent from 

Symbiodiniaceae taxa (and from all lineages of Suessiales, except for three domain 

matches found in the Symbiodinium sp. CCMP421 [Effrenium] dataset).  

Because voltage-gated ion channels are important in toxic dinoflagellates, the function of 

the channels must be unaffected by the toxins that these dinoflagellates release. In 

snakes, voltage-gated sodium channels that are resistant to tetrodotoxin (a toxin similar to 

saxitoxin from dinoflagellates305) have a reduced channel activity compared to those that 

are susceptible306. We hypothesise that a similar situation may occur in toxic 

dinoflagellates, i.e. voltage-gated ion channels are resistant to their own toxins and have a 

reduced activity. The link between sialic acid and these ion channels may represent a 

functional innovation in toxin-producing dinoflagellates, with the dinoflagellates using sialic 

acid to modulate (increase or recover) the activity of these toxin-resistant channels. 

Known dinoflagellate toxins are polyketides produced by the multi-domain polyketide 

synthase (PKS) enzyme family285. The Beta-ketoacyl synthase, N-terminal domain 

(PF00109), one of the main PKS domains, and the Beta-ketoacyl synthase, C-terminal 

domain (PF02801) that is often associated with the N-terminal domain, are over-

represented in the G+G dataset (Appendix B Supplementary Table S8). The Acyl 

transferase domain (PF00698), another primary PKS domain, is over-represented with an 

adjusted p-value of 2.24 × 10-6. The cellular component GO term for polyketide synthase 

complex (GO:0034081) is also enriched. 

4.1.3.6. Core functions in symbiotic dinoflagellates 

Dinoflagellates in the family of Symbiodiniaceae16 form critical symbiotic relationships with 

marine invertebrates, notably reef-building corals. Disruption of this symbiosis due to 

environmental stress can lead to bleaching and eventual death of the host animal. A few 

dinoflagellate lineages also form symbiotic relationships with zooplankton (Brandtodinium 

nutriculum) and foraminifera (Pelagodinium beii). Comparison of annotated Pfam domains 

in these symbiotic taxa against those in all taxa, shows that functions related to protein-

protein interaction (potentially involved in host-symbiont recognition307-309), extracellular 

matrix, photosynthesis, signal transduction, membrane transport, and cell adhesion are 

over-represented in the symbiotic lineages (Appendix B Supplementary Table S9).  
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Earlier studies of Symbiodiniaceae genomes revealed extensive lineage-specific 

divergence26,27,29,220, and genome-wide positive selection of symbiosis-related functions289. 

Features known to be prevalent in Symbiodiniaceae, including Chlorophyll A-B binding 

protein (PF00504), Ankyrin repeats (3 copies) (PF12796) and EF-hand domain pair 

(PF13499)26,27,220,289, were also significantly over-represented. Carbonic anhydrase 

(PF00484), involved in carbon dioxide sequestration for photosynthesis, was likewise over-

represented (Appendix B Supplementary Table S9). Nitrogen has been shown to be 

important for dinoflagellate-coral symbiosis, particularly in nutrient-poor tropical waters. It 

has even been suggested that the coral host uses ammonium limitation as a means of 

controlling the symbiont population310. Terms for nitrogen utilisation (such as ammonium, 

nitrate, and nitrite transport) are over-represented, confirming the importance of these 

processes to symbiotic dinoflagellates. Analysis of available Symbiodiniaceae genomes 

has shown a high level of sequence divergence even between closely related lineages289. 

4.1.3.7. Core functions in cold-adapted dinoflagellates 

Although most dinoflagellates occur in tropical and subtropical regions, a few psychrophilic 

species have been described. To identify the functional characteristics of cold-adapted 

dinoflagellates, we compared the four psychrophilic species (those isolated from either the 

Arctic or Antarctic circles): two Suessiales (Polarella glacialis CCMP1383 and Polarella 

glacialis CCMP2088) and two Peridiniales (Heterocapsa arctica CCMP445 and 

Scrippsiella hangoei-like SHHI-4) against all taxa. Pfam domains related to cold adaptation 

were over-represented (Appendix B Supplementary Table S10). The DUF3494 (PF11999) 

domain (which is shared by type 1 ice-binding proteins311) was the most significantly 

enriched, and cold-shock (PF00313) domain the third most enriched. DUF347 (repeat of 

unknown function) (PF03988) is the second most over-represented domain, ATP synthase 

(E/31 kDa) subunit (PF01991) the fourth-most, and Chlorophyll a/b-binding protein 

(PF00504) the fifth-most. The enrichment of chlorophyll-binding proteins is likely due to the 

primarily photosynthetic lifestyle of cold-adapted dinoflagellates compared to the 

mixotrophic lifestyle of other dinoflagellate taxa.  

We further compared the cold-adapted Peridiniales against all Peridiniales taxa (Appendix 

B Supplementary Table S11). Mixotrophy was reported in Scrippsiella spp. and 

Heterocapsa spp.312; they comprise six of the 11 Peridiniales taxa in our dataset. Over-

represented domains in cold-adapted Peridiniales include DUF347 (PF03988), chlorophyll 

a/b-binding protein (PF00504), DUF3494 (PF11999), and peridinin-chlorophyll A binding 
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protein (PF02429). Similarly, we compared the cold-adapted Suessiales against all 

members of this lineage (Appendix B Supplementary Table S12) and did not observe a 

significant enrichment of domains related to photosynthetic functions. This observation 

may not be surprising, because Suessiales lineages are photoautotrophs. A large number 

of over-represented domains with functions related to RNA processing (e.g. DEAD/DEAH 

box helicase (PF00270) and multiple [PPR_2 and PPR_3] PPR repeat (PF01535) 

domains) were recovered in the cold-adapted Suessiales. Interestingly Ion transport 

protein (PF00520) domain is under-represented (Appendix B Supplementary Table S12).  

Species that thrive in extreme cold conditions must adapt to slow enzyme kinetics, which 

results in a decreased rate of catalysis. One postulated mechanism to deal with this issue 

is the up-regulation of proteins or substrates that might otherwise limit biochemical 

processes. The quantity of synthesised ribosomal proteins313 and ATP314 have also been 

shown to increase with decreasing temperature in psychrophilic species. In cold-adapted 

dinoflagellates (Appendix B Supplementary Table S10), a number of ATP synthase 

subunits, ribosomal proteins and photosynthesis-related domains are over-represented. 

Our results suggest that an increased genetic capacity for these functions in psychrophilic 

dinoflagellates may compensate for low enzyme kinetics. This hypothesis remains to be 

tested as additional genomic and functional data from these dinoflagellates become 

available. 

4.1.4. Conclusions 

Our study represents the most comprehensive in silico analysis, to date, of dinoflagellate 

transcriptomes and their functional capacities. We offer the first glimpses into the inventory 

of dark proteins in dinoflagellates, highlighting putative functions. Dark proteins represent 

a treasure trove of knowledge into local adaptation, because their functions are directly 

related to the diversification of lineages. We also identify potential functions that are 

shared across all analyzed dinoflagellate datasets, thus representing a putative set of 

defining features for these taxa. Enrichment analysis identifies features that define 

selective constraints on dinoflagellates to toxin biosynthesis, and to symbiotic and cold-

adapted lifestyles. These results provide a foundational platform for further investigations 

of lineage-specific diversification, and of adaptation of dinoflagellates to their 

environments. However, most dinoflagellate genes are known to be constitutively 

expressed irrespective of growth conditions94,95, thus these transcriptome datasets do not 

allow us to adequately assess niche-specific gene expression and functional features; 
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these questions can be addressed when genome data from the relevant taxa become 

available. The development and deployment of genetic methods such as CRISPR-Cas9, 

transposon-based mutagenesis, and RNAi are urgently needed to test hypotheses about 

genes that putatively define locally adapted dinoflagellate lineages. 

4.1.5. Methods 

4.1.5.1. Data 

The predicted protein sequences from 62 assembled transcriptomes were retrieved from 

the Microbial Eukaryote Transcriptome Sequencing Project (MMETSP)82. Transcriptomes 

of Gambierdiscus caribaeus83 and Alexandrium tamarense CCMP159884 were also 

acquired to create the initial pool of transcriptomes used in this study (64 in total; Appendix 

B Supplementary Table S1). Eight of these transcriptomes (Akashiwo sanguinea 

CCCM885, Gyrodinium dominans SPMC 103, Lessardia elongata SPMC 104, Oxyrrhis 

marina CCMP1788, Prorocentrum lima CCMP684, Prorocentrum micans CCCM845, 

Pyrocystis lunula CCCM517 and Thoracosphaera heimii CCCM670-CCMP1069) were 

removed because they contained <1000 proteins; Crypthecodinium cohnii Seligo and 

Symbiodinium sp. Clade A were also removed, as they are potentially mislabelled86.  

The Benchmarking Universal Single-Copy Orthologs (BUSCO v3.0.2b)178 program (using 

the alveolate_stramenophiles_ensembl, Eukaryota_odb9 and protists_ensembl datasets; 

retrieved 22 September 2017), BLASTP searches (v2.3.0, e-value 1e-10) using the same 

three BUSCO datasets and BLASTP searches (v2.3.0, e-value 1e-10) using the protein 

orthologs from the Core Eukaryotic Genes (CEGs)290 were used to assess the 

completeness of each transcriptome. Seven transcriptomes (Alexandrium andersonii 

CCMP2222, Alexandrium fundyense CCMP1719, Alexandrium minutum CCMP113, 

Alexandrium tamarense CCMP1598, Amoebophrya sp. Ameob2, Oxyrrhis marina 

CCMP1795, Symbiodinium [now Fugacium] kawagutii CCMP2468) which all had >80%, 

>40% and >65% missing genes in the alveolate-stramenophiles. Eukaryota and protists 

datasets, and also had <80% recovery of CEGs, were removed.  

The proportion of each transcriptome with similarity to the RefSeq bacterial proteins 

database (release 80) was assessed using BLASTP (v2.2.28, e-value 1e-10); sequences 

matching at >90% identity were considered as putative bacterial contaminants. All 

transcriptomes analysed had <1% of their sequences sharing >90% similarity with 

bacterial protein sequences; the highest proportion was found in Glenodinium foliaceum 
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CCAP1116_3 (0.67%; 714 sequences) and Symbiodinium sp. D1a (now Durusdinium, 

0.45%; 203 sequences). As the putative bacterial sequences in each transcriptome was 

<1%, all transcriptomes (including the putative bacterial sequences) were retained and no 

filtering was conducted. To reduce redundancy of protein sequences in each of the 47 

transcriptome datasets, each dataset was clustered independently using CD-HIT (v4.6.5, 

identity 100%, word length 5)261; only the longest ‘representative’ sequences (Table 4.1) 

were retained and used in subsequent identification of homologous sets.  

4.1.5.2. Identification of homolog groups and phylogenetic reconstruction 

Construction of a maximum-likelihood phylogenetic tree consisting of all samples used in 

this study was conducted using the method described in Price and Bhattacharya86. 

Putatively homologous protein sets were constructed using OrthoFinder v1.1.8 (inflation 

1.5)268. Similar to the “set B” clusters in Price and Bhattacharya86, we selected sequence 

sets (represented by >=10 taxa) in which all taxa have only one sequence representation 

except for one taxon X that has two copies. The two sequences from taxon X were then 

removed from the sequence set before phylogenetic inference. This approach yielded 

1043 single-copy sets for phylogenetic inference. For each of these sets, the sequences 

were aligned using MAFFT v7.310315 (--localpair --maxiterate 1000). Alignments were 

trimmed in two stages using trimAL v1.2rev59270: (1) the automated heuristic selection 

method (-automated1) was first used, then (2) taxa in which 50% of the sequence did not 

overlap with 50% of the other sequences were removed (-resoverlap 0.5 -seqoverlap 50). 

A maximum-likelihood tree then was inferred using the partitioned analysis implemented in 

IQ-TREE v1.5.5316; the best evolutionary model for each trimmed alignment was selected 

using IQ-TREE317, with models considered unlinked. Support of nodes in the inferred 

consensus tree was determined using 2000 ultrafast bootstraps292. Alignment statistics 

were generated using AMAS318. The distance between our tree and the one published was 

calculated using the Robinson-Foulds metric as implemented in PHYLIP319. 

4.1.5.3. Functional annotation of proteins 

Each protein was queried using BLASTp (v2.3.0; e-value 1e-5, max_target_seqs 20) 

against separate SwissProt and TrEMBL databases (UniProt release 2017_07). We 

consider a protein to be “dark” (without a known function) if it, or any protein in the set it is 

part of, has no significant match to any UniProt entry. Gene Ontology (GO; 

http://geneontology.org/) terms were assigned using UniProt-GOA mapping (release 

http://geneontology.org/
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2017_09). Membrane transporters were identified by linking SwissProt annotations 

(release 2016_06), assigned using BLASTp (v2.3.0; e-value 1e-10, max_target_seqs 20), 

with the transporter classifications present in the Transporter Classification Database 

(retrieved 26 May 2017)297. The transcriptomes were annotated with Pfam domains using 

pfam_scan.pl (v1.5; database release 30) at E-value <0.001 following earlier 

studies28,220,320, and InterProScan (v5.27-66.0) using all analysis packages except 

SignalP. Proteins were considered to contain a putative transmembrane domain if 

identified as such by both the Phobius321 and TMHMM322,323 packages. 

4.1.5.4. Enrichment analysis of function 

For Pfam domains and transporter classifications, each identifier was assessed for 

enrichment against a background set using Fisher’s exact test, with correction for multiple 

testing using the Benjamini and Hochberg method324. GO enrichment was conducted 

using the topGO R (v3.2.4) package325, applying the Fisher’s Exact test with the 

‘elimination’ methods to correct for the hierarchical structure of GO terms. 

4.1.5.5. Comparison of amino acid profiles between dark versus annotated 
proteins  

We performed a random subsampling test to assess the statistical significance of the 

difference in proportion we observed for each amino acid between the high-confidence 

dark and the annotated protein sets. In the subsampling step, for each amino acid, we 

sampled its proportion from 100 randomly selected individual sequences (in the annotated 

set versus the dark set), and conducted Student’s t-test to assess the significance of the 

difference between their means; a Benjamini-Hochberg324 adjusted p-value ≤ 0.05 is 

considered statistically significant. We carried out this subsampling step 10,000 times, and 

assessed the number of times that the difference in proportions (of each amino acid in 

turn) is significant between the two sets. At 95% confidence interval (≥ 9500 tests returned 

a significant adjusted p-value), the difference in proportions of the amino acid is 

considered significant. 
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4.2. Concluding remarks 

The insights gained from the study reported in this chapter significantly advance our 

understanding of niche adaptation and specialisation in dinoflagellates, particularly 

regarding the presence of conserved, lineage-specific dark genes. The presence of 

putative ice-binding domains in gene products of cold-adapted species, and their putative 

origin via lateral genetic transfer from bacterial sources, has major implications for our 

understanding of cold adaptation in dinoflagellates. This aspect will be further explored 

within the context of the P. glacialis genome in the next chapter.  
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Chapter 5  
 

Genomic features of Polarella glacialis 

So far, I have established that the genome sequences of dinoflagellates are highly 

divergent among distinct species (Chapter 3). I also identified gene functions that are 

related to specialised niches of these ecologically important organisms, and found that 

these functions, including those that are unknown, are conserved and/or lineage-specific 

(Chapter 4). These studies were based on available transcriptome data from the distinct 

dinoflagellate taxa, and some genome data available from the Symbiodiniaceae. Genome 

data from the free-living taxa will critically allow for systematic investigation of the 

molecular mechanisms that underpin the diversification and niche-specialisation of 

dinoflagellate lineages. In this regard, the genome of free-living, psychrophilic Polarella 

glacialis presents an excellent analytic platform (Chapters 1 and 2).  

In this chapter, I present the generation of two draft de novo genomes of Polarella glacialis 

species isolated from the Arctic and Antarctica; these data, generated using both short- 

and long-read sequencing technologies, are the first generated from any free-living cold-

adapted dinoflagellates, and the first diploid genome assemblies reported for any 

dinoflagellate species. Using a refined, customised gene-prediction workflow that I earlier 

developed (Chapter 3), I predicted high-quality gene models based on strong evidence 

support, for the first time from full-length transcriptome data. I systematically investigate 

the distinct genome features of P. glacialis and discuss them with respect to other 

available dinoflagellate genomes. I also assess the intra-species divergence between the 

two isolates using these new data. 

This chapter is presented in the form of a manuscript, addressing all five Aims (Chapter 1, 

Section 1.3). This manuscript has been published as a pre-print article (doi: 

10.1101/704437) and here is reformatted for this thesis. The supplementary material for 

this manuscript is presented in Appendix C. As the first author of this paper, I conceived 
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the study, designed the experiments, conducted all computational analysis, interpreted the 

results, and prepared the first draft of this manuscript, including generation of all figures 

and tables.  

5.1. Polarella glacialis genomes encode tandem repeats of single-exon 
genes with functions critical to adaptation of dinoflagellates  

5.1.1. Abstract 

Dinoflagellates are diverse, ecologically important phytoplankton in marine and freshwater 

environments. Here, we present two draft de novo diploid genome assemblies of the free-

living dinoflagellate Polarella glacialis, isolated from the Arctic and Antarctica. For each 

genome, we predicted >50,000 high-quality genes supported by full-length transcriptome 

data. About 68% of the total genome sequence is repetitive, and includes long terminal 

repeats that likely contribute to intra-species structural divergence and distinct genome 

sizes (3.0 and 2.7 Gbp). In each genome, ~40% of genes are encoded unidirectionally and 

~25% are single exonic; these include tandemly repeated genes that encode functions 

related to cold adaptation and photosynthesis. Multi-genome comparison unveiled genes 

specific to P. glacialis and a common ancestral origin of ice-binding domains in cold-

adapted dinoflagellates. Our results provide insights into how dinoflagellate genomes may 

enhance the transcriptional efficiency of critical genes as a mechanism of environmental 

adaption and niche specialisation. 

5.1.2. Introduction 

Dinoflagellates are a diverse group of phytoplankton that are ubiquitous in marine and 

fresh waters. Mostly photosynthetic, dinoflagellates form the base of food webs. They 

critically sustain global aquatic ecosystems via primary production and cycling of organic 

carbon and nitrogen. Some dinoflagellate lineages are symbiotic or parasitic. For instance, 

members of the family Symbiodiniaceae are crucial symbionts in corals and other coral 

reef animals16,219, and parasitic dinoflagellates can cause death in economically important 

crustaceans such as crabs and lobsters326. Most dinoflagellates, however, are free-living. 

Bloom-forming taxa may cause “red tides”, which produce toxins that pose serious human 

health risks327. Some taxa have specialised to inhabit extreme environments, such as 

those found in brine channels of polar sea ice10,23,282,328. 

So far, available genome data of dinoflagellates are largely restricted to symbiotic or 

parasitic species12,13,26-29,289. These species were chosen for sequencing because their 
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genomes are relatively small, i.e. 0.12-4.8 Gbp. In comparison, genomes of other free-

living dinoflagellates are much larger, ranging from 5 Gbp in the psychrophile Polarella 

glacialis, to over 200 Gbp in Prorocentrum sp. based on DAPI-staining of DNA content30. 

Repeat content has been estimated at >55% in the genome sequences of some free-living 

dinoflagellates90,329; single-exon genes have also been described121. As most 

dinoflagellate lineages are free-living, whole genome sequences of these taxa are critical 

to understand the molecular mechanisms that underpin their successful diversification in 

specialised environmental niches. 

Polarella glacialis, a psychrophilic free-living species, represents an excellent system for 

genomic studies of dinoflagellates for three reasons. First, it is closely related to 

Symbiodiniaceae (both lineages are in Order Suessiales). Second, P. glacialis has been 

reported only in polar regions. Studying the P. glacialis genome can thus provide a first 

glimpse into molecular mechanisms that underlie both the evolutionary transition of 

dinoflagellates from a free-living to a symbiotic lifestyle, and the adaptation to extreme 

environments. Third, the estimated genome size of P. glacialis is still in the smaller range 

(~7 Gbp30) of all dinoflagellate taxa; this presents a technical advantage. 

Here, we report draft de novo genome sequences from two P. glacialis isolates: 

CCMP1383 and CCMP2088. The former is a xenic culture first isolated from brine in the 

upper sea ice in McMurdo Sound (Ross Sea, Antarctica) in 199123, and the latter is a xenic 

culture first isolated from a water sample collected adjacent to ice in northern Baffin Bay in 

199824. These genomes represent the first generated from any free-living, psychrophilic 

dinoflagellates. Incorporating full-length transcriptome data, we systematically investigated 

distinct features in these genomes including repeat content, and gene structure and intra-

species genome divergence. Our results reveal remarkable difference in genome sizes 

between these two isolates of the same species, and provide evidence of tandemly 

repeated, single-exon genes in shaping the evolution of dinoflagellate genomes. 

5.1.3. Results 

5.1.3.1. Genomes of Polarella glacialis 

Draft genome assemblies for two Polarella glacialis isolates (CCMP1383 and CCMP2088) 

were generated using a combination of Illumina short-read and PacBio long-read data 

(Table 5.1 and Appendix C Supplementary Table S1). Both genomes appear diploid based 
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on their bimodal distributions of k-mer counts observed from the sequence data, which 

closely (model fit >92%) matches the standard theoretical diploid model (Appendix C 

Supplementary Figure S1). These assemblies represent diploid genomes, reported for the 

first time in any dinoflagellates. The MaSuRCA assembler169 includes a step to remove 

redundant homologous scaffolds, producing a haploid assembly. For both isolates, this 

step was ineffective in identifying and collapsing homologous scaffolds into a haploid 

assembly. The purge_haplotigs330 program, which performs a similar function, also did not 

fully resolve the haplotypes, resulting in a partially resolved haploid assembly. This 

observation is unlikely due to misassembly, because all unresolved haplotig sequences 

are supported by long-read sequence data, many contain tandemly repeated genes (see 

below). A possible explanation is that the haplotypes are highly heterozygous with 

structural differences, affecting the identification of homologous scaffolds. As no reliable 

haploid representation could be generated, we chose to perform subsequent analysis 

using the diploid assemblies for both isolates. 

The high level of heterozygosity between the two haplotypes may be explained by a recent 

whole-genome duplication (WGD) event in P. glacialis. The two genome copies arising 

from WGD in a haploid progenitor would quickly accumulate mutations and structural 

rearrangements331, explaining why diploid genome assemblies were generated during the 

assembly process and haploid representations of both genomes have been difficult to 

generate. WGD in P. glacialis might be linked to cold-adaption and niche specialisation, 

potentially allowing for greater evolutionary flexibility through neofunctionalization or gene 

dosage affects332-334.  

To be consistent with earlier studies of dinoflagellate genomes27, scaffolds < 1 Kbp were 

removed from the final assemblies; 104 scaffolds (totalling 25,996 bp; 0.00087% of 

assembled bases) and 139 scaffolds (totalling 34,261 bp; 0.0012%) were removed from 

CCMP1383 and CCMP2088, respectively. The CCMP1383 assembly had fewer and more-

contiguous scaffolds (33,494; N50 length 170 Kbp; Table 5.1) compared to the 

CCMP2088 assembly (37,768; N50 length 129 Kbp; Table 5.1); this is likely due to more 

long-read data generated for the former (Appendix C Supplementary Table S2). Both 

assemblies are much more contiguous than their corresponding assemblies generated 

using only short-read data (N50 length < 73 Kbp; Appendix C Supplementary Table S1). 

For CCMP1383 and CCMP2088 respectively, the total diploid assembly sizes are 2.98 

Gbp and 2.76 Gbp (Table 5.1 and Appendix C Supplementary Table S1), and are very 
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similar to independent diploid genome-size estimates of 3.02 Gbp and 2.65 Gbp 

(Appendix C Supplementary Table S3). These genomes are smaller than previously 

estimated (~7 Gbp30). However, they remain larger than those of Symbiodiniaceae26-29,289 

(between 1.1 and 1.5 Gbp), and smaller than the 4.8 Gbp-genome of the parasitic 

Hematodinium sp.13 (Table 5.1 and Appendix C Supplementary Table S1). These results 

reaffirm the tendency of DNA-staining or flow-cytometry to overestimate genome sizes of 

dinoflagellates26-29,289. 

 

Table 5.1: Assembled genomes of P. glacialis compared to key publicly available 
dinoflagellate genomes. A more-comprehensive summary including all other available 
genomes is shown in Appendix C Supplementary Table S1. Estimated diploid genome 
size for P. glacialis isolates shown in brackets. 

 Polarella glacialis Symbiodiniaceae Parasitic 

 CCMP1383 CCMP2088 
Symbiodinium 

microadriaticum 
Breviolum 
minutum 

Cladocopium 
goreaui 

Fugacium 
kawagutii 

Amoebophrya 
ceratii 

Hematodinium 
sp. 

%G+C 45.91 46.15 50.51 43.46 44.83 45.72 55.92 47.31 

Total 
number of 
scaffolds 

33,494 37,768 9,695 21,899 41,289 16,959 2,351 869,500 

Total 
assembled 
bases (Gbp) 

2.98 2.76 0.81 0.61 1.03 1.05 0.0877 4.77 

N50 length 
of scaffolds 
(bp) 

170,304 129,205 573,512 125,226 98,034 268,823 83,970 17,235 

Maximum 
scaffold 
length (bp) 

2,170,995 1,500,384 3,144,590 810,747 8,337,000 5,159,000 536,776 186,000 

Estimated 
genome size 
(Gbp) 

1.48 
(3.02) 

1.30 
(2.65) 

1.10 1.5 1.19 1.07 0.12 4.8 

 

The non-repetitive regions from both assembled genomes are almost identical. In a 

comparison between the non-repetitive regions of CCMP2088 against the genome of 

CCMP1388, 98.6% of the regions share 99.4% sequence identity; likewise in CCMP1383, 

98.2% of compared regions share 99.2% sequence identity with the CCMP2088 genome. 

Remarkably, the genome of the Antarctic isolate (CCMP1383) is approximately 230 Mbp 

larger than that of the Arctic isolate (CCMP2088). These results reveal, for the first time, 

structural divergence of genomes in dinoflagellates even within a single species, 

potentially explained by the uneven expansion of repetitive elements (see below). The two 

genome assemblies are reasonably complete; a similar proportion of core conserved 

eukaryote genes were recovered, i.e. 332 (72.49%) and 337 (73.58%) of the 458 



 

103 

CEGMA290 genes in CCMP1383 and CCMP2088, respectively (Figure 5.1A and Appendix 

C Supplementary Table S4). These numbers are comparable to those recovered in 

published Symbiodiniaceae genomes289, e.g. 350 in C. goreaui and 348 in F. kawagutii, 

analysed using the same approach (Figure 5.1A).  

 

 

Figure 5.1: Genomes of Polarella glacialis and repeat content. (A) Recovery of conserved 
core eukaryote genomes from CEGMA in the assembled P. glacialis genomes of 
CCMP1383 and CCMP2088 compared to the assembled genomes of Cladocopium 
goreaui and Fugacium kawagutii289. (B) Interspersed repeat landscape and proportion of 
distinct repeat classes in the assembled genome of CCMP1383, relative to sequence 
divergence in Kimura substitution level. (C) Percentage of identified 3-mers in the 
assembled genome and the sequence data for CCMP1383 for the ten most-abundant 3-
mers. 
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The high extent of genome-sequence similarity between the two geographically distinct P. 

glacialis isolates suggests that they have either recently been transferred from one polar 

region to the other, or are being actively transported between the two locations, allowing 

for mixing of the two populations. To identify if P. glacialis is being actively transported 

between polar regions we interrogated the TARA Oceans database for the presence of 

this species in the broad sampled sites. Despite P. glacialis sequences being reported in 

67 of the 68 TARA sample locations, an exhaustive search did not recover clear evidence 

of any sequence that is representative of P. glacialis (see Methods). While we cannot 

dismiss the presence of P. glacialis at low, undetectable levels, we find no evidence at this 

time to support the presence of P. glacialis in the waters outside of the polar regions. 

5.1.3.2. Polarella glacialis genomes are highly repetitive 

Both P. glacialis genomes reveal high content of repetitive elements that encompass 

~68% (by length) of the assembled sequences (Figure 5.1B and Appendix C 

Supplementary Figure S2); most of these elements are simple and unknown repeats (i.e. 

unclassified de novo repeats; covering ~13.5% of each assembled genome; Figure 5.1B). 

The proportion of repeats in P. glacialis genomes is more than two-fold higher than that 

reported in Symbiodiniaceae (e.g. 27.9% in Symbiodinium microadriaticum, 16% in 

Fugacium kawagutii)289. This observation is not unexpected, because even before high-

throughput sequencing technology was available, the genome of the biotechnologically 

important dinoflagellate Crypthecodinium cohnii was estimated to contain 55-60% repeat 

content329. A genome survey of Alexandrium ostenfeldii estimated the repeat content at 

~58%90. In comparison, the genome surveys of Heterocapsa triquetra91 and Prorocentrum 

minimum92 estimated their repeat content at only ~5% and ~6%, respectively. These 

values are likely underestimates because only 0.0014% of the H. triquetra genome was 

surveyed, and >28% of the P. minimum genome data is putatively of bacterial origin92. 

The prevalence of repeats in P. glacialis genomes may explain their larger genome sizes 

compared to symbiotic dinoflagellates26-29,289, and may represent a genome signature of 

free-living dinoflagellates. These repeats are more conserved in P. glacialis (Kimura 

substitution level centred around 5; Figure 5.1B and Appendix C Supplementary Figure 

S2) than those reported in Symbiodiniaceae (Kimura substitution level 10-30289). We also 

recovered a substantial proportion of long-terminal repeat (LTR) elements (~12%) in P. 

glacialis genomes; these elements were largely absent (<0.7%) in Symbiodiniaceae289. 
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Transposable elements (such as LTRs) commonly comprise up to 80% of the genomes of 

plants and are induced by genome shock and polyploidization, resulting in genome 

restructuring335. The abundance of LTRs in P. glacialis and the role of LTRs in genome 

restructuring may explain in part the difference in genome sizes between the two isolates. 

These results suggest that repetitive elements and LTRs are key contributors that drive 

genome evolution of P. glacialis, both as a free-living and a cold-adapted dinoflagellate 

species. Because available dinoflagellate genomes (e.g. of Symbiodiniaceae) thus far 

have been generated largely using Illumina short-read data, we cannot dismiss the 

possibility that misassembly of these genomes (an inevitable artefact with short-read data) 

may have caused the under-estimation of repeat content (and the apparent absence of 

LTRs) in these genomes. 

In an independent analysis of simple repeats (see Methods), 25.01% and 24.17% 

respectively of the CCMP1383 and CCMP2088 genomes are found to be composed of 

simple repeats. The most prominent simple repeat is the trinucleotide (TTG)n (in all six 

reading-frames; see Methods) that covered 19.1% and 18.5% of the CCMP1383 and 

CCMP2088 genome assemblies, respectively. The proportion of (TTG)n, observed as 

possible 3-mers of TTG, TGT or GTT (each ~7-8%) in the assembled genomes, is very 

similar to that observed in the sequence-read data (Figure 5.1C and Appendix C 

Supplementary Table S5). Therefore, this observed prevalence of (TTG)n is unlikely due 

to assembly artefacts. 

5.1.3.3. DinoSL in full-length transcripts of Polarella glacialis 

To generate high-quality evidence to guide our gene-prediction workflow, we generated 

transcriptomes for both P. glacialis isolates, including full-length transcripts using PacBio 

IsoSeq technology (see Methods). Mature nuclear transcripts of dinoflagellates are known 

to contain a 22-nucleotide trans-spliced leader sequence (DinoSL: 

DCCGTAGCCATTTTGGCTCAAG, where D = T, A, or G) at the 5′-end114. Relic DinoSL 

sequences arise when transcripts with attached DinoSL are integrated back into the 

genome, expressed and trans-spliced with a new leader sequence. Successive rounds of 

transcript re-integration results in multiple relic DinoSLs on a single transcript. We 

searched the full-length transcripts (435,032 in CCMP1383 and 1,266,042 in CCMP2088) 

for presence of DinoSL and relic DinoSL sequences (see Methods). DinoSL sequences 

were recovered in 13.54% and 50.39% of transcripts (hereinafter DinoSL-type transcripts) 
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in CCMP1383 and CCMP2088 respectively (Appendix C Supplementary Table S6). An 

earlier study336 reported a single transcript in CCMP2088 that has a non-canonical DinoSL 

sequence (ATCGTAGCCATGTTGGCTCAAG), but our exhaustive search against the 

transcripts in either isolate did not recover this sequence. 

Although our experiment (see Methods) was designed to recover full-length transcripts 

(with complete 3′ and 5′ regions), it is possible that the adopted library preparation step is 

not 100% efficient, and that the lack of a DinoSL in so many transcripts may be due to 

mRNA degradation. This may, in the first instance, be reflected by the varying degrees of 

truncation of the DinoSL-type transcripts in our data. However, 70.45% of these transcripts 

in CCMP1383 and 69.18% of transcripts in CCMP2088 start at one of the two contiguous 

cytosine bases (i.e. at positions 2 and 8) of the DinoSL (Figure 5.2A; Appendix C 

Supplementary Table S7). This preference for start sites at the double-cytosine positions 

suggests that the 5′ selection method we used (that purifies for the 5′ methylated cap site) 

is binding to these regions instead of the true 5′-cap. This in turn may happen because 

cytosines at these sites are methylated. Cytosine methylation has been described in 

genomes of eukaryotes including dinoflagellates, potentially as a mechanism for silencing 

of transposable elements and regulation of gene expression230,337,338; a recent study of the 

Breviolum minutum genome revealed that cytosine methylation often occurred at CG 

dinucleotides339. The impact of methylation on recovery of splice leaders in dinoflagellates 

remains to be systematically investigated. 

In CCMP1383 and CCMP2088, 0.68% and 2.31% of all full-length transcripts respectively 

were found to encode one relic DinoSL (immediately following their primary DinoSL), 

smaller proportions (0.020% and 0.048% respectively) encode multiple relic DinoSL 

sequences. We recovered 30 transcripts in CCMP2088 that have four putative relic 

DinoSL sequences; they shared >99% sequence identity among one another. Five of 

these 30 transcripts are shorter than the others, suggesting an alternative transcription 3′-

termination site, thus a distinct isoform. 

We further assessed the diversity of alternative splice-forms by clustering the full-length 

transcripts by sequence similarity using PASA (see Methods). Each resulted PASA 

“assembly”191 represents a distinct alternative isoform, and overlapping “assemblies” 

constitute a transcriptional unit (Appendix C Supplementary Table S8). We identified 

30,463 and 22,531 alternative isoforms comprising 24,947 and 19,750 transcriptional units 

in CCMP1383 and CCMP2088 respectively. When focusing only on DinoSL-type 
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transcripts, these numbers are 8714 and 6576, comprising 7146 and 5110 transcriptional 

units respectively (Appendix C Supplementary Table S8). In both isolates, alternative 

exons are the most common events observed among all transcript isoforms (e.g. 45.85% 

of all inferred events in CCMP2088), followed by alternative donor (22.05%) and acceptor 

(20.43%) sites (Appendix C Supplementary Table S9). 

 

Figure 5.2: DinoSL-type full-length transcripts in P. glacialis. (A) Percentage of DinoSL-
type transcripts of P. glacialis based on the identified start position along the DinoSL 
sequence, shown for positions 1 through 12. (B) Distribution of distances (in bp) between 
DinoSL-type transcriptional units shown for transcriptomes of CCMP1383 and CCMP2088. 

 

The addition of DinoSL sequences was proposed as a mechanism to split polycistronic 

pre-mRNA into monocistronic mature mRNA114. A little over half (50.45% in CCMP1383, 
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58.78% in CCMP2088) of these DinoSL-type transcriptional units are located within 5 Kbp 

of one another (Figure 5.2B). Interestingly, among the DinoSL-type transcript isoforms, the 

two most-enriched Pfam domains are bacteriorhodopsin-like protein (PF01036) and cold-

shock DNA-binding (PF00313) in both isolates (Appendix C Supplementary Table S10). 

To further assess the functional diversity of DinoSL-type transcripts, we independently 

sequenced 747,959 full-length transcripts from CCMP1383 specifically selected for DinoSL 

(Appendix C Supplementary Table S6; see Methods). These transcripts comprised only 

1187 isoforms (3.9% of total 30,463 isoforms; Supplementary Table S8). Similar functions 

are prevalent among these genes (Appendix C Supplementary Table S10), thus lending 

support to our observation of functional bias in DinoSL-type transcripts. In addition, the 

frequency at which DinoSL-type transcripts are integrated back into the genome is likely 

dependent on their relative abundance in the nucleus. Therefore, transcripts containing 

relic DinoSLs are likely to be, or have been, highly expressed. In both isolates, the ice-

binding (DUF3494) and the bacteriorhodopsin-like protein domains, both important for 

adaptation to cold (see below), are among the most-enriched features in transcripts 

encoded with a relic DinoSL. 

5.1.3.4. Prediction of gene models in Polarella glacialis is likely impacted 

by RNA editing 

Using a gene-prediction workflow customised for dinoflagellate genomes289 (see Methods), 

we predicted 58,232 genes and 51,713 genes in the CCMP1383 and CCMP2088 

genomes respectively (Table 5.2 and Appendix C Supplementary Table S11). Of the 

58,232 genes predicted in CCMP1383, 51,640 (88.68%) of their coded proteins were 

recovered among those in CCMP2088 (Figure 5.3). Likewise, of the 51,713 genes 

predicted in CCMP2088, 46,228 (89.39%) of their coded proteins were recovered among 

those in CCMP1383 (Figure 5.3). The difference in numbers of predicted genes and 

sequence dissimilarity observed between the two genomes could be explained in part by 

the presence of distinct transcript isoforms. Although transcriptome evidence can improve 

the quality of predicted genes, our results indicate that this evidence can also complicate 

prediction when a gene has multiple isoforms, more so when these isoforms are recovered 

unevenly between the two isolates. 
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Table 5.2: Predicted gene models in P. glacialis compared to key publicly available 
dinoflagellate genomes. A more-comprehensive summary including gene models from all 
available dinoflagellate genomes is shown in Appendix C Supplementary Table S11. 

 Polarella glacialis Symbiodiniaceae Parasitic 

 CCMP1383 CCMP2088 
Symbiodinium 
microadriaticum 

Breviolum 
minutum 

Cladocopium 
goreaui 

Fugacium 
kawagutii 

Amoebophrya 
ceratii 

Genes        

Number of genes 58,232 51,713 49,109 47,014 35,913 26,609 19,925 

Gene models 
supported by 
transcriptome (%) 

93.95 94.35 76.30 77.20 67.02 64.40 24.37 

G+C content of CDS 
(%) 

57.84 57.78 57.67 50.80 56.70 54.95 60.77 

Exons        

Number of exons per 
gene 

11.64 10.84 21.8 19.6 10 8.7 3.39 

Average length (bp) 105.67 108.71 109.5 100.8 175.9 199.5 577.8 

Total length (Mb) 71.6 60.9 117.3 83.0 63.4 46.2 39.1 

Introns        

Number of genes with 
introns (%) 

73.79 75.60 98.2 84.4 92.9 94 71 

Average length (bp) 1,408 1,296 504.7 500.4 575.1 619.4 337.1 

Total length (Mb) 838 636.2 516.1 332.2 186.8 126.9 16.1 

Intergenic regions        

Average length (bp) 21,625 20,922 3,633 1,993 10,627 23,042 1,525 

Note: Hematodinium sp. is not shown as no predicted genes were reported. 

Interestingly, almost all predicted proteins not recovered in the proteins of the counterpart 

isolate (i.e. 6003 of 6592 in CCMP1383 and 4660 of 5485 in CCMP2088) were recovered 

in the transcriptome of the counterpart isolate (Figure 5.3). These results indicate that 

some transcriptome evidence was not incorporated in ~10% of the predicted genes in 

each genome. We hypothesise that this is likely due to RNA editing in P. glacialis. RNA 

editing has been characterised in the nuclear-encoded genes of Symbiodinium 

microadriaticum94, as well as organellar genes of other dinoflagellates340,341. RNA editing 

may introduce changes in the transcripts (e.g. base substitutions or indels) affecting the 

identification of open-reading frames (e.g. disruption by in-frame stop codons or correction 

of premature stop codons) in the genome sequences, and thus impacting prediction of 

gene models. 



 

110 

 

Figure 5.3: Comparison of predicted gene models between the two P. glacialis genomes. 
The comparison of predicted proteins in CCMP1383 against those in CCMP2088 is 
shown, incorporating evidence from the corresponding transcriptome data. 

 

Given the diploid genome assembly for each isolate, we assume that the number of 

predicted genes would approximate twice the number expected in a haploid genome (e.g. 

50,000 genes in a diploid assembly versus 25,000 in a haploid assembly). In comparison, 

the reported number of predicted genes is generally greater among the six (haploid) 

genomes of Symbiodiniaceae (Table 5.2 and Appendix C Supplementary Table S11); the 

numbers vary from 26,609 in Fugacium kawagutii289 to 69,018 in Symbiodinium 

tridacnidorum28. The wide-ranging number of predicted genes in Symbiodiniaceae 
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genomes may be due to the different gene-prediction workflows adopted in the earlier 

studies, and the extent and quality of transcriptome data used in guiding gene 

prediction342. We expect such technical biases would intensify in highly divergent 

genomes, as is the case for Symbiodiniaceae342. In addition, the proportion of genes in 

these genomes that are supported by transcriptome evidence is smaller (~72% averaged 

among six genomes) than that we observed in our predicted genes of P. glacialis (~94% 

for each isolate; Table 5.2). This result may be explained by the more-extensive 

transcriptome data we generated in this study (using both RNA-Seq short-read and Iso-

Seq full-length transcripts) specifically to guide our gene-prediction workflow (see 

Methods), compared to the transcriptome data (based on RNA-Seq short-reads) used in 

the earlier studies. To what extent these gene numbers are comparable remains to be 

investigated. However, our gene-prediction workflow (see Methods), adapted from Liu et 

al.289, is customised for dinoflagellate genomes; genes were predicted based on a set of 

stringent criteria adopting both ab initio and evidence-based methods, and strong support 

from transcriptome evidence. Our predicted genes in P. glacialis represent the best-quality 

predictions of dinoflagellate genes to date. 

5.1.3.5. Unidirectional tandem single-exonic genes in P. glacialis 

In P. glacialis, longer intergenic regions have higher fraction of repeats covering those 

regions (Appendix C Supplementary Figure S3). Roughly a third of the intergenic regions 

(35.86% in CCMP1383; 34.97% in CCMP2088) are  5 Kbp in length. The fraction of 

these regions covered by repetitive elements is 32.92% (CCMP1838) and 32.93% 

(CCMP2088; Appendix C Supplementary Figure S3); these numbers are 59.65% and 

59.05% (Appendix C Supplementary Figure S3) among intergenic regions >5 Kbp. This 

observation suggests that expansion of repeats is greater in (and likely contributes to) 

longer intergenic regions in the genome. Approximately 50% of the analysed genes 

(26,580 in CCMP1383, 21,376 in CCMP2088) appear to have intergenic regions  5 Kbp 

(Figure 5.4A), indicating a tendency for these genes to occur in clusters. Adjacent genes 

were clustered if their intergenic regions were < 5 Kbp and clusters were considered 

unidirectional if all genes in that cluster were encoded in the same direction. Remarkably, 

almost all of these clustered genes (24,276 and 19,544 respectively for those of 

CCMP1383 and CCMP2088; ~40% of total genes in each genome) were found to be 

encoded unidirectionally. These unidirectional gene clusters may represent a mechanism 

in P. glacialis to ensure transcriptional efficiency, with genes in close physical proximity 
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potentially transcribed together. In some cases, these gene clusters encode the same or 

similar functions, e.g. 22 unidirectionally encoded genes in CCMP1383 (and 19 in 

CCMP2088) putatively code for major basic nuclear protein 2. 

 

 

Figure 5.4: Intergenic regions and tandemly repeated genes. (A) Distribution of the sizes of 
intergenic regions (in bp; ≤ 30,000 bp) shown for the assembled P. glacialis genomes of 
CCMP1383 and CCMP2088. (B) Number of tandemly repeated and/or single-exonic 
genes in CCMP1383 and CCMP2088, shown for genes encoding bacteriorhodopsin and 
peridinin chlorophyll a-binding proteins. 

 



 

113 

Among the predicted genes in both genomes, 4898 (CCMP1383; 8.4%) and 3359 

(CCMP2088; 6.5%) are located (nested) within introns of multi-exon genes. Although most 

cases (71.02% in CCMP1383 and 74.90% in CCMP2088) represent one nested gene per 

multi-exon gene, in extreme cases we observed 18 (CCMP1383) and 24 (CCMP2088). 

Supplementary Figure S4 (Appendix C) shows an example of 15 nested genes of 

CCMP1383 spanning three introns of the gene putatively encoding an alanine–tRNA 

ligase. Among the nested genes within each intron, five encode for fucoxanthin chlorophyll 

a/c-binding protein, and four for light-harvesting complex protein. The validity of the nested 

gene structure was confirmed by expression evidence based on full-length transcripts. 

Of particular interest, we recovered 15,263 (26.2%) and 12,619 (24.4%) single-exon 

genes in CCMP1383 and CCMP2088 respectively (Table 5.2). These proportions are 

higher than those in symbiodiniacean genomes (< 20% of genes; Table 5.2 and Appendix 

C Supplementary Table S11) except that in the earlier assembled genome of Fugacium 

kawagutii (34.9% of genes)29. Almost all single-exon genes in P. glacialis (99.08% of those 

in CCMP1383, 98.12% of those in CCMP2088) are supported by transcriptome evidence 

(including full-length transcripts that were selected for 3′-polyadenylation and 5′-cap sites). 

These results suggest that these genes are bona fide P. glacialis genes (i.e. not bacterial 

contaminants, nor artefacts of our gene-prediction workflow). Many of the Pfam domains 

enriched in the single-exon genes are also enriched in the predicted genes of P. glacialis 

compared with symbiodiniacean genes (see also below; Appendix C Supplementary Table 

S12). Enriched features of P. glacialis such as bacteriorhodopsin-like protein (PF01036), 

peridinin-chlorophyll a-binding (PF02429) and DUF3494 (PF11999) are encoded as 

single-exon genes. A number of other domains are enriched in the single-exon genes of 

both P. glacialis isolates. The bacterial DNA-binding protein domain (PF00216), which is 

predominantly found in bacteria, is enriched and potentially has arisen in P. glacialis via 

lateral genetic transfer. The reverse transcriptase (PF00078) domain is also enriched and 

is likely involved in the activity of retrotransposons in the P. glacialis genomes. 

5.1.3.6. What makes Polarella Polarella?  

We compared the annotated functions of P. glacialis genes against those from 

Symbiodiniaceae genomes26-28,289. When comparing the annotated PFAM domains, we 

observed a significant over-representation of DUF3494 (PF11999) and chlorophyll a-b 

binding (PF00504) domains in P. glacialis relative to the Symbiodiniaceae (Appendix C 
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Supplementary Table S13), as we previously observed in an independent analysis of 

transcriptomes343. In this study using high-quality gene models predicted from genome 

data, we further observed over-representation of pentatricopeptide repeat (PF13041, 

PF13812, PF01535), bacteriorhodopsin-like protein (PF01036), and peridinin-chlorophyll 

a-binding (PF02429) in P. glacialis. Interestingly, the peridinin-chlorophyll a-binding and 

bacteriorhodopsin-like domains predominantly are encoded in blocks of tandemly repeated 

single-exon genes, implicating hundreds of genes in P. glacialis (Figure 5.4B). All but one 

of these gene blocks (i.e. a contiguous region containing two or more genes) are 

unidirectionally encoded. Peridinin-chlorophyll a-binding protein was thought to be 

encoded as 5000 single-exon gene copies in tandem repeat blocks in the bloom-forming 

dinoflagellate of Lingulodinium polyedra121, and that these coding genes are likely 

monocistronic344; this protein may be universally important in free-living dinoflagellates, 

and potentially to a lesser extent among symbiotic lineages dinoflagellates345. The 

tendency of tandemly repeated genes to have fewer introns was also reported in the 

bloom-forming Amphidinium carterae111. In combination with our other results (above), our 

observations suggest gene-family expansion through tandem duplication drives the 

genome evolution of P. glacialis, and potentially of other free-living dinoflagellates. The 

use of a DinoSL sequence to split polycistronic transcripts into mature RNAs114 may 

facilitate this mechanism. 

Bacterial-derived rhodopsin, a transmembrane protein involved in bacterial phototrophy 

independent of chlorophyll through retinal binding, is encoded in diverse dinoflagellate 

lineages68,346. The proton-pump type rhodopsins are known to create a proton gradient to 

drive synthesis of ATPase, in lieu of photosynthesis347,348. An earlier gene-expression 

analysis of the bloom-forming Prorocentrum donghaiense349 revealed that proton-pump 

rhodopsins may compensate for photosynthesis under light-deprived conditions. These 

rhodopsins were also found to be highly expressed in diatoms under iron-deficient 

conditions350. All genes in both P. glacialis isolates have top hits to the sequences coding 

for proton-pump rhodopsins in Oxyrrhis marina. These rhodopsins were previously found 

to be more abundantly expressed in O. marina than the sensory-type rhodopsins involved 

in light-harvesting for photosynthesis351. We hypothesise that the over-representation of 

rhodopsin and other photosynthesis-related genes in P. glacialis is an adaptation to light-

limited (and potentially iron-limited) conditions, as expected in their natural habitat of ice-

brine channels. 
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A previous study based on transcriptome analysis343 revealed dark proteins (i.e. proteins 

that do not share sequence similarity to those of known function) that are conserved 

and/or lineage-specific in dinoflagellates. Using 437,829 protein sequences predicted from 

genome data of P. glacialis and six Symbiodiniaceae species (Appendix C Supplementary 

Table S14), we constructed 43,465 putatively homologous protein sets that consist of 

78.7% of the total protein sequences analysed. Of these sets, 9445 (21.73%) containing 

8.95% of the clustered proteins (30,584 proteins; 6.99% of 437,829) were classified as 

dark (i.e. they were not annotation with a known function based on sequence-similarity 

searches against UniProt database; see Methods). The number of dark proteins (and 

hence dark genes) from each dataset (Appendix C Supplementary Table S14) were 

largely congruent with the proportions of dark genes reported previously343. Of the 9445 

dark homologous sets, 4443 (47.04%) contain sequences from only P. glacialis; 4371 

(98.38% of the 4443) contain sequences from both isolates, thus they are unlikely to have 

arisen due to assembly artefacts. We consider a dark set as single-exonic if all its 

members are encoded in single exons, and a dark set as multi-exonic if at least one 

member is encoded in multiple exons. Following this definition, most (2988; 67.3%) of the 

4,443 P. glacialis-specific sets are multi-exonic, while 1,455 (32.7%) are single-exonic. Of 

the 1,455 single-exonic dark sets, 719 (49.4%) are supported by IsoSeq data and 1,451 

(99.7%) by IsoSeq and/or RNA-Seq data. Therefore, these genes likely represent true 

genetic (and functional) innovation specific to P. glacialis. 

5.1.3.7. Bacterial species associated with P. glacialis in the environment  

Two bacterial genomes were generated as part of our effort in sequencing the genomes of 

P. glacialis. A CCMP1383 scaffold (5,892,869 bp) from the preliminary (short-read-only) 

assembly mapped at 93.8% sequence identity to the genome of Paraglaciecola 

psychrophila strain 170T (GenBank NC_020514, 5,413,691 bp; gamma-Proteobacteria), 

and another (3,839,769 bp) at 83.9% sequence identity to the genome of Sphingorhabdus 

sp. YGSM121 (GenBank NZ_CP022548, 3,864,176 bp; alpha-Proteobacteria). These two 

scaffolds show strong conserved synteny to the published genomes, with a few structural 

rearrangements (Appendix C Supplementary Figure S5). P. psychrophila 170 was isolated 

from the Arctic352, and Sphingorhabdus sp. YGSM121 from temperate sea sediment near 

South Korea (GenBank NZ_CP022548). Similarly, the three largest contaminant scaffolds 

(total 4,274,053 bp) in the preliminary CCMP2088 assembly have likely originated from the 

Arctic Maribacter arcticus (GenBank GCF_900167935.1, 4,211,145 bp; 
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Bacteroidetes/Chlorobi) isolate. Therefore, these bacterial species are likely microbial 

associates of P. glacialis in the origin environment (i.e. part of the P. glacialis holobiont) 

where the two isolates were first isolated, but this notion remains to be investigated. 

5.1.3.8. Single evolutionary origin of ice-binding domains in dinoflagellates  

The Pfam domain DUF3494, a known ice-binding domain59, has been shown to be over-

represented in cold-adapted dinoflagellates343. In both P. glacialis isolates (Appendix C 

Supplementary Table S15), most putative ice-binding genes encode only the DUF3494 

domain. They are encoded in single exons, and in unidirectional, tandemly repeated 

blocks, potentially as a mechanism to enhance the efficiency of expression of these 

genes. As the DUF3494 domain in many species has arisen via lateral genetic transfer59, 

the presence of these genes in this configuration suggests that they might have arisen via 

the same mechanism in P. glacialis. 

Figure 5.5 shows part of a phylogenetic tree reconstructed based on 1080 sequences of 

available DUF3494 domains encompassing archaea, bacteria, and eukaryotes; the 

complete tree is available as Supplementary Data S1 (Appendix C). All DUF3493 

sequences from the dinoflagellates (P. glacialis, Heterocapsa arctica, Scrippsiella hangoei 

and Peridinium aciculiferum), plus some sequences from the ice diatom Fragilariopsis 

cylindrus, form a strongly supported clade (bootstrap support [BS] = 100% based on 

ultrafast bootstrap approximation353) (Figure 5.5). Within this dinoflagellate+diatom clade, 

the 169 DUF3494 sequences from P. glacialis (97 from CCMP1383, 72 from CCMP2088) 

form a strongly supported monophyletic clade (BS 100%), indicating that these domains in 

P. glacialis have an evolutionary history distinct from that in other dinoflagellates. In 

comparison, the domains in the ice diatom F. cylindrus were recovered in three distinct 

clades on the tree (two shown in Figure 5.5), indicating their different origins. As previously 

reported, DUF3494 domains in eukaryotes trace their origins to multiple events of lateral 

genetic transfer from bacteria and other eukaryotes354,355. We also observed this pattern 

on the tree in Figure 5.5; the exact origin of these domains in dinoflagellates remains 

unclear, with potential sources of Proteobacteria, Bacteroidetes/Chlorobi, or 

Euryarchaeota that also gave rise to the domains in some fungal species. Fungi are also 

distributed in multiple clades on this tree (Appendix C Supplementary Data S1). 

Alternatively, the DUF3494 domains may trace back to an ancient origin in all 

dinoflagellates, but have since been lost in all temperate and tropical species. These 
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hypotheses remain to be systematically investigated. The DUF3494 domains we 

recovered from the bacterial genomes (above; see Methods) were grouped with their 

closely related species within the corresponding phylum (i.e. Proteobacteria and 

Bacteroidetes/Chlorobi) in distinct clades, indicating that they are indeed prokaryotic. 

These results indicate that all ice-binding domains in dinoflagellates share a single 

common origin likely from a Proteobacteria or Bacteroidetes/Chlorobi source, and that 

those specific to P. glacialis have a distinct evolutionary history that may reflect niche 

specialisation. 
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Figure 5.5: Evolutionary history of ice-binding domains in P. glacialis and dinoflagellates. 
Only a small part of the 1080-taxon maximum likelihood protein tree is shown. Support 
values, based on 2000 ultrafast bootstrap approximations, are shown at the internal 
nodes. Only values >50% are shown. The unit of branch length is the number of 
substitutions per site. 
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5.1.4. Discussion 

We generated two draft de novo diploid assemblies of P. glacialis, the first of any free-

living psychrophilic dinoflagellates, and high-quality gene models supported by full-length 

transcriptomes. Genome features of P. glacialis provide a first glimpse of how genomes of 

dinoflagellates have evolved to adapt in a harsh environment. The difference in genome 

sizes between the two isolates highlights the extensive structural divergence of genomes 

within a dinoflagellate species. The abundance of repetitive elements and LTRs in the 

genomes suggests their important role in shaping the evolution of these genomes, 

potentially contributing to the genome-size difference. The exact molecular mechanisms 

and selective pressure that contribute to the larger genome size in the Antarctic isolate 

than in the Arctic isolate remains an open question, and can best be addressed using 

assembled genomes at chromosomal resolution. The trans-spliced DinoSL was thought to 

be a global signature of all transcripts in dinoflagellates, but our results reveal only a small 

proportion of full-length transcripts are encoded with DinoSL (and with relic DinoSLs) and 

remarkably, these transcripts mostly encode functions that are critical for adaptation to 

cold and to low-light conditions, both relevant to the natural habitat of P. glacialis in ice-

brine channels. In addition, genes encoding these functions are unidirectionally encoded, 

often in a tandemly repeated single-exonic structure. This distinctive organisation of genes 

is likely a genome signature of free-living dinoflagellates, and may serve as a mechanism 

to enhance transcription efficiency of genes encoding critical functions. The independently 

evolved ice-binding domains and the lineage-specific dark genes in P. glacialis highlight 

functional innovation in dinoflagellate genomes relevant to environmental adaptation and 

niche specialisation as successful psychrophiles in the extreme cold environment. 

5.1.5. Materials & Methods 

5.1.5.1. Cultures of Polarella glacialis 

The cultures of Polarella glacialis isolates were acquired from the National Center for 

Marine Algae and Microbiota at the Bigelow Laboratory for Ocean Sciences, Maine, USA. 

Both cultures were maintained in f/2 medium without silica356 (100mL culture in 250mL 

conical flasks, 12h:12h light:dark cycle, 90 µmol photon·m-2·s-1, 4ºC). The cultures were 

treated with ampicillin (100 μg·mL−1), kanamycin (50 μg·mL−1) and streptomycin 

(50 μg·mL−1) for 24 hours before cell harvest. For extraction of nucleic acids, the cells 

(50mL; >106 per mL) were harvested by centrifugation (3000 g, 5 min). The resulting cell 
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pellet was rinsed with 0.22μm-filtered artificial seawater (Instant Ocean salt mixture, 33.3 

g.L-1; 1 mL), transferred to an 1.5mL-tube, and collected by further centrifugation (3000 g, 

5 min). The supernatant (seawater) was removed, and the tube was immediately snap-

frozen with liquid nitrogen and stored at –80ºC until DNA/RNA extraction. 

5.1.5.2. Extraction of genomic DNA and total RNA 

Genomic DNA was extracted following the 2xCTAB protocol with modifications. The cells 

were suspended in a lysis extraction buffer (400 μL; 100 mM Tris-Cl pH 8, 20 mM EDTA 

pH 8, 1.4 M NaCl), before silica beads were added. In a freeze-thaw cycle, the mixture 

was vortexed at high speed (2 min), and immediately snap-frozen in liquid nitrogen; the 

cycle was repeated 5 times. The final volume of the mixture was made up to 2% w/v CTAB 

(from 10% w/v CTAB stock; kept at 37 °C). The mixture was treated with RNAse A 

(Invitrogen; final concentration 20 μg/mL) at 37°C (30 min), and Proteinase K (final 

concentration 120 μg/mL) at 65°C (2 h). The lysate was then subjected to standard 

extractions using equal volumes of phenol:chloroform:isoamyl alcohol (25:24:1 v/v; 

centrifugation at 14,000 g, 5 min, RT), and chloroform:isoamyl alcohol (24:1 v/w; 

centrifugation at 14,000 g, 5 min, RT). DNA was precipitated using pre-chilled isopropanol 

(gentle inversions of the tube, centrifugation at 18,000 g, 15 min, 4 °C). The resulting pellet 

was washed with pre-chilled ethanol (70% v/v), before stored in Tris-HCl (100 mM, pH 8) 

buffer. Total RNA was extracted using RNeasy Plant Mini Kit (Qiagen) following the 

manufacturer’s protocol. The concentration of DNA or RNA was determined with 

NanoDrop (Thermo Scientific), and a sample with A230:260:280 ≈ 1.0:2.0:1.0 was 

considered appropriate for sequencing. 

5.1.5.3. Generation of genome data 

For generation of short-read sequence data, samples of genomic DNA were sent for 

sequencing using the Illumina technology, using the HiSeq2500 (Australian Genome 

Research Facility, Melbourne), and HiSeq4000 (Translational Research Institute and the 

Australian Genome Research Facility, Brisbane) platforms (Appendix C Supplementary 

Table S16). For each isolate, two paired-end TruSeq libraries (inserts of ~250bp and 

600bp for HiSeq2500; ~350bp and ~600bp for HiSeq4000), and three mate-pair Nextera 

libraries (inserts of ~2, 5 and 10Kb) were generated for sequencing (in 2x150 bases). In 

total, we generated 399.3 Gbp of Illumina short-read sequencing data for CCMP1383, and 
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746.7 Gbp for CCMP2088 (Appendix C Supplementary Table S16). All sequencing data 

are available upon request. 

For generation of long-read data, samples of genomic DNA were sent for SMRT 

sequencing using the PacBio Sequel platform available at the Queensland University of 

Technology Central Analytical Research Facility, and at the Ramaciotti Centre of 

Genomics (University of New South Wales, Sydney). In total, 15 SMRT cells were 

sequenced for CCMP1383 producing 9.3 million subreads (74.6 Gbp), and 7 SMRT cells 

for CCMP2088 generating 4 million subreads (35.9 Gbp); see Supplementary Table S2 

(Appendix C) for detail. 

5.1.5.4. Generation of transcriptome data (RNA-Seq) 

For generation of RNA-Seq data, total RNA samples were sent for sequencing at the 

Australian Genome Research Facility (Brisbane) using the Illumina HiSeq4000 platform. 

Illumina paired-end (2x150 bp reads) RNA-Seq data was generated for both CCMP1383 

(55.4 Gbp) and CCMP2088 (61.7 Gbp); see Supplementary Table S17 (Appendix C) for 

details. 

5.1.5.5. Generation of full-length transcript data (PacBio IsoSeq) 

Using the extracted total RNA samples (above), a full-length cDNA library was constructed 

for each of CCMP1383 and CCMP2088 using the TeloPrime Full-Length cDNA 

Amplification Kit (Lexogen, Vienna) following the kit manual. Two cDNA synthesis 

reactions were carried out in parallel for each sample, with 2 μg of total RNA used as 

starting material in each reaction. Double-stranded cDNA resulting from the two reactions 

was combined before performing PCR amplification using the TeloPrime PCR Add-on Kit 

(Lexogen, Vienna). For each sample, 16 parallel PCRs were carried out using 22 

amplification cycles and 2 μL of double-stranded cDNA per reaction as template; the PCR 

products were pooled together and then split into two fractions, which were purified using 

1x and 0.5x AMPure PB beads (Pacific Biosciences, California), respectively, and pooled 

at equal molarity. For sample CCMP1383, a total of 2.52 μg of purified full-length cDNA 

was obtained and was used for PacBio SMRTbell library preparation with the SMRTbell 

Template Prep Kit 1.0 (Pacific Biosciences, California); the library was sequenced on 4 

SMRT cells v2 LR using 20-hour movies on a Sequel platform at the Institute for Molecular 

Bioscience Sequencing Facility (University of Queensland, Brisbane). For CCMP2088, 
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1.95 ng of cDNA were obtained and submitted to The Ramaciotti Centre for Genomics 

(University of New South Wales, Sydney) for SMRTbell library preparation and sequencing 

on a PacBio Sequel System, also using 4 SMRT Cells v2 LR and 20-hour movies. 

In addition to the cDNA libraries described above, a spliced-leader-specific transcript 

library was generated for CCMP1383. Four parallel PCR reactions were performed with 

the TeloPrime PCR Add-on Kit (Lexogen, Vienna) using 12 amplification cycles, conserved 

spliced leader fragment (5′-CCGTAGCCATTTTGGCTCAAG-3′) as forward primer, 

TeloPrime PCR 3′ primer as reverse primer, and 2 μL of double-stranded cDNA 

synthesised using the TeloPrime Full-Length cDNA Amplification Kit (Lexogen, Vienna) as 

template. The PCR products were pooled and purified (same method as above), resulting 

in 987 ng of cDNA. SMRTbell library construction was carried out using the PacBio 

SMRTbell Template Prep Kit 1.0, followed by sequencing on 2 SMRT cells v2 LR using 

20-hour movies on the Sequel at the Institute for Molecular Bioscience Sequencing Facility 

(University of Queensland, Brisbane). Data yield from each SMRT cell is detailed in 

Supplementary Table S18 (Appendix C). 

5.1.5.6. Processing of sequencing data 

Adaptor sequences were removed and low quality bases trimmed from paired-end reads 

using Trimmomatic v0.35 (LEADING:10 TRAILING:10 SLIDINGWINDOW:4:30 

MINLEN:50)141, overlapping read pairs (250 bp insert size) were merged using FLASH 

v1.2.11 (max-overlap 85)357. Mate-pair reads were processed using the NextClip v1.3 

pipeline142 using the preliminary CLC assembly as a reference. Only the category A, B and 

C mate-pair reads were retained from the NextClip analysis. Further trimming of the mate-

pair reads to remove low quality regions and adapters was performed using Trimmomatic 

v0.35 (LEADING:10 TRAILING:10 SLIDINGWINDOW:4:20 MINLEN:25). 

Trimmed paired-end reads were mapped using bowtie2358 against the initial CLC assembly 

and the mean insert size and standard deviation were computed using Picard tools v2.6.0 

“CollectInsertSizeMetrics”. Mate-pair sequences were aligned only against scaffolds from 

the initial assembly with a length >15 Kbp using bbmap (rcs=f pairedonly=t ambig=toss). 

The different approach taken for the mate-pair reads was to discard ambiguously mapped 

reads (i.e. reads that map equally well to multiple locations), as they have a more 

pronounced effect on inset size estimation with mate-pair data. The maximum insert size 
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set during the alignment stage of both mate-pair and paired-end libraries was double the 

maximum expected insert size. 

Illumina RNA-Seq data was trimmed for adapters and low-quality regions using 

Trimmomatic v0.35 (LEADING:10 TRAILING:10 SLIDINGWINDOW:4:30 MINLEN:50). 

PacBio IsoSeq data from each SMRT cell was polished (--polish) using the circular 

consensus sequencing tool (ccs v3.1.0 

https://github.com/PacificBiosciences/unanimity/blob/develop/doc/PBCCS.md); only 

polished reads with a quality >0.99 were retained. Primers were removed from the 

polished reads using lima v1.8.0 (https://github.com/pacificbiosciences/barcoding) in 

IsoSeq mode. Only reads with the correct 5-prime/3-prime primer configuration were 

retained. The PacBio IsoSeq tool v3.1.0 was used to remove concatemers (using the 

refine option) from the primer trimmed reads 

(https://github.com/PacificBiosciences/IsoSeq3/blob/master/README_v3.1.md). 

5.1.5.7. Genome-size estimation using k-mers  

The k-mers frequency distribution in the trimmed paired-end reads (including merged) was 

used to estimate genome size and to assess ploidy. Genome size estimation was 

conducted following the approach described in Liu et al.289. The enumeration of k-mers 

was performed using Jellyfish359 at k = 17, 19, 21, 23, 25, 27, 29 and 31. For diploid 

genomes, a bimodal k-mer-count distribution is expected, genome size estimated from the 

first peak represents the diploid state, and that estimated from the second peak represents 

the haploid state. The standard theoretical model of a diploid genome in GenomeScope154 

was used (k-mer size 21) to verify the diploidy observed in the sequence data (Appendix C 

Supplementary Figure S1). 

5.1.5.8. De novo genome assemblies 

Initial de novo assemblies for CCMP1383 and CCMP2088 were generated independently 

using CLC Genomics Workbench (v7.5) (default parameters), incorporating all trimmed 

paired-end reads (using merged reads where applicable). The initial CLC assemblies was 

further processed using the Redundans package (retrieved 10 March 2019)163 using the 

trimmed paired-end and mate-pair reads. 

https://github.com/PacificBiosciences/unanimity/blob/develop/doc/PBCCS.md
https://github.com/pacificbiosciences/barcoding
https://github.com/PacificBiosciences/IsoSeq3/blob/master/README_v3.1.md
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Final genome assemblies for each isolate were generated with MaSuRCA v3.2.8169 using 

untrimmed paired-end reads, trimmed mate-pair reads, and PacBio reads (>5 Kbp). For 

each isolate, the parameters of estimated assembly size in MaSuRCA was set based on 

the average estimated haploid genome size (in Appendix C Supplementary Table S3), 

ploidy was set to two. Scaffolds <1 Kbp were discarded from the final assembly. 

Trimmed and merged paired-end reads were mapped using bowtie2358 against the 

MaSuRCA diploid assembly and the purge_haplotigs330 program (v1.0.2; ‘purge_haplotigs 

contigcov -l 5 -m 63 -h 120’ for CCMP1383 and ‘purge_haplotigs contigcov -l 40 -m 102 -h 

170’ for CCMP2088) was run in an attempt to reconstruct a haploid assembly for each 

isolate. Unfortunately, purge_haplotigs was unable to fully reduce the CCMP1383 and 

CCMP2088 assemblies into haploid representations. As no reliable haploid assembly 

could be generated the diploid assemblies generated by MaSuRCA were used for 

downstream analysis.  

5.1.5.9. Identification and removal of archaeal, bacterial and viral 

sequences 

Identification and removal of contaminant sequences in the genome assemblies was 

assessed using similar method to Aranda et al.27. Genome scaffolds were compared using 

BLASTN against a database of archaeal, bacterial and viral genome sequences retrieved 

from RefSeq (release 88). Scaffolds were retained, and considered non-contaminant, if 

≤10% of their length was covered by BLAST hits with a bit score >1000 and E ≤ 10-20. 

5.1.5.10. Identification and removal of organellar sequences 

The coding sequences from the plastid genome of Cladocopium sp. C3 (formerly 

Symbiodinium subtype C3) were used to identify putative plastid sequences from the 

assembly123. A scaffold was considered putative plastidic if it shared significant sequence 

similarity (BLASTN) to one of the above sequences, covering >75% the sequence length 

at E ≤  10−10. 

The complete CDS of cox1, cox3 and cob from Breviolum minutum (LC002801.1 and 

LC002802.1) were retrieved (as no complete sequences yet exist for Polarella glacialis) 

and used to identify putative mitochondrial scaffolds. A scaffold was considered putative 
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mitochondrial if it shared significant similarity (BLASTN, max_target_seqs 10000) to one of 

the above sequences, covering >75% of the sequence length at E ≤  10−10. 

5.1.5.11. Customised gene prediction workflow tailored for dinoflagellate 

genomes 

An ab initio gene prediction approach similar to Liu et al.289 was applied to the genomes of 

P. glacialis. For each genome assembly, a de novo repeat library was first derived using 

RepeatModeler v1.0.11 (http://www.repeatmasker.org/RepeatModeler/). All repeats 

(including known repeats in RepeatMasker database release 20170127) were masked 

using RepeatMasker v4.0.7 (http://www.repeatmasker.org/). 

We used transcriptome data generated in this study to guide gene prediction of assembled 

genomes. For RNA-Seq data, we assembled the reads using Trinity186 independently in 

“de novo” mode (v2.6.6) and “genome-guided” mode (v2.8.4). The combined Trinity 

assemblies were trimmed using SeqClean (https://sourceforge.net/projects/seqclean/). 

The RNA-Seq and polished PacBio IsoSeq transcripts were combined into gene 

assemblies using PASA v2.3.3191 that was customised (available at 

http://smic.reefgenomics.org/download/) to recognise an additional donor splice site (GA). 

TransDecoder v5.2.0191 was used to predict open reading frames on the PASA assembled 

transcripts. Complete proteins (CDS with both start and stop codons) predicted by 

TransDecoder that had valid genome coordinates and more than one exon were retained 

for further analysis. 

These proteins were searched (BLASTP, E ≤ 10−20) against a customised protein database 

that consists of RefSeq proteins release 88 and other predicted Symbiodiniaceae and 

Polarella proteins (Appendix C Supplementary Table S19). Only nearly full-length proteins 

were included in the subsequent analysis; we defined nearly full-length proteins as 

sequences with a BLAST hit that covered >80% of both the query and subject sequences. 

The nearly full-length gene models were checked for TEs using HHblits v2.0.16260 (-p 80 -

e 1E-5 -E 1E-5) searching against the JAMg transposon database 

(https://sourceforge.net/projects/jamg/files/databases/), as well as with Transposon-PSI 

(http://transposonpsi.sourceforge.net/). Gene models containing TEs were removed from 

the gene set, and redundancy reduction was conducted using CD-HIT v4.6.8261 (ID = 75%; 

-c 0.75 -n 5). The remaining gene models were processed using the 

http://www.repeatmasker.org/
https://sourceforge.net/projects/seqclean/
http://smic.reefgenomics.org/download/)
https://sourceforge.net/projects/jamg/files/databases/
http://transposonpsi.sourceforge.net/
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Prepare_golden_genes_for_predictors.pl (http://jamg.sourceforge.net/) script from the 

JAMg pipeline (altered to recognise GA donor splice sites). This script produces a set of 

“golden genes”, which were used as a training set for the gene-prediction tools 

AUGUSTUS v3.3.1262 and SNAP version 2006-07-28195. We used a customised code of 

AUGUSTUS (available at http://smic.reefgenomics.org/download/) so it recognises GA 

donor splice sites, and trained it to predict both coding sequences and untranslated 

regions; SNAP was trained for both GT and GC donor splice sites. Soft-masked genomes 

were passed to GeneMark-ES196 for training and gene prediction. 

UniProt-SwissProt (retrieved 27/06/2018) proteins and other predicted Symbiodiniaceae 

and Polarella proteins (Appendix C Supplementary Table S19) were combined to produce 

a set of gene models using MAKER v2.31.8 (altered to recognise GA donor splice sites)263 

in protein2genome mode; the custom repeat library was used by RepeatMasker as part of 

MAKER prediction. Two sets of predicted protein coding genes, one derived using the 

RNA-Seq data and one using the IsoSeq data, were constructed using PASA (--

ALT_SPLICE -N 2) and TransDecoder (ORF prediction guided by Pfam database release 

31). Gene models constructed using the IsoSeq data were assumed to be full-length and 

an extra step was taken to correct predicted proteins produced by TransDecoder that were 

five-prime partial. If a protein had an in-frame start codon within either the first 30 position 

or the first 30% of the sequence, that position was then considered as the start of that 

sequence. Sequence not satisfying these criteria were left unchanged. A primary set of 

predicted genes was produced using EvidenceModeler v1.1.1201, which had been altered 

to recognise GA donor splice sites. This tool combined the gene models from PASA RNA-

Seq, PASA IsoSeq (with corrected start positions where applicable), AUGUSTUS, MAKER 

protein2genome and GeneMark-ES, into a single set of evidence-based predictions. 

EvidenceModeler was allowed to predict genes within introns of other genes if the intron 

was >10,000 bp (--search_long_introns 10000). 

Unlike Liu et al.289, we did not incorporate gene predictions from the SNAP program into 

the EvidenceModeler stage of the prediction workflow. This was done because SNAP 

produced an excessive number of overlapping genes that were on encoded on opposite 

strands. As genes encoded in this manner were not found to be supported in the 

transcriptome, we decided to exclude the results of this program from our predictions. We 

did not provide the location of putative repetitive elements to EvidenceModeler either, as 

multi-copy genes are often classified as repeats by RepeatModeler and would have been 

http://jamg.sourceforge.net/
http://smic.reefgenomics.org/download/
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excluded from our final gene set. The weightings used for integration of gene models with 

EvidenceModeler were: PASA IsoSeq (with corrected start sites) 15, PASA RNA-Seq 10, 

Maker protein2genome 4, AUGUSTUS 1 and GeneMark-ES 1. EvidenceModeler gene 

models were considered high-confidence if they had been constructed using evidence 

from either PASA inputs or from ≥2 other prediction methods. 

The transcriptome support shown in Supplementary Table S11 (Appendix C) was 

calculated for each P. glacialis isolate by searching the high-confidence EvidenceModeler 

genes against a database of all RNA-Seq and IsoSeq transcripts (from the same isolate) 

using BLASTN. Genes were considered to have transcriptome support if they had a hit 

with >90% identity that covered >50% of the gene. 

5.1.5.12. Functional annotation of predicted genes 

Protein domains were searched using pfam_scan.pl (v1.6; Pfam database release 31) at 

E-value < 0.001 following earlier studies28,220,343. Where required, proteins were queried 

using BLASTP against SwissProt and TrEMBL databases (UniProt release 2018_02) 

independently. Only the top 20 hits from each search were retained if E ≤ 10-5.  

Pfam domains in P. glacialis was assessed for enrichment against a background set using 

Fisher’s exact test, with correction for multiple testing using the Benjamini and Hochberg 

method324. GO enrichment was conducted using the topGO R (v2.34.0)325 package, 

applying the Fisher’s Exact test with the ‘elimination’ methods to correct for the hierarchical 

structure of GO terms. The background used consisted of the available Symbiodiniaceae 

genomes: Symbiodinium microadriaticum27, Breviolum minutum26, Cladocopium 

goreaui289, Fugacium kawagutii289, Symbiodinium tridacnidorum28 and Cladocopium sp. 

C9228. 

5.1.5.13. Analysis of completeness of assembled genomes and predicted 

proteins 

Completeness of the predicted genes in P. glacialis was assessed using BUSCO v3.1.0 (--

mode proteins)178 with the alveolate_stramenophiles_ensembl, Eukaryota_odb9 and 

protists_ensembl datasets (retrieved 22 September 2017), BLASTP searches (E ≤ 10-5) 

using the same three BUSCO datasets and BLASTP searches (E ≤ 10-5) using the protein 
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orthologs from the Core Eukaryotic Genes dataset290 (Appendix C Supplementary Table 

S4). 

Completeness of the assembled genomes of P. glacialis was assessed using BUSCO 

v3.1.0 (--mode proteins)178 and TBLASTN searches (E ≤ 10-5) using the same three 

BUSCO datasets and TBLASTN searches (E ≤ 10-5) using the protein orthologs from the 

Core Eukaryotic Genes dataset290 (Appendix C Supplementary Table S4). The modified 

version of Augustus used for gene prediction was used for the BUSCO analysis as well. 

5.1.5.14. Identification of P. glacialis sequences in the TARA database 

The Ocean Microbial Reference Gene Catalog was retrieved from 

ftp://ftp.sra.ebi.ac.uk/vol1/ERA412/ERA412970/tab/OM-RGC_seq.release.tsv.gz. Genes 

classified as being from “Dinophyceae” or that were from the kingdom “undef” were 

extracted and searched against the genome of both P. glacialis isolates using BLASTN. 

Genes were retained if they had a hit to the genome that covered >75% of their length and 

with >95% identity. The retained hits were searched against the nr database from NCBI 

using the online BLASTN tool (20/05/2019). 

5.1.5.15. Comparison of predicted proteins and genome-sequence 

similarity between P. glacialis isolates 

Comparison between the protein sequences of CCMP1383 and CCMP2088 was 

conducted using BLASTP (E ≤ 10-5; Figure 5.3). For each isolate, protein sequences that 

do not share similarity to those of the counterpart isolate were identified. For these 

proteins, the corresponding coding gene sequences were searched (BLASTN) against the 

transcripts of the counterpart isolate; we consider a shared sequence similarity of >90% 

identity covering >50% of the query as significant.  

Sequence similarity between the genomes of the P. glacialis isolates was assessed using 

non-repeat regions of the genome. Repeat features predicted using RepeatModeler and 

RepeatMasker were excluded from the analysis; regions between repeats that were ≤10 

bp of each other were also removed. From the remaining non-repetitive regions, only 

those ≥100bp and with ≤10 ambiguous (“N”) bases were used as query in a BLASTN (-

dust no, E ≤ 10-10) search against the genome of the other isolate. The top hit of each 

sequence was retained for further analysis. 

ftp://ftp.sra.ebi.ac.uk/vol1/ERA412/ERA412970/tab/OM-RGC_seq.release.tsv.gz
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5.1.5.16. Inference of homologous protein sets among Suessiales 

Putatively homologous protein sets were constructed using OrthoFinder v2.3.3 (inflation 

1.5)360 with sequence similarity computed with DIAMOND v0.9.24361. We defined dark 

homologous protein sets using the same criteria as in Stephens et al.343 but excluding hits 

from any sequences with functions described as “Uncharacterized”. 

5.1.5.17. Functional classification of rhodopsin 

Predicted proteins of P. glacialis with top hits described as “Rhodopsin” in UniProt were 

retrieved. The specific type for each identified P. glacialis rhodopsin was identified using a 

BLASTP (E ≤ 10-5) search against the known proton-pump (ABV22426, ADY17811) and 

sensory type (ADY17810, KF651052, KF651053, KF651054, KF651055) sequences from 

Oxyrrhis marina. The top hit for each query sequence was used to assign type. 

5.1.5.18. Phylogenetic inference of DUF3494 domains  

A comprehensive set of DUF3494 domain-encoding proteins was collected from the 

transcriptomes of Heterocapsa arctica CCMP445, Peridinium aciculiferum PAER_2, 

Scrippsiella hangoei like-SHHI_4 and Scrippsiella hangoei SHTV5 (retrieved from 

Microbial Eukaryote Transcriptome Sequencing Project (MMETSP)82) for comparison 

against those predicted in both P. glacialis isolates. Predicted DUF3494-encoding proteins 

from the bacteria associated with P. glacialis were found with pfam_scan.pl (see above). 

DUF3494 domain regions were extracted from the proteins if they covered >50% the 

length of the Pfam DUF3494 domain HMM. DUF3494 domains from the Pfam_Full dataset 

(retrieved 14 April 2019) were retrieved. Identical sequences within each dataset were 

removed using cd-hit (-c 1.00 -n 5)261. All DUF3494 domains and domain regions were 

aligned using MAFFT v7.407 (--localpair --maxiterate 1000)315, from which a Maximum 

Likelihood tree was constructed using IQ-TREE v1.6.10 (-m MFP -msub nuclear -bb 2000 

-nm 2000)271,317,353. Support of nodes in the inferred tree was determined using 2000 

ultrafast bootstraps353. 

5.1.5.19. Analysis of simple repeats and multi-copy genes 

The de novo repeat families identified by RepeatModeler during gene prediction were 

scrutinised for the presence of multi-copy genes. Unclassified repeat consensi (type 

unknown) were compared using BLASTN (E ≤ 10-5) against the final gene models. Queries 
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(repeat consensi) with >80% of their sequence, or the sequence of the subject (predicted 

genes), being covered in the BLAST hit were retained. This strategy (considering cover of 

both query and subject) is designed to capture cases where either the whole repeat is 

contained within a gene (repetitive exon) or a whole gene in contained within a larger 

repeat. 

To specifically assess the presence of simple repeats in the assembled genomes, 

RepeatMasker was re-run on each genome using the default library (RepeatMasker 

database release 20170127) searching for just simple repeats (-noint). Repeats of type 

(TTG)n, (TGT)n, (GTT)n, (AAC)n, (ACA)n, and (CAA)n are all derived from the same 

pattern and thus are considered interchangeable for the purposes of this study. 

Overlapping repeats of these types were merged and their total length was reported as the 

coverage of the TTG repeat. 3-mers were extracted from the cleaned genome assembly 

using kmercountexact.sh from the bbmaps tool suite (Appendix C Supplementary Table 

S5). The quality trimmed and merged genome reads were sampled at 5% before 3-mers 

were extracted (reformat.sh samplerate=0.05, 3-mers extracted using kmercountexact.sh). 

This was done to prevent 3-mer counts from exceeding the maximum value a 32 bit 

integer can store. 

5.1.5.20. Analysis of spliced leader sequences  

Polished PacBio IsoSeq sequences that contained the dinoflagellate spliced leader 

sequence (CCGTAGCCATTTTGGCTCAAG) were identified using BLASTN (-

max_target_seqs 1000000 -task blastn-short -evalue 1000). Only sequences with hits that 

start ≤5 bp from their 5-end, ended ≥20 bp along the DinoSL sequence, had zero gap 

openings and a maximum of one mismatch were considered to contain the spliced leader 

sequence. Relic DinoSL sequences were identified by BLASTN (-max_target_seqs 

1000000 -task blastn), using the full DinoSL and a relic sequence joined together as the 

query115. Multiple relic DinoSL were identified using the full DinoSL and multiple relic 

DinoSL sequences joined together. Sequences were considered to contain a relic DinoSL 

if they had a hit that started within the first 11 bases of the relic DinoSL query sequence 

(allows for truncation of the transcript), within the first 5 bases of the transcript, and 

finished within 5 bases of the end of the relic DinoSL. 
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5.1.7. Data availability 

The assembled genomes, predicted gene models and proteins from both P. glacialis 

isolates are available at: https://cloudstor.aarnet.edu.au/plus/s/Nx08JEMt7FjK3zY.  

5.2. Concluding remarks 

Genomes of P. glacialis provide unparalleled insights into the genomic features and 

genome evolution of free-living dinoflagellates. The incorporation of long-read sequencing 

data resolved some of the extensive repetitive elements in the genomes including genes 

occurring in tandem repeats. The use of full-length transcriptome data in combination with 

the customised gene-prediction workflow I earlier developed is critical for generating high-

quality gene models for comparative genomics. Perhaps more importantly, our comparison 

of the genomes between the two P. glacialis isolates revealed intra-species structural 

divergence that potentially contribute to its specialisation in distinct ecological niches. 

These results highlight the distinct genome signature in dinoflagellates that is relevant to 

their success as one of the most ubiquitous types of phytoplankton in marine and 

freshwater environments.  

 

https://cloudstor.aarnet.edu.au/plus/s/Nx08JEMt7FjK3zY
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Chapter 6  
 

Conclusions and future perspectives 

6.1. Conclusions 

Although most dinoflagellates are free-living, the available genome data have been 

predominantly from the symbiotic and parasitic species. The limited taxon sampling, in 

combination with the different gene-prediction strategies deployed, has led to the 

prediction of very different gene sets in the available de novo genome assemblies. A 

significant proportion of these predicted genes were not supported by transcriptome 

evidence, and thus may represent false positives. Moreover, these genome assemblies, 

generated largely using short-read sequencing data, remain highly fragmented, with their 

repetitive regions poorly resolved. These data, together with the lack of genome data from 

free-living taxa, limit our capacity to understand genome evolution of these ecologically 

important organisms particularly in regard of their diversification and specialisation into 

distinct niches, and of the molecular mechanisms that underlie these processes.  

In this thesis, I have addressed these problems by (a) developing an integrated, 

customised gene-prediction workflow tailored for the idiosyncratic genome features of 

dinoflagellates; (b) systematically assessing conserved and enriched gene functions in 

distinct ecological niches using available transcriptome data of dinoflagellates; and (c) 

generating de novo genome assemblies for two isolates of the free-living, psychrophilic 

Polarella glacialis incorporating both short- and long-read sequence data. I systemically 

assessed the distinct features of these genomes, including intra-species divergence of P. 

glacialis. Here, I summarise my overall thesis work based on the objectives set out in 

Chapter 1 (Section 1.4), and revisit my working hypotheses (Section 1.3). 

In Chapter 3, I report a novel, customised gene-prediction workflow, tailored for 

dinoflagellate genomes, integrating both ab initio and similarity-based methods. This 

workflow incorporates evidence from gene-expression data e.g. full-length transcriptomes 
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to guide gene prediction, yielding gene models that are biologically realistic. The 

consistent application of this workflow across different assembled dinoflagellate genomes 

will minimise methodological biases and variability, and result in comparable sets of 

predicted genes for downstream comparative analyses. This workflow was successfully 

deployed on the genomes of multiple symbiotic and free-living dinoflagellate species 

(Chapters 3 and 5), achieving Aim 2 of this thesis (Section 1.4).  

In the second component of my thesis research, I used publicly available transcriptome 

data from 47 diverse dinoflagellate taxa to identify features common in (and unique to) the 

distinct lineages, and gene functions that are enriched in cold-adapted, toxin-producing 

and symbiotic species. The results from this study further enhance our understanding of 

gene functions in dinoflagellates that are related to adaptation in distinct ecological niches. 

I identified that gene functions related to photosynthesis and ice-binding are enriched in 

psychrophilic taxa. Ice-binding proteins, which prevent the formation of ice crystals in the 

external environment from damaging the cell, are ubiquitous in these psychrophiles, 

including P. glacialis. My results also demonstrate the prevalence of dark genes (i.e. 

genes of unknown function) in dinoflagellates, and that these genes are conserved 

between closely related species; as such, these genes are lineage-specific innovations, 

and potentially related to niche-specialisation and diversification of dinoflagellates. This 

component specifically addressed Aim 4 (Section 1.4). 

The third component of my thesis research (Chapter 5) represents the core of my thesis 

work. I present the generation and systematic analysis of two de novo genome assemblies 

of the free-living, psychrophilic dinoflagellate species, P. glacialis, isolated from the Arctic 

and Antarctica. These assemblies were constructed using both short- and long-read data. I 

further refined the integrated, customised gene-prediction workflow to predict high-quality 

gene models using full-length transcriptome data. I systematically assessed genome 

features and gene functions in P. glacialis that are specific to dinoflagellates, and are 

related to adaptation of this species to extreme cold environment. I also assessed the 

genome divergence between the two isolates. In these ways, this component addresses 

all five Aims of this thesis (Section 1.4). The repeat content of the two genomes is 

extensive, with a large faction of these being de novo predicted repeats. The genomes of 

the two isolates differ in size, with the increased genome size of the Antarctic isolate 

potentially linked to expansion of repeats, including duplication of genes. Chlorophyll-

binding, rhodopsin and ice-binding genes are enriched in the P. glacialis genomes, and 



 

134 

are commonly encoded unidirectionally in tandem-repeated, single-exonic structures. This 

configuration may serve as a mechanism for enhancing the efficiency of gene expression 

through transcription of adjacent genes as polycistronic transcripts prior to their conversion 

into monocistronic transcripts via trans-splicing of splice-leader sequences. This distinctive 

feature is likely essential for the adaptation of P. glacialis to the extreme cold environment; 

more broadly in dinoflagellates, this genome feature is potentially relevant to their adaption 

to diverse niches. The results from this study confirm the abundance of ice-binding genes 

in both isolates of P. glacialis, lending support to my earlier results in Chapter 4. The type 

of ice-binding genes in P. glacialis are found in all domains of life, and those in eukaryotes 

are known to have arisen via lateral genetic transfer from bacterial sources. Based on a 

comprehensive phylogenetic analysis, my results provide support for the bacterial origin of 

these genes in eukaryotes, strong evidence for a common ancestral origin of these genes 

in cold-adapted dinoflagellates, and a distinct evolutionary history of these genes in P. 

glacialis. 

 

Here I revisit the three hypotheses that were put forward in Section 1.3. 

1. Genomes of Polarella glacialis possess structural features that are specific to free-

living dinoflagellates. My results provide strong evidence that supports this hypothesis. 

The genome features of P. glacialis include high repeat content. Almost half of the genes 

are encoded unidirectionally, and a quarter in single exons, many in tandem repeats. 

These have been previously described as potential features in the genomes of free-living 

dinoflagellates, and are largely absent from the available genome data from symbiotic 

dinoflagellate species. 

2. Genomes of Polarella glacialis possess functional characteristics that are relevant 

to their adaptation to psychrophilic conditions. I found strong evidence to support this 

hypothesis. Genes encoded in the P. glacialis genomes are enriched for functions related 

to cold adaptation, including cold-shock, ice-binding and photosynthesis-related proteins. 

Genes encoding the well-characterized ice-binding domain are enriched in psychrophilic 

dinoflagellates, and have been demonstrated to be encoded in single-exonic tandem 

repeats in the P. glacialis genomes. 

3. The genome of the Arctic Polarella glacialis is divergent from that of the Antarctic 

isolate. My results from Chapter 5 strongly support this hypothesis. While the genome 
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sequences of the two isolates share high sequence similarity (>99% identity), their 

genomes differ in sizes (~230 Mbp difference), likely caused by uneven repeat expansion 

including duplication of genes. In addition, distinct RNA editing and alternative transcript 

isoforms between the two isolates contribute to differences in similarity of the predicted 

genes. 

Overall, this thesis research represents the first comprehensive analysis of de novo 

genomes of any free-living and of any psychrophilic dinoflagellates. The analysis makes 

use of advanced genome-scale bioinformatic methods for large de novo genomes, and 

leverages existing genome-scale data from other dinoflagellates. The generated data and 

the developed analytic workflows from this thesis work provide a foundational resource for 

genome research in dinoflagellates, and more broadly for comparative genomics involving 

other microbial eukaryotes. The knowledge generated from this work sheds lights into how 

these organisms evolved to become one of the most successful microbial eukaryotes in 

the marine and freshwater environments. 

6.2. Future directions and perspectives 

Genome-scale data of dinoflagellates generated from this thesis work include both short- 

and long-read sequencing data in an attempt to achieve more-contiguous genome 

assemblies than those generated using only short-read data. While this approach has 

been proven to be helpful in resolving some of the repetitive regions, the assembled 

genomes of P. glacialis remain fragmented in tens of thousands of scaffolds. To fully 

understand the evolution of dinoflagellate genomes, other technologies e.g. optical 

mapping and Hi-C can be used to achieve genome assemblies at chromosomal resolution. 

These technologies work by modelling the structure of the DNA, either through direct 

observation of immobilised DNA fragments or by linking spatially proximal regions of DNA 

before short-read sequencing (respectively). These approaches can be applied to improve 

the assembly of diploid genomes, with Hi-C (in conjunction with long-read data) capable of 

producing assemblies with correctly phased haplotypes.  

Future studies on the characterization of free-living dinoflagellates, especially those from 

important ecological niches, will require the generation of more genome data from different 

species. Given the rapid advancement of genomic and high-throughput sequencing 

technologies, large genomes of many free-living dinoflagellates are becoming more-

feasible targets for sequencing. This will allow the broader exploration of genome-scale 
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features that have made it possible for dinoflagellates to diversify and become some of the 

most ubiquitous phytoplankton in aquatic environments. For instance, features of toxin 

production will provide a better understanding of their role in niche specialisation. This will 

enable modelling of ecosystem dynamics under different scenarios, e.g. climate change or 

nitrogen pollution. 

The data generated as part of this work are now available for use as a platform for 

comparative analysis, including with genome data from Symbiodiniaceae. This will allow 

for the systematic assessment of genome features involved in the transition to a symbiotic 

life style. Further, one can imagine generating long-read data for symbiotic species, 

allowing for analysis of repeat content and tandem repeated genes. These features, which 

have been attributed to the genome evolution of free-living dinoflagellates, likely have also 

played a role in evolutionary history of symbiotic dinoflagellates.  

The next step in the exploration of cold adaptation in dinoflagellates is the further 

verification of the features putatively identified in this work as being related to cold 

adaptation. The DUF3494 domain in dinoflagellates, while well characterized as ice-

binding in other species, requires experimental validation to confirm its function. Cellular 

localization of DUF3494-containing proteins can be undertaken to identify if they are 

transported within or from the cell to modulate the external environment. The function of 

rhodopsin in P. glacialis, as either a proton-pump or a sensor, requires further verification. 

If rhodopsin in P. glacialis acts as a proton-pump then its involvement in the photosynthetic 

pathway can be explored, whereas if it is a sensor then its involvement in the swimming 

behaviour of P. glacialis can be explored. 

While briefly touched on in this work, the function of alternative splicing in dinoflagellates 

has not been systematically explored. Questions such as: what are the functions of genes 

that are alternatively spliced? What are the functional differences between their isoforms? 

How are splicing patterns affected by environmental stimuli? How do the splicing patterns 

differ between dinoflagellate species? The role of non-coding sequences in dinoflagellates 

remains to be systematically explored. What classes of non-coding RNAs do 

dinoflagellates encode? How does these RNAs affect adaptation and gene regulation? 

Answering these questions are crucial to understanding gene regulation and adaptation in 

dinoflagellates. 
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The dark genes identified in this work can be further validated through experimental 

analysis. Expression and characterization of these proteins, while slow, time-consuming 

and labour-intensive, would almost certainly yield new insights into diversification and nice 

adaptation in dinoflagellates. Analysis of conserved motifs in these dark proteins can also 

be used to identify dinoflagellate-specific domains. 

Last but not least, the gene prediction workflow developed in this work can be further 

enhanced to incorporate new gene prediction algorithms as they are developed, and new 

types of expression data. The incorporation of other “-omic” data (e.g. proteomic data) can 

be used to further validate coding and non-coding genes. Metabolomic data can be 

generated to measure the dynamics of the organism under different conditions (e.g. 

increased temperate, pollution). An integrated omics approach, which can include protein-

protein interaction networks and information about condition specific methylation and RNA 

editing, offers a system-level understanding of dinoflagellate adaptation. The generation of 

hologenomes (the set of genomes from all organisms that co-habitat an ecological niche) 

will further our understanding of the ecosystem dynamics associated with dinoflagellates.  

An integrated, systems biology approach for the study of dinoflagellates is key to 

understand their evolution and adaptation in the environment. This thesis research 

presents an important first step towards that direction. 
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Appendix A 

Supplementary Material for Chapter 3 

 

Symbiodinium genomes reveal adaptive evolution of functions related to coral-

dinoflagellate symbiosis 

 

Supplementary Data 

Supplementary data is available from doi: 10.1038/s42003-018-0098-3 
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Supplementary Figures 

 

Supplementary Figure 1: (A) Mapping of sequence reads from S. goreaui and S. kawagutii 

to five assembled Symbiodinium genomes: S. goreaui and S. kawagutii from this study, S. 

kawagutii (Lin et al. 2015), S. minutum (Shoguchi et al. 2013), and S. microadriaticum 

(Aranda et al. 2016). (B) Mapping of S. kawagutii sequence reads from this study (left) and 

from Lin et al. (2015; right) onto the assembled genome from Lin et al. (2015; above), and 

the preliminary genome assembly from this study (bottom). Mapping at various thresholds 

of mapping quality (MAPQ) are shown. 
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Supplementary Figure 2: Mapping of ten S. kawagutii fosmid sequences from Lin et al. 

(2015) onto the assembled genome from Lin et al. (2015) and the preliminary SPAdes 

genome assembly from this study, based on observed (A) number of mismatches and (B) 

number of gaps in the aligned regions. 
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Supplementary Figure 3: Interspersed repeat landscape for each genome of (A) S. 

microadriaticum, (B) S. minutum, (C) S. goreaui and (D) S. kawagutii, shown for only 

known repetitive elements on the left, and for all repetitive elements (including unknown 

repeats) on the right. 
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Supplementary Figure 4: Codon usage profiles based on predicted gene models in S. 

goreaui (this study), S. kawagutii (this study), S. kawagutii (Lin et al., 2015), S. 

microadriaticum and S. minutum. 



 

172 

 

Supplementary Figure 5: Amino acid profiles based on predicted gene models in S. 

goreaui (this study), S. kawagutii (this study), S. kawagutii (Lin et al., 2015), S. 

microadriaticum and S. minutum. 
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Supplementary Figure 6: Non-canonical splice sites in the genomes of S. goreaui (A) and 

S. kawagutii (B), shown for the donor (left) and the acceptor (right). 

  



 

174 

 

Supplementary Figure 7: Recovery of (A) CEGMA and (B) BUSCO genes in Symbiodinium 

using the default programs, and the recovery of CEGMA genes based on (C) a suite of 

BLAST analyses using the predicted proteins of Symbiodinium and their genome 

scaffolds. (D) The overlapping CEGMA genes in each genome based on TBLASTX 

analysis. (E) Number and percentage of homologous protein sets shared among the four 

Symbiodinium genomes. 
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Supplementary Figure 8: Schematic workflow for analysis of positive selection in this 

study, with number of items at the six designated stages (A, B, C, D, E and F) shown for 

the analyses using the 15-taxon set. 

 



 

176 

 

Supplementary Figure 9: Number of “contaminated” genome scaffolds that contain regions 

with hits to bacterial or viral genomes, shown at different threshold of percentage 

sequence cover in the scaffolds for (A) S. goreaui and (B) S. kawagutii. The implicated 

gene models in the corresponding scaffolds in S. goreaui and S. kawagutii are shown in 

(C) and (D) respectively. 
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Supplementary Figure 10: Analysis of gene gain and gene loss in distinct Symbiodinium 

lineages based on clustering of gene families using inflation parameter I at (A) 1.0, (B) 1.5 

and (C) 2.0.  
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Supplementary Tables 

Supplementary Table 1: New genome sequencing data generated in this study. 

Symbiodinium goreaui SCF055-01 (clade C) 

Library 
Insert size 
(bases)  

Number of 
raw 150-base 
reads  

Total bases of 
raw reads 

Number of 
filtered 
reads 

Total bases of 
filtered reads 

Paired-end-230-
read1 

230  114,097,328   17,114,599,200   112,131,983  16,673,830,321  

Paired-end-230-
read2 

230  114,097,328   17,114,599,200   111,484,222  16,460,439,867  

Paired-end-500-
read1 

500  143,659,886   21,548,982,900   143,659,886  21,025,889,473  

Paired-end-500-
read2 

500  143,659,886   21,548,982,900   143,659,886  19,917,972,952  

Mate-pair-3k-
read1 

3000  51,818,233   7,772,734,950   19,716,458  2,338,880,924  

Mate-pair-3k-
read2 

3000  51,818,233   7,772,734,950   19,267,699  2,273,478,043  

Mate-pair-6k-
read1 

6000  46,780,528   7,017,079,200   18,079,228  2,139,909,539  

Mate-pair-6k-
read2 

6000  46,780,528   7,017,079,200   17,651,099  2,079,770,820  

Mate-pair-9k-
read1 

9000  30,718,808   4,607,821,200   10,903,776  1,303,946,153  

Mate-pair-9k-
read2 

9000  30,718,808   4,607,821,200   10,655,510  1,269,966,863  

Single-end (after 
filtering) 

n/a  n/a   n/a   78,528,939  5,183,436,887  

TOTAL   774,149,566   116,122,434,900   685,738,686  90,667,521,842  

Symbiodinium kawagutii CS-156 (=CCMP2468; clade F) 

Paired-end-230-
read1 

230  175,549,642   26,332,446,300   171,450,581  25,504,756,026  

Paired-end-230-
read2 

230  175,549,642   26,332,446,300   171,450,581  25,153,088,954  

Mate-pair-4k-
read1 

4000  51,491,804   7,723,770,600   19,529,439  2,335,641,250  

Mate-pair-4k-
read2 

4000  51,491,804   7,723,770,600   19,529,439  2,326,433,751  

Mate-pair-6k-
read1 

6000  52,197,110   7,829,566,500   19,803,840  2,368,759,747  

Mate-pair-6k-
read2 

6000  52,197,110   7,829,566,500   19,803,840  2,357,239,118  

Mate-pair-9k-
read1 

9000  28,050,295   4,207,544,250   10,846,597  1,288,094,198  

Mate-pair-9k-
read2 

9000  28,050,295   4,207,544,250   10,846,597  1,282,668,909  

Single-end (after 
filtering) 

n/a  n/a   n/a   178,881,831  2,347,886,305  

TOTAL   614,577,702   92,186,655,300   622,142,745  64,964,568,258 
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Supplementary Table 2: Statistics of genome assembly. 

 
Symbiodinium goreaui  
SCF055-01 (clade C, type C1) 

Symbiodinium kawagutii  
CS-156 (=CCMP2468, clade F) 

%G+C  44.83   45.72  

Total number of scaffolds  41,289   16,959  

Total assembled bases (bp)  1,027,792,016   1,048,482,934  

N50 length of scaffolds (bp)  98,034   268,823  

Maximum scaffold length (bp)  8,337,000   5,159,000  

Total number of contigs  267,890   109,980  

N50 length of contigs (bp)  6,576   35,743  

Maximum contig length (bp)  3,449,000   956,496  

Number of scaffolds > 50 Kb  6,160   4,204  

% genome in scaffolds > 50 Kb  72.87   88.91  

% gap  13.22   15.24  

Estimated genome size (bp)  1,189,354,686   1,072,636,679 
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Supplementary Table 3: Estimation of genome size for S. goreaui and S. kawagutii based 

on k-mer coverage. 

Estimate of genome size (bp) 

k 
Symbiodinium goreaui  
SCF055-01 (clade C, type C1) 

Symbiodinium kawagutii  
CS-156 (=CCMP2468, clade F) 

17  1,155,783,960   1,060,560,949  

19  1,176,285,240   1,075,387,053  

21  1,194,377,556   1,057,483,567  

23  1,210,721,782   1,069,035,022  

25  1,192,813,515   1,080,674,525  

27  1,206,146,062   1,092,678,958  

Mean  1,189,354,686   1,072,636,679 
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Supplementary Table 4: Putative plastid genome fragments in S. goreaui and the encoded 

genes. Evidence of circularisation and number of core regions identified are shown. 

Sequence Encoded gene 
Sequence length 
(bp) 

Circular 
Number of 
core regions 
identified 

SC1_Plastid_1 
psbC/23S rRNA/ 
psaA/atpB 

10,928 No 4 

SC1_Plastid_2 psbB/psbA 4,954 No 2 

SC1_Plastid_3 16S rRNA/petB 4,255 No 3 

SC1_Plastid_4 psaB 2,253 No 1 

SC1_Plastid_5 atpA 2,048 No 1 

SC1_Plastid_6 psbD 1,781 No 1 

SC1_Plastid_7 petD 1,476 No 1 

SC1_Plastid_8 psbE 1,006 No 1 

SC1_Plastid_9 psbI 2,349 No 1 

SC1_Plastid_10 none ("empty") 2,394 No 1 
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Supplementary Table 5: Putative plastid genome fragments in S. kawagutii and the 

encoded genes. Evidence of circularisation and number of core regions identified are 

shown. 

Sequence Encoded gene 
Sequence length 
(bp) 

Circular 
Number of 
core regions 
identified 

SF_Plastid_1 psaB 11,097 No 1 

SF_Plastid_2 psbA/atpB 6,627 No 3 

SF_Plastid_3 psaA 7,802 Yes 2 

SF_Plastid_4 psbC 4,497 No 2 

SF_Plastid_5 atpA 4,489 Yes 0 

SF_Plastid_6 23S rRNA 3,059 No 0 

SF_Plastid_7 psbB 2,237 No 1 

SF_Plastid_8 psbD 1,500 No 0 

SF_Plastid_9 petD 1,290 No 0 

SF_Plastid_10 petB 1,132 No 0 

SF_Plastid_11 16S rRNA 1,070 No 0 

SF_Plastid_12 16S rRNA 1,696 Yes 1 

SF_Plastid_13 psbI 1,581 No 0 

SF_Plastid_14 none ("Empty") 1,517 Yes 2 

SF_Plastid_15 none ("Empty") 1,293 No 1 
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Supplementary Table 6: Length and GC content of the coding and non-coding regions 

identified in the plastid genome sequences in Symbiodinium. 

 S. goreaui (clade C) S. kawagutii (clade F) 
Symbiodinium clade C3 
(Barbrook et al. 2014) 

Total Length (bp) 33,444 50,887 27,303 
Total GC% 41.35% 38.88% 41.84% 

Coding regions 

Total length (bp) 15,393 23,753 15,828 
G+C (%) 36.80 35.46 36.03 

Non-coding regions 

Total length (bp) 18,051 27,134 11,475 
G+C (%) 45.64 42.56 48.22 
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Supplementary Table 7: Core conserved regions identified in plastid genomes of S. 

goreaui and S. kawagutii. 

Species Core conserved region  
Length 
(bp) 

S. goreaui TAATGGGCTGGGTGCCCTACCCAGCCCATATGGGCCCAC
GCTTCGCGGGGCCCATAACGGCCCTTCGGGCCTTCAAAA
A 

79 

S. kawagutii  GTGATTCCCAAGGACCGGAAGCCGGACCTTGGGAATCAG
CG 

41 
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Supplementary Table 8: Statistics of predicted gene models in Symbiodinium genomes. 

 S. microadriaticum S. minutum S. kawagutii S. goreaui S. kawagutii 

Symbiodinium clade A B F C F 

Reference 
Aranda et al. 
2016 

Shoguchi et al. 
2013 

Lin et al. 2015 This study This study 

Assembly 

Total assembled bases (bp) 808,242,489 609,476,485 935,067,369 1,027,792,016 1,048,482,934 
G+C content (%) 50.51 43.46 43.97 44.83 45.72 

Genes      

Number of genes 49,109 47,014 36,850 35,913 26,609 
Mean length of genes 
(CDS+introns) (bp) 

12,898 *11,961 3,788 6,967 6,507 

Mean length of transcripts 
(CDS) (bp) 

*2,377 *2,068 1,041 1,766 1,736 

Gene models supported by 
transcriptome (%) 

76.30 77.20 72.82 67.02 64.40 

Gene Content (total gene 
length/ total assembled 
bases x 100) (%) 

*78.37 *68.12 14.93 24.36 16.51 

G+C content of CDS (%) *57.67 *50.80 *52.69 56.70 54.95 

Exons 

Number of exons per gene 21.8 *19.6 4.1 10 8.7 
Average length (bp) 109.5 *100.8 256 175.9 199.5 
Total length (Mb) 117.3 *83.0 38.4 63.4 46.2 

Introns 

Number of genes with 
introns (%) 

98.2 *94.7 64.1 92.9 94 

Average length (bp) 504.7 *500.4 893 575.1 619.4 
Total length (Mb) 516.1 *332.2 101.2 186.8 126.9 

Intergenic regions      

Average length (bp) 3,633 *1,993 17,888 10,627 23,042 

*: values calculated in this study 
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Supplementary Table 9: Percentage of donor splice sites in Symbiodinium genomes. 

Symbiodinium 
genome 

Percentage of 5′-donor splice sites G following 
AG acceptor 
sites 

References  
and/or 
remarks 

GA 
(non-canonical) 

GC 
(canonical) 

GT 
(non-canonical) 

S. microadriaticum 
(clade A) 

21.9 52.1 26.0 96.2 Aranda et al. 
2016 

S. minutum 
(clade B) 

15.3 35.9 47.0 93.7 Shoguchi et al. 
2013; numbers 
from Aranda et 
al. 2016 

S. kawagutii 
(clade F) 

2.3 23.2 65.6 86.4 Lin et al. 2015; 
numbers from 
Aranda et al. 
2016. No 
splice sites 
were specified 
in gene 
prediction in 
Lin et al. 2015. 

S. goreaui 
(clade C) 

20.6 43.0 36.3 95.5 This study 

S. kawagutii 
(clade F) 

19.4 36.3 44.3 94.4 This study 
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Supplementary Table 10: Syntenic collinear blocks between each possible pair of four 

Symbiodinium genomes. Each genome is identified by the clade: S. microadriaticum (A), 

S. minutum (B), S. goreaui (C) and S. kawagutii (F). 

Number 
of genes 
in a block 

Number of identified collinear blocks in 
each genome-pair 

Number of genes implicated in collinear 
blocks in each genome-pair 

A-B A-C A-F B-C B-F C-F A-B A-C A-F B-C B-F C-F 

5 1 2 0 4 1 2 5 10 0 20 5 10 
6 152 42 52 58 65 99 912 252 312 348 390 594 
7 77 24 30 47 36 220 539 168 210 329 252 1540 

8 51 11 18 22 26 154 408 88 144 176 208 1232 
9 32 4 8 9 17 110 288 36 72 81 153 990 
10 23 1 3 7 13 73 230 10 30 70 130 730 
11 11 0 2 2 9 64 121 0 22 22 99 704 
12 7 2 4 3 2 33 84 24 48 36 24 396 
13 7 0 2 1 0 25 91 0 26 13 0 325 
14 2 0 1 0 1 30 28 0 14 0 14 420 
15 4 0 1 2 1 17 60 0 15 30 15 255 
16 1 0 0 0 1 8 16 0 0 0 16 128 
17 2 0 0 0 1 11 34 0 0 0 17 187 
18 0 0 0 0 0 5 0 0 0 0 0 90 
19 0 0 0 0 0 6 0 0 0 0 0 114 
20 0 0 0 0 0 4 0 0 0 0 0 80 
21 0 0 0 0 0 3 0 0 0 0 0 63 
22 0 0 0 0 0 3 0 0 0 0 0 66 
23 0 0 0 0 0 1 0 0 0 0 0 23 
24 0 0 0 0 0 2 0 0 0 0 0 48 
25 0 0 0 0 0 2 0 0 0 0 0 50 
26 0 0 0 0 0 2 0 0 0 0 0 52 
27 0 0 0 0 0 4 0 0 0 0 0 108 
28 0 0 0 0 0 2 0 0 0 0 0 56 
29 0 0 0 0 0 0 0 0 0 0 0 0 
30 0 0 0 0 0 2 0 0 0 0 0 60 
31 0 0 0 0 0 1 0 0 0 0 0 31 
32 0 0 0 0 0 1 0 0 0 0 0 32 
33 0 0 0 0 0 1 0 0 0 0 0 33 
34 0 0 0 0 0 0 0 0 0 0 0 0 
35 0 0 0 0 0 0 0 0 0 0 0 0 
36 0 0 0 0 0 1 0 0 0 0 0 36 
37 0 0 0 0 0 0 0 0 0 0 0 0 
38 0 0 0 0 0 0 0 0 0 0 0 0 
39 0 0 0 0 0 1 0 0 0 0 0 39 
40 0 0 0 0 0 0 0 0 0 0 0 0 
53 0 0 0 0 0 1 0 0 0 0 0 53 
76 0 0 0 0 0 1 0 0 0 0 0 76 

TOTAL 370 86 121 155 173 889 2816 588 893 1125 1323 8621 
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Supplementary Table 11: Statistics of annotated gene models in S. goreaui and S. 

kawagutii. 

 S. goreaui S. kawagutii 

 number % number % 

Total number of gene models 35,913 100.00 26,609 100.00 
Number of gene models with UniProt hits 31,646 88.12 21,947 82.48 
Number of gene models with Swiss-Prot top 
hits 

17,420 48.51 9,966 37.45 

Number of gene models with TrEMBL top hits 14,226 39.61 11,981 45.03 
Number of gene models with GO terms 
associated with 
Swiss-Prot or TrEMBL hits 

29,198 81.30 20,153 75.74 

Number of gene models with association with 
KEGG orthologs 

11,604 32.31 6,162 23.16 

Number of gene models with annotated Pfam 
domains 

19,718 54.90 11,628 43.70 
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Supplementary Table 12: List of top ten most abundant protein domains in Symbiodinium. 

Pfam ID Domain Count 

Symbiodinium goreaui (Clade C) 

PF00069 Protein kinase domain 494 
PF00005 ABC transporter 441 
PF07727 Reverse transcriptase (RNA-dependent DNA polymerase) 344 
PF00520 Ion transport protein 314 
PF12796 Ankyrin repeats (3 copies) 292 
PF00072 Response regulator receiver domain 226 
PF02518 Histidine kinase-, DNA gyrase B-, and HSP90-like ATPase 220 
PF00884 Sulfatase 218 
PF07690 Major Facilitator Superfamily 198 
PF00145 C-5 cytosine-specific DNA methylase 176 

Symbiodinium kawagutii (Clade F) 

PF07727 Reverse transcriptase (RNA-dependent DNA polymerase) 538 
PF00145 C-5 cytosine-specific DNA methylase 445 
PF00069 Protein kinase domain 374 
PF12796 Ankyrin repeats (3 copies) 302 
PF00078 Reverse transcriptase (RNA-dependent DNA polymerase) 260 
PF00520 Ion transport protein 246 

PF00665 Integrase core domain 177 

PF00005 ABC transporter 149 
PF00075 RNase H 124 
PF00226 DnaJ domain 122 

Symbiodinium microadriaticum (Clade A) 

PF07727 Reverse transcriptase (RNA-dependent DNA polymerase) 1347 
PF12796 Ankyrin repeats (3 copies) 994 
PF00078 Reverse transcriptase (RNA-dependent DNA polymerase) 797 
PF00069 Protein kinase domain 745 
PF00520 Ion transport protein 640 
PF00665 Integrase core domain 368 
PF13499 EF-hand domain pair 304 
PF00226 DnaJ domain 239 
PF13637 Ankyrin repeats (many copies) 230 
PF13812 Pentatricopeptide repeat domain 217 

Symbiodinium minutum (Clade B) 

PF07727 Reverse transcriptase (RNA-dependent DNA polymerase) 772 
PF00069 Protein kinase domain 756 
PF12796 Ankyrin repeats (3 copies) 679 
PF00520 Ion transport protein 668 
PF13499 EF-hand domain pair 386 
PF00226 DnaJ domain 285 
PF13041 PPR repeat family 216 
PF13812 Pentatricopeptide repeat domain 215 
PF00076 RNA recognition motif. (a.k.a. RRM; RBD; or RNP domain) 211 
PF00665 Integrase core domain 211 
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Supplementary Table 13: Reference proteins from 31 eukaryote species used in the Pfam 

domain enrichment analysis. 

Phylum/Group Subgroup Species Data source 

Alveolata Apicomplexa Plasmodium 
falciparum 

ftp://ftp.ensemblgenomes.org/pub/protists/release-
32/fasta/plasmodium_falciparum/pep/Plasmodium_falciparum.ASM276v1.pep.all
.fa.gz 

Alveolata Apicomplexa Toxoplasma 
gondii 

ftp://ftp.ensemblgenomes.org/pub/protists/release-
32/fasta/toxoplasma_gondii/pep/Toxoplasma_gondii.ToxoDB-7.1.pep.all.fa.gz 

Alveolata Ciliate Paramecium 
biaurelia 

http://paramecium.cgm.cnrs-gif.fr/download/species/pbiaurelia/biaurelia_V1-
4_annotation_v1.protein.fa 

Alveolata Ciliate Paramecium 
caudatum 

http://paramecium.cgm.cnrs-
gif.fr/download/species/pcaudatum/caudatum_43c3d_annotation_v1.protein.fa 

Alveolata Ciliate Paramecium 
sexaurelia 

http://paramecium.cgm.cnrs-
gif.fr/download/species/psexaurelia/sexaurelia_AZ8-4_annotation_v1.protein.fa 

Alveolata Ciliate Paramecium 
tetraurelia 

ftp://ftp.ensemblgenomes.org/pub/protists/release-
32/fasta/paramecium_tetraurelia/pep/Paramecium_tetraurelia.GCA_000165425.
1.pep.all.fa.gz 

Alveolata Dinoflagellate* Alexandrium 
tamarense 
CCMP1771; 
MMETSP0382 

http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/ 

Alveolata Dinoflagellate* Amphidinium 
carterae 
CCMP1314; 
MMETSP0398/M
METSP0399/ 
MMETSP0258/M
METSP0259 

http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/ 

Alveolata Dinoflagellate* Gambierdiscus 
australes 
CAWD149; 
MMETSP0766 

http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/ 

Alveolata Dinoflagellate* Heterocapsa 
triquetra 
CCMP448; 
MMETSP0448 

http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/ 

Alveolata Dinoflagellate* Karenia brevis 
CCMP2229; 
MMETSP0029 

http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/ 

Alveolata Dinoflagellate* Karlodinium 
micrum 
CCMP2283; 
MMETSP1015 

http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/ 

Alveolata Dinoflagellate* Lingulodinium 
polyedra 
CCMP1738; 
MMETSP1033 

http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/ 

Alveolata Dinoflagellate* Polarella glacialis 
CCMP1383; 
MMETSP0227; 
CCMP2088; 
MMETSP1440 

http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/ 

Alveolata Dinoflagellate* Prorocentrum 
minimum 
CCMP1329; 
MMETSP0053 

http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/ 

Alveolata Dinoflagellate* Scrippsiella 
hangoei SHTV5; 
MMETSP0359/M
METSP0360 

http://datacommons.cyverse.org/browse/iplant/home/shared/imicrobe/projects/ 

Alveolata Dinoflagellate* Symbiodinium 
goreaui 

This study 

Alveolata Dinoflagellate* Symbiodinium 
kawagutii 

This study 

Alveolata Dinoflagellate* Symbiodinium 
microadriaticum 

http://smic.reefgenomics.org/download/Smic.genome.annotation.pep.longest.fa.
gz 

Alveolata Dinoflagellate* Symbiodinium 
minutum 

http://marinegenomics.oist.jp/symb/download/symbB.v1.2.augustus.prot.fa.gz 
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Alveolata Perkinsea* Perkinsus 
marinus 

http://mirrors.vbi.vt.edu/mirrors/ftp.ncbi.nih.gov/genomes/refseq/protozoa/Perkin
sus_marinus/representative/GCF_000006405.1_JCVI_PMG_1.0/GCF_0000064
05.1_JCVI_PMG_1.0_protein.faa.gz 

Stramenopiles  Diatom Phaeodactylum 
tricornutum 

ftp://ftp.ensemblgenomes.org/pub/protists/release-
32/fasta/phaeodactylum_tricornutum/pep/Phaeodactylum_tricornutum.ASM1509
5v2.pep.all.fa.gz 

Stramenopiles  Diatom Thalassiosira 
pseudonana 

ftp://ftp.ensemblgenomes.org/pub/protists/release-
32/fasta/thalassiosira_pseudonana/pep/Thalassiosira_pseudonana.ASM14940v
2.pep.all.fa.gz 

Archaeplastida Angiosperm Arabidopsis 
thaliana  

ftp://ftp.arabidopsis.org/home/tair/Proteins/TAIR10_protein_lists/TAIR10_pep_20
101214 

Archaeplastida Green algae Chlamydomonas 
reinhardtii 

ftp://ftp.ensemblgenomes.org/pub/plants/release-
32/fasta/chlamydomonas_reinhardtii/pep/Chlamydomonas_reinhardtii.v3.1.pep.a
ll.fa.gz 

Archaeplastida Green algae Micromonas 
commoda 
RCC299 

http://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?organism=Phyt
ozome 

Archaeplastida Green algae Micromonas 
pusilla 
CCMP1545 

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/151/265/GCF_000151265.2_Micr
omonas_pusilla_CCMP1545_v2.0/GCF_000151265.2_Micromonas_pusilla_CC
MP1545_v2.0_protein.faa.gz 

Archaeplastida Red algae Chondrus 
crispus 

ftp://ftp.ensemblgenomes.org/pub/plants/release-
32/fasta/plants_rhodophyta1_collection/chondrus_crispus/pep/Chondrus_crispus
.ASM35022v2.pep.all.fa.gz 

Archaeplastida Red algae Cyanidioschyzon 
merolae 

ftp://ftp.ensemblgenomes.org/pub/plants/release-
32/fasta/cyanidioschyzon_merolae/pep/Cyanidioschyzon_merolae.ASM9120v1.
pep.all.fa.gz 

Archaeplastida Red algae Galdieria 
sulphuraria 

ftp://ftp.ensemblgenomes.org/pub/plants/release-
32/fasta/plants_rhodophyta1_collection/galdieria_sulphuraria/pep/Galdieria_sulp
huraria.ASM34128v1.pep.all.fa.gz 

Archaeplastida Red algae Porphyridium 
purpureum 

http://cyanophora.rutgers.edu/porphyridium/Porphyridium_genemodels_UPDAT
ED.fasta 

*: The 14 dinoflagellates and 1 Perkinsea species constitute the 15-taxon set. 
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Supplementary Table 14: Homologous protein sets used in this study. 

 31-taxon set 15-taxon set 

Number of proteins 1,136,347 880,969 

Number of homologous sets* 56,530 44,282 

Number of singletons 310,288 266,335 

Number of homologous proteins in a set 826,059 614,634 

Percentage of proteins in homologous sets 72.20 69.80 

Number of orthogroups containing only proteins from 
Symbiodinium^ 

2,776 3,180 

Number of Symbiodinium singletons^ 21,812 24,508 

Mean size of homologous protein sets 14.60 13.90 
 

*: a set here is referred to as an "orthogroup" in OrthoFinder (Emms and Kelly, 2015); each "orthogroup" 
consists of homologous proteins including orthologs and paralogs. 

 

^: all proteins in these two sets are considered Symbiodinium-specific. 
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Supplementary Table 15: Symbiodinium genes with putative functions relevant to 

mycosporine-like amino acid biosynthesis. 

Query 
group 

Query - 
source  
of organism 

Query - 
putative 
function 

Gene 
name 

UniProt 
Identifer 

Query 
protein 
description 

Query 
len. 

S. microadriaticum 
(clade A) 

S. minutum  
(clade B) 

S. goreaui 
(clade C) 

S. kawagutii 
(clade F) 

Hit E-value 
Aln 
len
. 

Hit 
E-
value 

Aln len. Hit E-value 
Aln 
len. 

Hit E-value 
Aln 
len. 

Actinoba
cteria 

Actinosynne
ma mirum 
DSM 43827 

ATP-
grasp 

ACU3
8111.1 

C6WIM1
_ACTMD 

D-alanine--
D-alanine 
ligase 

339 Smic31
738 

7.00E-
75 

33
5 

NA NA NA SymbC1.
scaffold2
594.3 

8.00E-
25 

185 SymbF.
scaffold
249.18 

3.00E-
10 

198 

Actinoba
cteria 

Actinosynne
ma mirum 
DSM 43827 

ATP-
grasp 

ACU3
8112.1 

C6WIM2
_ACTMD 

Uncharacte
rized 
protein 

429 Smic19
143 

6.00E-
35 

35
1 

NA NA NA NA NA NA NA NA NA 

Actinoba
cteria 

Pseudonocar
dia sp. P1 

ATP-
grasp 

WP_0
10243
315.1 

WP_010
243315.1 
(NCBI) 

D-alanine--
D-alanine 
ligase 

346 Smic31
738 

3.00E-
67 

33
2 

NA NA NA SymbC1.
scaffold2
594.3 

2.00E-
24 

183 SymbF.
scaffold
37.151 

3.00E-
09 

129 

Actinoba
cteria 

Pseudonocar
dia sp. P1 

ATP-
grasp 

WP_0
10243
317.1 

WP_010
243317.1 
(NCBI) 

ATP-grasp 
domain-
containing 
protein 

411 Smic19
143 

1.00E-
33 

30
8 

NA NA NA NA NA NA NA NA NA 

Cnidaria Nematostella 
vectensis 

ATP-
grasp 

EDO4
1319 

A7S4P1
_NEMVE 

ATP-grasp 
domain-
containing 
protein 

594 Smic19
143 

3.00E-
19 

30
7 

NA NA NA NA NA NA NA NA NA 

Cyanoba
cteria 

Anabaena 
variabilis 
ATCC 29413 

ATP-
grasp 

ava:Av
a_385
6 

Q3M6C5
_ANAVT 

ATP-grasp 
enzyme-
like protein 

458 Smic19
143 

3.00E-
43 

35
0 

NA NA NA NA NA NA NA NA NA 

Cyanoba
cteria 

Aphanothece 
halophytica 

ATP-
grasp 

saltStr
ess:B
AO51
916.1 

W8VR81
_APHHA 

D-alanine--
D-alanine 
ligase 

339 Smic31
738 

2.00E-
59 

35
0 

NA NA NA SymbC1.
scaffold2
594.3 

4.00E-
27 

159 SymbF.
scaffold
249.18 

2.00E-
10 

203 

Cyanoba
cteria 

Aphanothece 
halophytica 

ATP-
grasp 

saltStr
ess:B
AO51
915.1 

W8VTF0
_APHHA 

C-N ligase 444 Smic19
143 

1.00E-
43 

33
2 

NA NA NA NA NA NA NA NA NA 

Cyanoba
cteria 

Nostoc 
punctiforme 
ATCC 29133 

ATP-
grasp 

npu:N
pun_F
5597 

B2J6X6_
NOSP7 

D-alanine--
D-alanine 
ligase  

348 Smic31
738 

3.00E-
78 

33
5 

NA NA NA SymbC1.
scaffold2
594.3 

5.00E-
29 

185 SymbF.
scaffold
249.18 

6.00E-
11 

203 

Cyanoba
cteria 

Nostoc 
punctiforme 
ATCC 29133 

ATP-
grasp 

npu:N
pun_R
5598 

B2J6X7_
NOSP7 

Uncharacte
rized 
protein 

461 Smic19
143 

1.00E-
39 

36
9 

NA NA NA NA NA NA NA NA NA 

Cyanoba
cteria 

Scytonema 
cf crispum 
UCFS10 

ATP-
grasp 

ANY5
8985.1 

A0A1B2
CWF7_9
CYAN 

ATP-grasp 
domain-
containing 
protein 

463 Smic19
143 

5.00E-
40 

39
2 

NA NA NA NA NA NA NA NA NA 

Cyanoba
cteria 

Scytonema 
cf crispum 
UCFS10 

ATP-
grasp 

ANY5
8992.1 

A0A1B2
CWG9_9
CYAN 

ATP-grasp 
domain-
containing 
protein 

463 Smic19
143 

5.00E-
40 

39
2 

NA NA NA NA NA NA NA NA NA 

Cyanoba
cteria 

Scytonema 
cf crispum 
UCFS15 

ATP-
grasp 

ACLA
_0558
30 

A1C9L1_
ASPCL 

Uncharacte
rized 
protein 

496 Smic19
143 

2.00E-
25 

39
1 

NA NA NA NA NA NA NA NA NA 

Actinoba
cteria 

Actinosynne
ma mirum 
DSM 43827 

DHQS ACU3
8114.1 

C6WIM4
_ACTMD 

3-
dehydroqui
nate 
synthase 

406 Smic43
919 

4.00E-
64 

36
6 

symb
B.v1.
2.028
953.t
1 

3.00E
-28 

244 SymbC1.
scaffold2.
2020 

6.00E-
46 

346 SymbF.
scaffold
11.23 

5.00E-
28 

343 

Actinoba
cteria 

Pseudonocar
dia sp. P1 

DHQS WP_0
10243
321.1 

WP_010
243321.1 
(NCBI) 

3-
dehydroqui
nate 
synthase 

409 Smic43
919 

5.00E-
69 

36
9 

symb
B.v1.
2.028
953.t
1 

3.00E
-29 

244 SymbC1.
scaffold2
1.53 

8.00E-
41 

341 SymbF.
scaffold
11.23 

3.00E-
33 

335 

Actinoba
cteria 

Streptomyce
s 
hygroscopicu
s subsp. 
jinggangensi
s 5008 

DHQS 4P53:
A|PDB
ID|CH
AIN|S
EQUE
NCE 

VALA_S
TRHJ 

2-epi-5-epi-
valiolone 
synthase 

420 Smic43
919 

7.00E-
58 

35
6 

symb
B.v1.
2.028
953.t
1 

6.00E
-34 

274 SymbC1.
scaffold2.
2020 

8.00E-
64 

380 SymbF.
scaffold
11.23 

3.00E-
31 

355 

Cnidaria Nematostella 
vectensis 

DHQS EDO4
0476 

A7S759_
NEMVE 

DHQ 
synthase 

352 Smic43
919 

1.00E-
172 

35
1 

symb
B.v1.
2.028
953.t
1 

4.00E
-24 

253 SymbC1.
scaffold2.
2020 

3.00E-
26 

345 SymbF.
scaffold
11.23 

4.00E-
21 

333 

Cyanoba
cteria 

Anabaena 
variabilis 
ATCC 29413 

DHQS ava:Av
a_385
8 

DDGS_A
NAVT 

Demethyl-
4-
deoxygadu
sol 
synthase 

410 Smic43
919 

6.00E-
76 

37
2 

symb
B.v1.
2.028
953.t
1 

7.00E
-27 

242 SymbC1.
scaffold2.
2020 

8.00E-
42 

349 SymbF.
scaffold
11.23 

3.00E-
23 

324 

Cyanoba
cteria 

Aphanothece 
halophytica 

DHQS saltStr
ess:B
AO51
913.1 

W8VKF5
_APHHA 

Demethyl 
4-
deoxygadu
sol 
synthase 

587 Smic35
309 

4.00E-
173 

56
9 

symb
B.v1.
2.028
953.t
1 

3.00E
-21 

248 SymbC1.
scaffold8
151.2 

2.00E-
36 

283 SymbF.
scaffold
11.23 

4.00E-
15 

334 
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Query 
group 

Query - 
source  
of organism 

Query - 
putative 
function 

Gene 
name 

UniProt 
Identifer 

Query 
protein 
description 

Query 
len. 

S. microadriaticum 
(clade A) 

S. minutum  
(clade B) 

S. goreaui 
(clade C) 

S. kawagutii 
(clade F) 

Hit E-value 
Aln 
len
. 

Hit 
E-
value 

Aln len. Hit E-value 
Aln 
len. 

Hit E-value 
Aln 
len. 

Cyanoba
cteria 

Nostoc 
punctiforme 
ATCC 29133 

DHQS npu:N
pun_R
5600 

DDGS_N
OSP7 

Demethyl-
4-
deoxygadu
sol 
synthase 

410 Smic21
16 

2.00E-
71 

37
0 

symb
B.v1.
2.028
953.t
1 

8.00E
-25 

242 SymbC1.
scaffold2.
2020 

4.00E-
48 

332 SymbF.
scaffold
11.23 

1.00E-
26 

322 

Cyanoba
cteria 

Scytonema 
cf crispum 
UCFS10 

DHQS ANY5
8986.1 

A0A1B2
CWG1_9
CYAN 

3-
dehydroqui
nate 
synthase 

409 Smic43
919 

1.00E-
72 

38
2 

symb
B.v1.
2.028
953.t
1 

2.00E
-26 

246 SymbC1.
scaffold2.
2020 

2.00E-
50 

335 SymbF.
scaffold
11.23 

2.00E-
31 

340 

Cyanoba
cteria 

Scytonema 
cf crispum 
UCFS15 

DHQS ANY5
8993.1 

A0A1B2
CWG5_9
CYAN 

3-
dehydroqui
nate 
synthase 

409 Smic43
919 

1.00E-
72 

38
2 

symb
B.v1.
2.028
953.t
1 

2.00E
-26 

246 SymbC1.
scaffold2.
2020 

2.00E-
50 

335 SymbF.
scaffold
11.23 

2.00E-
31 

340 

Fungi Aspergillus 
clavatus 
NRRL 1 

DHQS ACLA
_0558
50 

A1C9L3_
ASPCL 

3-
dehydroqui
nate 
synthase, 
putative 

459 Smic21
16 

3.00E-
72 

37
1 

symb
B.v1.
2.028
953.t
1 

7.00E
-28 

265 SymbC1.
scaffold2.
2020 

2.00E-
34 

351 SymbF.
scaffold
11.23 

3.00E-
25 

328 

Fungi Aspergillus 
nidulans 
FGSC A4 

DHQS tr|Q5A
Z77|Q
5AZ77
_EME
NI 

Q5AZ77
_EMENI 

3-
dehydroqui
nate 
synthase 

483 Smic43
919 

1.00E-
69 

36
8 

symb
B.v1.
2.028
953.t
1 

6.00E
-25 

265 SymbC1.
scaffold2.
2020 

3.00E-
34 

351 SymbF.
scaffold
11.23 

2.00E-
24 

327 

Metazoa Danio rerio DHQS tr|E7E
XW6|E
7EXW
6_DA
NRE 

E7EXW6
_DANRE 

2-epi-5-epi-
valiolone 
synthase 

470 Smic21
16 

1.00E-
49 

41
3 

symb
B.v1.
2.028
953.t
1 

6.00E
-27 

259 SymbC1.
scaffold2.
2020 

2.00E-
48 

368 SymbF.
scaffold
11.23 

9.00E-
24 

339 

Metazoa Danio rerio DHQS tr|Q5B
LE6|Q
5BLE6
_DAN
RE 

Q5BLE6
_DANRE 

Zgc:113054 551 Smic21
16 

3.00E-
45 

26
8 

symb
B.v1.
2.020
911.t
1 

3.00E
-29 

264 SymbC1.
scaffold2.
1851 

4.00E-
38 

248 SymbF.
scaffold
11.10 

7.00E-
36 

243 

Dinoflag
ellata 

Heterocapsa 
triquetra 

DHQS/O
-MT 

ABF61
766 

Q15BR2
_HETTR 

Chloroplast 
3-
dehydroqui
nate 
synthase/O
-
methyltrans
ferase 
fusion 

951 Smic21
16 

0.00 94
3 

symb
B.v1.
2.028
953.t
1 

2.00E
-19 

255 SymbC1.
scaffold8
151.2 

2.00E-
90 

269 SymbF.
scaffold
313.28 

8.00E-
11 

140 

Cyanoba
cteria 

Anabaena 
variabilis 
ATCC 29413 

NRPS ava:Av
a_385
5 

Q3M6C6
_ANAVT 

Amino acid 
adenylation 

888 Smic36
90 

2.00E-
101 

61
6 

symb
B.v1.
2.012
436.t
1 

8.00E
-78 

474 SymbC1.
scaffold7
0.75 

0.00 720 SymbF.
scaffold
1354.11 

4.00E-
68 

481 

Cyanoba
cteria 

Scytonema 
cf crispum 
UCFS10 

NRPS ANY5
8984.1 

A0A1B2
CWG3_9
CYAN 

Non-
ribosomal 
synthetase 

1328 Smic36
90 

7.00E-
104 

80
8 

symb
B.v1.
2.012
436.t
1 

6.00E
-90 

982 SymbC1.
scaffold7
0.75 

0.00 1169 SymbF.
scaffold
213.33 

3.00E-
63 

635 

Cyanoba
cteria 

Scytonema 
cf crispum 
UCFS15 

NRPS ANY5
8991.1 

A0A1B2
CWH8_9
CYAN 

Non-
ribosomal 
synthetase 

1328 Smic36
90 

7.00E-
104 

80
8 

symb
B.v1.
2.012
436.t
1 

6.00E
-90 

982 SymbC1.
scaffold7
0.75 

0.00 1169 SymbF.
scaffold
213.33 

3.00E-
63 

635 

Actinoba
cteria 

Actinosynne
ma mirum 
DSM 43827 

O-MT ACU3
8113.1 

C6WIM3
_ACTMD 

O-
methyltrans
ferase 
family 3 

284 Smic13
33 

2.00E-
38 

23
0 

symb
B.v1.
2.006
248.t
1 

2.00E
-26 

191 SymbC1.
scaffold2
377.8 

2.00E-
28 

192 SymbF.
scaffold
308.24 

9.00E-
13 

113 

Actinoba
cteria 

Pseudonocar
dia sp. P1 

O-MT WP_0
10243
319.1 

WP_010
243319.1 
(NCBI) 

SAM-
dependent 
methyltrans
ferase 

250 Smic21
16 

2.00E-
42 

25
7 

symb
B.v1.
2.006
248.t
1 

7.00E
-19 

241 SymbC1.
scaffold2
5.7 

8.00E-
23 

175 SymbF.
scaffold
313.28 

2.00E-
10 

160 

Cnidaria Nematostella 
vectensis 

O-MT EDO4
0475 

A7S758_
NEMVE 

O-
methyltrans
ferase 
activity 

174 Smic13
33 

2.00E-
27 

17
9 

symb
B.v1.
2.006
248.t
1 

6.00E
-12 

185 SymbC1.
scaffold2
5.7 

1.00E-
21 

168 SymbF.
scaffold
308.24 

6.00E-
07 

109 

Cyanoba
cteria 

Anabaena 
variabilis 
ATCC 29413 

O-MT ava:Av
a_385
7 

Q3M6C4
_ANAVT 

O-
methyltrans
ferase 
family 3 

279 Smic21
16 

5.00E-
45 

23
8 

symb
B.v1.
2.006
248.t
1 

5.00E
-25 

194 SymbC1.
scaffold2
377.8 

5.00E-
33 

195 SymbF.
scaffold
308.24 

1.00E-
10 

116 

Cyanoba
cteria 

Aphanothece 
halophytica 

O-MT saltStr
ess:B
AO51
914.1 

W8VY25
_APHHA 

O-
methyltrans
ferase 

279 Smic21
16 

2.00E-
49 

27
3 

symb
B.v1.
2.018
440.t
1 

6.00E
-20 

216 SymbC1.
scaffold2
5.7 

4.00E-
26 

174 SymbF.
scaffold
308.24 

2.00E-
13 

122 
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Query 
group 

Query - 
source  
of organism 

Query - 
putative 
function 

Gene 
name 

UniProt 
Identifer 

Query 
protein 
description 

Query 
len. 

S. microadriaticum 
(clade A) 

S. minutum  
(clade B) 

S. goreaui 
(clade C) 

S. kawagutii 
(clade F) 

Hit E-value 
Aln 
len
. 

Hit 
E-
value 

Aln len. Hit E-value 
Aln 
len. 

Hit E-value 
Aln 
len. 

Cyanoba
cteria 

Nostoc 
punctiforme 
ATCC 29133 

O-MT npu:N
pun_R
5599 

B2J6X8_
NOSP7 

O-
methyltrans
ferase 
family 3 

277 Smic13
33 

1.00E-
45 

25
3 

symb
B.v1.
2.018
440.t
1 

2.00E
-24 

205 SymbC1.
scaffold2
377.8 

8.00E-
28 

191 SymbF.
scaffold
308.24 

4.00E-
11 

124 

Cyanoba
cteria 

Scytonema 
cf crispum 
UCFS15 

O-MT ANY5
8987.1 

A0A1B2
CWH0_9
CYAN 

O-
methyltrans
ferase 

296 Smic21
16 

2.00E-
47 

22
5 

symb
B.v1.
2.018
440.t
1 

1.00E
-28 

200 SymbC1.
scaffold2
377.8 

1.00E-
28 

191 SymbF.
scaffold
308.24 

1.00E-
12 

124 

Cyanoba
cteria 

Scytonema 
cf crispum 
UCFS15 

O-MT ANY5
8994.1 

A0A1B2
CWH5_9
CYAN 

O-
methyltrans
ferase 

296 Smic21
16 

2.00E-
47 

22
5 

symb
B.v1.
2.018
440.t
1 

1.00E
-28 

200 SymbC1.
scaffold2
377.8 

1.00E-
28 

191 SymbF.
scaffold
308.24 

1.00E-
12 

124 

Fungi Aspergillus 
clavatus 
NRRL 1 

O-MT ACLA
_0558
40 

A1C9L2_
ASPCL 

O-
methyltrans
ferase 
putative 

286 Smic31
139 

9.00E-
24 

19
4 

symb
B.v1.
2.014
617.t
2 

5.00E
-26 

201 SymbC1.
scaffold2
416.1 

3.00E-
23 

179 SymbF.
scaffold
593.9 

1.00E-
23 

205 

Fungi Aspergillus 
nidulans 
FGSC A4 

O-
MT/ATP-
grasp 

tr|Q5A
Z78|Q
5AZ78
_EME
NI 

Q5AZ78
_EMENI 

Uncharacte
rized 
protein 

816 Smic19
143 

2.00E-
26 

40
2 

symb
B.v1.
2.014
617.t
2 

3.00E
-26 

240 SymbC1.
scaffold5
773.1 

9.00E-
22 

183 SymbF.
scaffold
593.9 

1.00E-
23 

205 

Cyanoba
cteria 

Scytonema 
cf crispum 
UCFS10 

Short-
chain 
dehydrog
enase 

ANY5
8988.1 

A0A1B2
CWF8_9
CYAN 

Short-chain 
dehydrogen
ase 

293 Smic14
13 

5.00E-
27 

23
6 

symb
B.v1.
2.020
911.t
1 

3.00E
-24 

258 SymbC1.
scaffold2
890.25 

1.00E-
34 

252 SymbF.
scaffold
270.25 

1.00E-
24 

233 

Cyanoba
cteria 

Scytonema 
cf crispum 
UCFS10 

Short-
chain 
dehydrog
enase 

ANY5
8995.1 

A0A1B2
CWH2_9
CYAN 

short-chain 
dehydrogen
ase 

293 Smic14
13 

5.00E-
27 

23
6 

symb
B.v1.
2.020
911.t
1 

3.00E
-24 

258 SymbC1.
scaffold2
890.25 

1.00E-
34 

252 SymbF.
scaffold
270.25 

1.00E-
24 

233 
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Supplementary Table 16: BLASTP hits (E < 10-5) in Symbiodinium for each of the 18 

Nostoc punctiforme proteins involved in scytonemin biosynthesis. 

Protein 

S. microadriaticum (A) S. minutum (B) S. goreaui (C) S. kawagutii (F) 

Hit(s) E-value Hit(s) E-value Hit(s) E-value Hit(s) E-value 

UniProt ID: B2IXH5 
Gene: scyA 
Gene ID in N. 
punctiforme: 
Npun_R1276 

Smic28555 
Smic21519 
Smic26902 

5.00E-14 
3.00E-11 
6.00E-11 

symbB.v1.2.035008.t1 
symbB.v1.2.032800.t1 
symbB.v1.2.034800.t2 
symbB.v1.2.034800.t1 

5.00E-19 
8.00E-14 
1.00E-10 
2.00E-10 

SymbC1.scaffold2.2026 
SymbC1.scaffold1.2344 
SymbC1.scaffold4.363 
SymbC1.scaffold4.284 
SymbC1.scaffold9.174 
SymbC1.scaffold5.1134 
SymbC1.scaffold25.119 
SymbC1.scaffold1.1299 
SymbC1.scaffold5.414 
SymbC1.scaffold540.25 
SymbC1.scaffold2.1375 
SymbC1.scaffold4.1019 
SymbC1.scaffold1.1273 
SymbC1.scaffold4.971 
SymbC1.scaffold2.950 
SymbC1.scaffold109.61 
SymbC1.scaffold35850.1 
SymbC1.scaffold241.78 
SymbC1.scaffold15.162 
SymbC1.scaffold2.1994 
SymbC1.scaffold5156.2 
SymbC1.scaffold5001.1 
SymbC1.scaffold4102.1 
SymbC1.scaffold3142.3 
SymbC1.scaffold1672.2 
SymbC1.scaffold21415.1 
SymbC1.scaffold5131.1 
SymbC1.scaffold241.24 

1.00E-40 
5.00E-32 
2.00E-27 
4.00E-27 
6.00E-27 
2.00E-25 
1.00E-24 
1.00E-23 
1.00E-22 
4.00E-22 
1.00E-20 
2.00E-20 
6.00E-20 
8.00E-20 
2.00E-19 
3.00E-19 
1.00E-18 
2.00E-18 
4.00E-18 
8.00E-17 
3.00E-15 
1.00E-14 
1.00E-12 
7.00E-08 
9.00E-08 
7.00E-07 
7.00E-07 
7.00E-06 

SymbF.scaffold35.95 
SymbF.scaffold3271.1 
SymbF.scaffold520.14 
SymbF.scaffold1982.4 

3.00E-28 
3.00E-20 
7.00E-16 
4.00E-08 

UniProt ID: B2IXH4 
Gene: scyB 
Gene ID in N. 
punctiforme: 
Npun_R1275 

No hits N/A No hits N/A SymbC1.scaffold1093.35 
SymbC1.scaffold2.1837 
SymbC1.scaffold14551.5 
SymbC1.scaffold32.93 
SymbC1.scaffold37069.1 

6.00E-83 
3.00E-22 
8.00E-18 
2.00E-14 
1.00E-11 
  

SymbF.scaffold8.273 
SymbF.scaffold3240.3 

8.00E-86 
5.00E-06 

UniProt ID: B2IXH3 
Gene: scyC 
Gene ID in N. 
punctiforme: 
Npun_R1274 

No hits N/A No hits N/A No hits N/A No hits N/A 

UniProt ID: B2IXH2 
Gene: scyD 
Gene ID in N. 
punctiforme: 
Npun_R1273 

No hits N/A No hits N/A No hits N/A No hits N/A 

UniProt ID: B2IXH1 
Gene: scyE 
Gene ID in N. 
punctiforme: 
Npun_R1272 

No hits N/A No hits N/A No hits N/A No hits N/A 
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Protein 

S. microadriaticum (A) S. minutum (B) S. goreaui (C) S. kawagutii (F) 

Hit(s) E-value Hit(s) E-value Hit(s) E-value Hit(s) E-value 

UniProt ID: B2IXH0 
Gene: scyF 
Gene ID in N. 
punctiforme: 
Npun_R1271 

Smic37965 
Smic11872 
Smic722 
Smic37012 

4.00E-16 
6.00E-12 
1.00E-11 
2.00E-06 

symbB.v1.2.008932.t1 
symbB.v1.2.008932.t1 
symbB.v1.2.000102.t1 
symbB.v1.2.034012.t1 
symbB.v1.2.040186.t1 

3.00E-14 
9.00E-10 
2.00E-13 
3.00E-08 
1.00E-07 

SymbC1.scaffold1093.35 
SymbC1.scaffold2.1837 
SymbC1.scaffold14551.5 
SymbC1.scaffold32.93 
SymbC1.scaffold37069.1 
SymbC1.scaffold4.1475 
SymbC1.scaffold8194.1 

6.00E-83 
3.00E-22 
8.00E-18 
2.00E-14 
1.00E-11 
1.00E-07 
6.00E-07 

SymbF.scaffold74.4 
SymbF.scaffold27.38 

4.00E-07 
6.00E-06 

UniProt ID: B2IXG9 
Gene: Glycosyl-
transferase 
Gene ID in N. 
punctiforme: 
Npun_R1270 

Smic44385 
Smic5216 

9.00E-12 
8.00E-06 

symbB.v1.2.002866.t1 
symbB.v1.2.002866.t2 
symbB.v1.2.026225.t1 

2.00E-09 
2.00E-09 
3.00E-07 

SymbC1.scaffold410.29 
SymbC1.scaffold2.386 
SymbC1.scaffold9.56 
SymbC1.scaffold17.9 
SymbC1.scaffold5.1082 
SymbC1.scaffold16.67 
SymbC1.scaffold2.875 
SymbC1.scaffold80.139 
SymbC1.scaffold2.657 
SymbC1.scaffold1.992 
SymbC1.scaffold2.660 
SymbC1.scaffold1401.15 
SymbC1.scaffold5.635 

1.00E-42 
4.00E-39 
1.00E-26 
1.00E-24 
1.00E-22 
1.00E-17 
8.00E-09 
1.00E-08 
4.00E-08 
9.00E-08 
2.00E-07 
2.00E-06 
5.00E-06 

SymbF.scaffold2862.5 4.00E-07 

UniProt ID: B2IXG8 
Gene: tyrA 
Gene ID in N. 
punctiforme: 
Npun_R1269 

No hits N/A No hits N/A No hits N/A No hits N/A 

UniProt ID: B2IXG7 
Gene: dsbA 
Gene ID in N. 
punctiforme: 
Npun_R1268 

Smic39492 
(recovered at 1e-4) 

1.01E-04 symbB.v1.2.029824.t1 1.00E-33 SymbC1.scaffold216.15 
SymbC1.scaffold5154.6 
SymbC1.scaffold19.147 

1.00E-23 
9.00E-12 
5.00E-09 

SymbF.scaffold2870.9 1.00E-12 

UniProt ID: B2IXG6 
Gene: aroB (DHQS) 
Gene ID in N. 
punctiforme: 
Npun_R1267 

Smic42001 
Smic2116 
Smic43919 
Smic35309 
Smic35461 
Smic12094 

3.00E-32 
1.00E-21 
1.00E-21 
5.00E-21 
6.00E-16 
5.00E-13 

symbB.v1.2.028953.t1 0.00 SymbC1.scaffold11.271 
SymbC1.scaffold4.799 
SymbC1.scaffold9.107 
SymbC1.scaffold2.2020 
SymbC1.scaffold21.53 
SymbC1.scaffold7772.3 
SymbC1.scaffold685.28 
SymbC1.scaffold7.65 
SymbC1.scaffold24348.2 
SymbC1.scaffold22405.1 

8.00E-39 
2.00E-38 
1.00E-35 
4.00E-35 
5.00E-34 
9.00E-31 
3.00E-30 
6.00E-25 
1.00E-18 
7.00E-07 

SymbF.scaffold11.23 
SymbF.scaffold3925.3 

2.00E-34 
2.00E-23 

UniProt ID: B2IXG5 
Gene: trpE 
Gene ID in N. 
punctiforme: 
Npun_R1266 

Smic1909 9.00E-42 symbB.v1.2.004052.t1 
symbB.v1.2.037466.t1 

0.00 
6.00E-20 

SymbC1.scaffold3197.1 
SymbC1.scaffold22.189 
SymbC1.scaffold5.278 
SymbC1.scaffold21.403 
SymbC1.scaffold13906.1 
SymbC1.scaffold17352.1 
SymbC1.scaffold15.265 
SymbC1.scaffold70.43 
SymbC1.scaffold2.1336 
SymbC1.scaffold23.168 
SymbC1.scaffold70.35 
SymbC1.scaffold482.52 
SymbC1.scaffold1.483 
SymbC1.scaffold80.158 
SymbC1.scaffold2.1535 
SymbC1.scaffold9.600 
SymbC1.scaffold1.688 
SymbC1.scaffold685.10 
SymbC1.scaffold3095.7 
SymbC1.scaffold4.342 
SymbC1.scaffold7.63 

0.00 
1.00E-53 
1.00E-53 
3.00E-49 
8.00E-39 
1.00E-33 
4.00E-33 
1.00E-30 
1.00E-27 
3.00E-23 
8.00E-21 
1.00E-19 
6.00E-16 
9.00E-16 
4.00E-11 
2.00E-09 
3.00E-08 
1.00E-07 
1.00E-07 
3.00E-06 
6.00E-06 

SymbF.scaffold11.23 
SymbF.scaffold3925.3 

2.00E-34 
2.00E-23 



 

198 

Protein 

S. microadriaticum (A) S. minutum (B) S. goreaui (C) S. kawagutii (F) 

Hit(s) E-value Hit(s) E-value Hit(s) E-value Hit(s) E-value 

UniProt ID: B2IXG4 
Gene: trpC 
Gene ID in N. 
punctiforme: 
Npun_R1265 

Smic7823 3.00E-33 symbB.v1.2.022171.t1 2.00E-34 SymbC1.scaffold17429.1 
SymbC1.scaffold70.43 
SymbC1.scaffold80.158 
SymbC1.scaffold11.333 
SymbC1.scaffold21.296 
SymbC1.scaffold17905.1 
SymbC1.scaffold21766.1 
SymbC1.scaffold2493.1 

3.00E-59 
1.00E-55 
1.00E-55 
5.00E-55 
3.00E-52 
4.00E-46 
6.00E-46 
6.00E-23 

SymbF.scaffold3240.10 1.00E-09 

UniProt ID: B2IXG3 
Gene: trpA 
Gene ID in N. 
punctiforme: 
Npun_R1264 

Smic3643 4.00E-16 symbB.v1.2.000731.t1 2.00E-41 SymbC1.scaffold5.1067 
SymbC1.scaffold19.272 
SymbC1.scaffold29630.1 
SymbC1.scaffold1995.42 
SymbC1.scaffold4.230 
SymbC1.scaffold219.88 
SymbC1.scaffold7.82 
SymbC1.scaffold27503.1 

2.00E-60 
1.00E-56 
6.00E-53 
6.00E-44 
1.00E-43 
3.00E-36 
6.00E-35 
1.00E-24 

SymbF.scaffold3240.10 5.00E-21 

UniProt ID: B2IXG2 
Gene: tyrP 
Gene ID in N. 
punctiforme: 
Npun_R1263 

Smic7316 2.00E-09 No hits N/A No hits N/A No hits N/A 

UniProt ID: B2IXG1 
Gene: trpB 
Gene ID in N. 
punctiforme: 
Npun_R1262 

Smic36430 
Smic14060 

4.00E-37 
1.00E-30 

symbB.v1.2.000731.t1 
symbB.v1.2.014164.t1 

1.00E-154 
2.00E-32 

SymbC1.scaffold1.724 
SymbC1.scaffold1995.42 
SymbC1.scaffold4.230 
SymbC1.scaffold7.82 
SymbC1.scaffold219.88 
SymbC1.scaffold5.1067 
SymbC1.scaffold9.195 
SymbC1.scaffold29611.1 
SymbC1.scaffold3205.1 
SymbC1.scaffold38296.1 
SymbC1.scaffold2284.2 
SymbC1.scaffold29630.1 
SymbC1.scaffold540.17 
SymbC1.scaffold7.661 
SymbC1.scaffold2815.2 

4.00E-172 
4.00E-169 
1.00E-166 
7.00E-155 
2.00E-147 
3.00E-147 
1.00E-143 
3.00E-129 
4.00E-111 
2.00E-77 
4.00E-33 
9.00E-33 
6.00E-30 
5.00E-26 
1.00E-20 

SymbF.scaffold11.353 
SymbF.scaffold939.1 
SymbF.scaffold15790.1 

6.00E-172 
3.00E-154 
2.00E-51 

UniProt ID: B2IXG0 
Gene: trpD 
Gene ID in N. 
punctiforme: 
Npun_R1261 

Smic34102 2.00E-47 symbB.v1.2.012378.t1 5.00E-46 SymbC1.scaffold7.227 
SymbC1.scaffold21.296 
SymbC1.scaffold80.158 
SymbC1.scaffold70.43 

2.00E-58 
7.00E-52 
8.00E-49 
6.00E-43 

SymbF.scaffold3240.10 3.00E-59 

UniProt ID: B2IXF9 
Gene: aroG 
Gene ID in N. 
punctiforme: 
Npun_R1260 

No hits N/A No hits N/A SymbC1.scaffold11.361 
SymbC1.scaffold5.979 
SymbC1.scaffold17.172 
SymbC1.scaffold2.1765 
SymbC1.scaffold1.197 
SymbC1.scaffold8922.3 
SymbC1.scaffold70.31 
SymbC1.scaffold18.265 
SymbC1.scaffold4.307 
SymbC1.scaffold216.60 

3.00E-90 
3.00E-87 
3.00E-81 
2.00E-78 
2.00E-26 
1.00E-24 
8.00E-21 
1.00E-20 
2.00E-18 
7.00E-14 

SymbF.scaffold3240.10 
SymbF.scaffold690.22 
SymbF.scaffold5147.8 

2.00E-82 
9.00E-37 
3.00E-13 

UniProt ID: B2IXF8 
Gene unknown 
Gene ID in N. 
punctiforme: 
Npun_R1259 

No hits N/A No hits N/A No hits N/A No hits N/A 
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Supplementary Table 17: Statistics of preliminary genome assemblies. 

 

Symbiodinium goreaui SCF055-01 
(clade C, type C1) 

Symbiodinium kawagutii CS-156 
(=CCMP2468, clade F) 

ALLPATHS-LG 
CLC Genomics 
Workbench 

SPAdes* ALLPATHS-LG 
CLC Genomics 
Workbench 

SPAdes 

%G+C  45.40   45.36   44.53   45.40   45.91   45.74  

Total number of scaffolds  28,243   41,412   1,906,899   6,305   85,340   501,627  

Total assembled bases (bp) 1,011,466,282  1,060,349,155  1,452,039,755  913,085,015 1,106,975,017  1,300,991,596  

N50 length of scaffolds (bp)  113,414   101,436   42,733   458,350   272,097   243,842  

Maximum scaffold length (bp)  8,454,000   8,337,350   8,340,000   5,432,874   5,507,473   6,118,942  

Total number of contigs  110,037   270,205   2,185,232   53,712   182,229   615,029  

N50 length of contigs (bp)  15,777   6,805   4,252   31,411   35,785   40,446  

Maximum contig length (bp)  2,989,000   3,449,000   1,859,000   2,124,640   1,933,067   1,245,445  

Number of scaffolds > 50 Kb  6,075   6,206   5,830   2,694   4,264   4,100  

% genome in scaffolds > 50 Kb  78.05   73.64   46.86   97.32   87.82   76.06  

% gap  21.00   12.89   8.81   7.83   14.63   19.80  

% CEGMA genes (eukaryote)  75.11   76.20   85.37   74.45   83.19   74.89  

% BUSCO genes (eukaryote)  37.62   37.62   38.61   38.61   46.86   40.26  

*: This SPAdes assembly is based on k-mer size 111 only, thus is more fragmented than the others. 
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Supplementary Table 18: Proteins used as evidence in evidence-based gene prediction. 

Source Number of sequences 

RefSeq release 78 (complete)  49,301,516 

Symbiodinium minutum (Shoguchi et al. 2013) 47,014 

Symbiodinium kawagutii (Lin et al. 2015) 36,850 

Symbiodinium microadriaticum (Aranda et al. 2016) 49,109 

Symbiodinium kawagutii MMETSP0132 12,602 

Symbiodinium sp. CCMP421; MMETSP1110 72,821 

Symbiodinium sp. CCMP2430; MMETSP1115 44,145 

Symbiodinium sp. Mp.; MMETSP1122 44,283 

Symbiodinium sp. C1; MMETSP1367 43,592 

Symbiodinium sp. C15; MMETSP1370 35,777 

Symbiodinium sp. D1A; MMETSP1377 45,153 

Total number of sequences 49,732,862 
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Supplementary Note 1 

Nuclear genomes of S. goreaui and S. kawagutii 

The G+C contents of our assembled genomes of S. goreaui (43.8%) and S. kawagutii 
(45.6%) are comparable to the earlier S. kawagutii assembly (44.0%)1 and to S. minutum 
(43.6%)2, and lower than for S. microadriaticum (50.5%)3. Supplementary Fig. 1A shows 
the extent of mapped sequence reads from S. goreaui and from S. kawagutii to each 
assembled Symbiodinium genome. Most reads (>78%) mapped to the corresponding 
assembly. Only about 16.5% of reads from S. goreaui mapped to the two S. kawagutii 
genomes, and conversely 17.6% of S. kawagutii reads to S. goreaui. This is in contrast to 
4.1% of S. goreaui reads and 10.3% of S. kawagutii reads that mapped to S. 
microadriaticum. These results indicate a high extent of dissimilarity among Symbiodinium 
genomes, greatest between representatives of Clades C and A, and least (although not by 
far) between C and F. 

We adopted a comprehensive ab initio approach for predicting genes, combining both 
evidence-based and unsupervised methods (Supplementary Methods). Average gene 
lengths (7671 bp in S. goreaui, 6646 bp in S. kawagutii) are intermediate between the 
shortest (3788 bp in the earlier S. kawagutii genome)1 and longest average (12,898 bp in 
S. microadriaticum)3. In addition, we observed similar codon usage (Supplementary Fig. 4) 
and amino acid profiles (Supplementary Fig. 5) among the genes of S. goreaui, S. 
kawagutii and S. microadriaticum; the latter shows a slight bias towards high-G+C codons. 
S. minutum2 shows a distinctive codon usage profile vis-à-vis the others, with substantially 
higher contents of arginine, serine and tryptophan in predicted protein sequences 
(Supplementary Fig. 5). 

Proportions of canonical (GC) and non-canonical 5′-donor splice sites (GA, GT) in 
Symbiodinium genomes are shown in Supplementary Table 9. These splice sites occur in 
similar proportion in the genomes of S. goreaui and S. kawagutii, with GA << GC < GT 
(e.g. 19.5% GA, 36.1% GC and 44.4% GT in S. kawagutii); a similar pattern was observed 
in S. minutum2, whereas in S. microadriaticum3 the canonical GC is more prominent 
(21.9% GA, 52.1% GC and 26.0% GT). Non-canonical 5′-donor sites were not explicitly 
considered in the gene-prediction process for the earlier S. kawagutii genome, although a 
dominance of GT sites (65.6%) was observed. In all Symbiodinium genomes, a non-
canonical G usually immediately follows the acceptor splice site (Supplementary Table 9 
and Supplementary Fig. 6). Thus Symbiodinium of Clades C and F use donor splice sites 
similarly to Clade B, but different than Clade A; this is likely related to the higher G+C 
content in the S. microadriaticum genome (50.51%) than in the others (43.46-45.59%). 

Plastid genomes of S. goreaui and S. kawagutii 

Plastid genomes of dinoflagellates occur as minicircles each with one or more protein-
coding genes, plus a non-coding region that contains a highly conserved core4-6. We 
identified putative minicircle sequences with plastid-encoded genes in each of our two 
genomes: nine sequences encoding 14 genes in S. goreaui (Supplementary Table 4), and 
13 sequences encoding 13 genes in S. kawagutii (Supplementary Table 5). A highly 
conserved core region was identified, of 79 bp and 41 bp for S. goreaui and S. kawagutii 
respectively (Supplementary Table 7). We also identified putative “empty” minicircles (two 
in S. goreaui, one in S. kawagutii) that do not encode any gene. Empty minicircles have 
been described in other dinoflagellates, but were not seen in Symbiodinium type C34 or S. 
minutum7. Plastid-encoded psbI, previously reported in S. minutum but not in 
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Symbiodinium type C3, was found in minicircle-like sequences in both S. goreaui and S. 
kawagutii; we did not find direct evidence of circularisation in these sequences, but a core 
region is present in the psbI-encoding sequence from S. goreaui. Our results demonstrate 
that “empty” minicircles and plastid-encoded psbI occur in Symbiodinium; full-length 
minicircle sequences in S. goreaui and S. kawagutii remain to be validated.  

Specifically from the S. goreaui ALLPATHS-LG assembly we recovered eight scaffolds 
containing all 13 known plastid-encoded genes (Supplementary Table 4) described 
previously for Symbiodinium type C3, as well as a scaffold containing the psbI gene 
described previously in S. minutum. Some of the genes were recovered only in part, and 
none of the scaffolds shows clear evidence of circularisation. Three of the gene-coding 
scaffolds (SC1_Plastid_1, SC1_Plastid_2 and SC1_Plastid_3) displayed characteristics 
that have not been described before in dinoflagellate minicircles. These scaffolds are 
longer than minicircles observed in other dinoflagellates, and contain multiple core 
regions. They also encode multiple genes, some of which are fragmentary. Although 
minicircles with two genes have been observed in other dinoflagellates, studies in 
Symbiodinium type C3 and S. minutum have not recovered any such structures4,7.  

All plastid genes except psaA, 16S rRNA and psaB were recovered in S. goreaui. The 16S 
rRNA is fragmented in Symbiodinium; we recovered three partial fragments encoded on 
SC1_Plastid_3. Only 48% (973/2022 bp) of the psaA gene, representing the end of the 
sequence, was recovered in a single fragment on SC1_Plastid_1. One full-length and one 
partial (12%; 128/1029 bp) copy of the psbA gene are present in SC1_Plastid_2. The 
psaB gene is encoded over two fragments (representing regions of 50-1319 nt and 1502-
2082 nt) that together comprise 89% (1851/2082 bp) of the length of the psaB described in 
type C3. The two fragments of the psaB gene are encoded sequentially, separated on the 
scaffold by 3 bp; the length of the missing sequence between the two fragments is 182 bp. 
Studies in other dinoflagellates suggest that genes such as psaA have undergone internal 
deletions as a way of reducing size to fit on a minicircle4,5, and such a process could also 
have impacted the psaB gene described in type C3. A 79-bp core (Supplementary Table 
7) was identified in S. goreaui and recovered in all scaffolds found to encode plastid 
genes. SC1_Plastid_8 contains a partial core region that is encoded at the beginning of 
the sequence and SC1_Plastid_9 contained a full length core region with two mismatches. 
The core region was used to isolate SC1_Plastid_10 that had not been previously 
identified as being of plastid origin. It is not circular, and a comparison with the NCBI NR 
database found no similarity with any known genes. The identity of this scaffold as a 
minicircle, and whether it is an “empty” minicircle, remain to be validated.  

From the S. kawagutii data we recovered 13 scaffolds that contain 13 of the known plastid-
encoded genes (Supplementary Table 5), with only psbE not recovered. Five of the 
scaffolds (SF_Plastid_1, SF_Plastid_2, SF_Plastid_3, SF_Plastid_4 and SF_Plastid_5) 
are outside the 2-4 Kbp size range observed in other dinoflagellates4. The 16S rRNA was 
found as two partial fragments encoded on two scaffolds, consistent with our current 
understanding of the 16S rRNA gene structure in Symbiodinium. The psaB, atpB, psaA, 
psbC and atpA genes were recovered as multi-copy fragments encoded on the same 
scaffold. For example, the atpA gene in SF_Plastid_5 is present in two nearly complete 
copies, whereas in SF_Plastid_1 six partial fragments of the psaB gene were recovered. 
Gene structures of this nature have not been observed in any other dinoflagellate.  

Three gene-encoding scaffolds (SF_Plastid_3, SF_Plastid_5 and SF_Plastid_12) were 
found to also be circular in S. kawagutii. SF_Plastid_3 has a 139-bp overlap (100% 
identity) at each end of the sequence, SF_Plastid_5 has a 1874-bp overlap (98% identity) 
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and SF_Plastid_12 a 45-bp overlap (100% identity). A 41-bp core was identified in S. 
kawagutii and was recovered in only six of the plastid gene-encoding scaffolds. Two 
previously unidentified scaffolds (SF_Plastid_14 and SF_Plastid_15) were found to 
contain the S. kawagutii core region, with SF_Plastid_14 also found to be circular. Both 
scaffolds were checked against the NCBI nr database and show no similarity with any 
known encoded genes. Circularisation of SF_Plastid_14 occurs between the two encoded 
core regions that are positioned exactly at the start and end of the scaffold. The 
positioning of the core regions along the scaffold may be an artefact of assembly and so 
the identity of the scaffold, potentially as an “empty” minicircle, remains to be investigated.  

In S. goreaui and S. kawagutii, some scaffolds identified as being of plastid origin show 
traits that have not been observed in other dinoflagellates. In both S. goreaui and S. 
kawagutii there are scaffolds which exceed the size expected of a minicircle (i.e. 1.3-3.0 
Kbp4,7), and encode gene structures that vary significantly from what has been observed 
for plastids of other dinoflagellates. Duplications within the scaffolds (encompassing 
genes, core regions and non-coding regions) and scaffolds composed of multiple 
minicircles could for instance be assembly artifacts. The data generation and assembly 
strategy adopted in this study was designed to recover nuclear rather than organellar 
genomes. These data serve as the first analysis platform for the organellar genomes of S. 
goreaui and S. kawagutii, and can be extended using a PCR sequencing strategy based 
on targeted primer design. 

The G+C contents of the coding and non-coding regions for the plastid sequences in S. 
goreaui and S. kawagutii are summarised in Supplementary Table 6. In the plastid 
minicircles of Symbiodinium type C3, G+C content within the coding regions (36.03%) is 
lower than that within the non-coding regions (48.22%)4. The gene-coding regions 
identified in our S. goreaui data have G+C content (36.80%) close to that published for 
type C3 (36.03%). The G+C content of the non-coding regions (45.64%), however, is three 
percentage points lower than the published data (48.22%), possibly due to the increased 
length of identified non-coding sequences (18,051 bp in S. goreaui and 11,475 bp in type 
C3). Our S. kawagutii data have G+C content in their coding (35.46%) and non-coding 
regions (42.56%) below that observed in type C3 and in our S. goreaui data. For S. 
kawagutii both the length of the recovered coding and non-coding sequence are much 
higher than that of type C3. Many of the scaffolds encode duplicate regions of genes, 
increasing the total length of the coding sequence recovered beyond what is observed for 
type C3.  

Mitochondrial genomes of S. goreaui and S. kawagutii 

We identified one scaffold from S. goreaui, and two from S. kawagutii, that contain genes 
known to be encoded in the mitochondrial genome of dinoflagellates. For S. goreaui, 
SC1_Mitochondria_1 (length 55,144 bp) was found to contain the cox3, cox1 and cob 
genes, with a fragment of the LSU rRNA between the cox3 and cox1 genes. For S. 
kawagutii SF_Mitochondria_1 (length 62,663 bp) the cox3, cox1 and cob genes were all 
recovered, and the LSU rRNA was found between the cox3 and cox1 genes. 
SF_Mitochondria_2 (length 35,965 bp) from S. kawagutii contains only the cox1 gene. 
This configuration of cox3-LSU rRNA-cox1-cob is well-characterised in the apicomplexa 
Plasmodium falciparum8 and has been observed in dinoflagellates9,10. The size of the 
mitochondrial genome in dinoflagellates has not yet been determined, but previous studies 
recovered a genome sequence of up to 42 Kbp9. SC1_Mitochondria_1 from S. goreaui 
and SF_Mitochondria_1 from S. kawagutii both display characteristics of dinoflagellate 
mitochondrial genomes but are 55,144 and 62,663 bp in length respectively. Our findings 
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suggest that the mitochondrial genome of Symbiodinium is considerably larger than what 
has been described previously at 42 Kbp9 in dinoflagellates. 

DMSP and DMS 

Dimethysulphoniopropionate (DMSP) serves as an osmolyte and antioxidant for both the 
alga and the coral, as a nutrient for associated bacteria11 and as a signal in maintaining 
the complex interactions among holobiont partners12. In coral-associated Symbiodinium13 
and other biological systems, DMSP lyase converts DMSP into dimethylsulphide (DMS). 
DMS, in turn, is the major input of biogenic sulphur into the marine boundary layer14 and 
can contribute to sulphate aerosols that nucleate cloud condensation, thereby lowering 
global temperatures15. DMSP concentrations are positively correlated with the thermal 
tolerance of Symbiodinium, and with bleaching tolerance of the coral Acropora millepora16.  

Investigating the salinity-induced production of DMSP, Lyon et al.17 identified candidate 
enzymes of DMSP biosynthesis in the sea-ice diatom Fragilariopsis cylindrus. DMS 
production correlates with expression of Alma1 (encoding DMSP lyase) in the bloom-
forming cryptophyte Emiliania huxleyi18,19. Here we used BLASTP to search these 
sequences against our Symbiodinium gene models. We found three putative DMSP lyase 
genes in S. goreaui, and four in S. kawagutii (Supplementary Tables 13 and 14); the 
predicted proteins show significant sequence similarity (E <10-100 and nearly full-length 
alignment) to Alma genes in E. huxleyi and the Alma1 protein described in Symbiodinium 
Clade D, indicative of capacity to degrade DMSP into DMS. Since Raina et al.20 showed 
that corals can also produce DMSP, we further examined whether coral could degrade 
DMSP by searching for ALMA orthologs. We find that A. digitifera has the molecular 
machinery that potentially encodes Alma1 and produce DMS. Since both coral and 
symbiotic alga have the genetic capacity to produce DMSP and DMS, we encourage 
future studies to confirm whether DMS is produced by corals and explore the mechanisms 
that regulate the dynamics of DMS(P) production and its influence on the complex 
interplay among corals, Symbiodinium spp. and other symbiotic microbes, especially those 
using DMSP as a source of sulphur.  

Evolution of gene families 

The results of gene gain and gene loss along Symbiodinium lineages with respect to the 
outgroup P. glacialis are shown in Supplementary Fig. 10. Overall we observed a higher 
number of gene losses in the lineage leading to S. kawagutii (Clade F) than in that leading 
to S. goreaui (Clade C), i.e. 3122 versus 1375 genes respectively among protein sets 
generated at I = 1.0 (Supplementary Fig. 10A). More gene losses are inferred when the 
clustering is more granular, e.g. 6314 versus 3482 genes at I = 2.0 (Supplementary Fig. 
10C). In comparison, the lineages leading to S. minutum (Clade B) and S. microadriaticum 
(Clade A) appear to have gained more genes (186 and 218 genes respectively) than those 
leading to S. kawagutii and S. goreaui (97 and 69 respectively) (I = 2.0; Supplementary 
Fig. 10C). The greater inferred number of gene loss in the lineages leading to Clades C 
and F, and of gene gain in lineages leading to Clades A and B, while interesting, remain to 
be validated with more-complete genome data from Symbiodinium.   
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Appendix B 

Supplementary Material for Chapter 4 

 

Core genes in diverse dinoflagellate lineages include a wealth of conserved dark 

genes with unknown functions 

 

Supplementary Tables 

Supplementary tables are available from doi: 10.1038/s41598-018-35620-z 
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Supplementary Figures 

 

Supplementary Figure S1: Percentage of determined characters (aligned residues) for 

each taxon in the concatenated alignments used to construct (A) the reference 

dinoflagellate tree in Figure 1a and (B) the dark protein tree in Figure 3. 



 

209 

 

Supplementary Figure S2: Dark proteins in dinoflagellates. For (A) overall dark proteins 

and (B) high-confidence dark proteins, the scatterplot comparing the total number of 

proteins against the percentage of dark proteins in each dataset is shown on the left; and 

the scatterplot comparing the average length of protein sequences against the percentage 

of dark proteins in each dataset is shown on the right. All plots are shown with the trend 

line of linear regression. 
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Supplementary Figure S3: Amino acid profiles of annotated proteins versus high-

confidence dark proteins. Amino acids that are significantly different between the two sets, 

at 95% confidence interval of 10,000 Student’s t-tests (p ≤ 0.05; two-sided) comparing 

randomly subsampled 100 proteins from each set, are denoted with an asterisk (*). 
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Supplementary Figure S4: Functional annotation of dinoflagellate genes. Heat map 

showing the abundance of (A) Pfam domains and (B) membrane transporters in the 47 

taxa, showing the non-redundant top 20 most-abundant item in each taxon. The number 

per row (taxon) is normalised by its maximum value of that row. 
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Appendix C 

Supplementary Material for Chapter 5 

 

Polarella glacialis genomes encode tandem repeats of single-exon genes with 

functions critical to adaptation of dinoflagellates 

 

Supplementary Data 

Supplementary data is available from doi: 10.1101/704437 

 

Supplementary Tables 

Supplementary tables are available from doi: 10.1101/704437 
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Supplementary Figures 

 

Supplementary Figure S1: GenomeScope 21-mer profile for (A) CCMP1383 and (B) 

CCMP2088. 
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Supplementary Figure S2: Interspersed repeat landscape and proportion of distinct repeat 

classes in the assembled genome of CCMP2088, relative to sequence divergence in 

Kimura substitution level. 
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Supplementary Figure S3: Relationship between length of intergenic regions and their 

coverage by repeats for the predicted genes from (a) CCMP1383 and (B) CCMP2088. The 

red trend line was constructed using a moving average with a window size of 250. 
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Supplementary Figure S4: An example of a genome region containing genes nested within 

the long introns of a putative Alanine-tRNA ligase (from scaffold 

CCMP1383_scf7180000588947). The EvidenceModeler predicted genes, mapped IsoSeq 

transcripts and mapped RNA-Seq transcripts are shown in the green, red and blue boxes. 
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Supplementary Figure S5: Conserved synteny between the two sequenced bacterial 

scaffolds and the published (A) Paraglaciecola psychrophila strain 170T (GenBank 

NC_020514) and (B) Sphingorhabdus sp. YGSM121 (GenBank NZ_CP022548) genomes. 

Syntenic regions between the two sequences are shown with ribbons; red representing 

direct and green represents inverted regions. 


