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CLASSICAL AND WEAK SOLUTIONS
FOR SEMILINEAR PARABOLIC EQUATIONS

WITH PREISACH HYSTERESIS

Abstract. We consider the solvability of the semilinear parabolic differential equation

∂u

∂t
(x, t)−∆u(x, t) + c(x, t)u(x, t) = P(u) + γ(x, t)

in a cylinder D = Ω × (0, T ), where P is a hysteresis operator of Preisach type. We show
that the corresponding initial boundary value problems have unique classical solutions. We
further show that using this existence and uniqueness result, one can determine the properties
of the Preisach operator P from overdetermined boundary data.
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1. INTRODUCTION

The study of partial differential equations with hysteresis is mostly connected with the
name of A. Visintin and his monograph [12], where an outline of the most common
parabolic and hyperbolic partial differential equations with hysteresis is presented.
There are also various results on the unique solvability and existence of weak solutions
of these problems. Further results on weak solutions of hyperbolic problems have for
example been investigated by Krejci [6] and Yamamoto and Longfeng [9]. In this work
we show that in the semilinear, parabolic case, we get classical solutions for equations
with general Preisach operators if these satisfy a growth estimate. In Section 2 we
give a short definition of Preisach operators. In Section 3 we present an existence and
uniqueness result for initial boundary value problems with Preisach hysteresis and
in Section 4 we apply this result in the treatment of inverse problems with Preisach
hysteresis. This is especially interesting for the application of hysteresis models. Often
one can perceive some kind of hysteresis effect, but it is hard to analyse what kind of
hysteresis is present.
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2. PREISACH OPERATORS

This section provides a short introduction to hysteresis operators. We use the notation
and the approach of Brokate and Sprekels ([1]) for this. The proofs for the results in
this section can be found in [1].

Definition 2.1 (Hysteresis operator). Let Cpm[0, T ] be the space of continous,
piecewise monotone functions on [0, T ]. Let H : Cpm[0, T ] 7→ R be a rate-independent
functional. We define the general hysteresis operator W : Cpm[0, T ] 7→ Map([0, T ])
as follows

W(v)(t) = H(vt), t ∈ [0, T ] (2.1)

where vt is the cut-off of v at t, i.e.,

vt(τ) =

{
v(τ) for 0 ≤ τ ≤ t,

v(t) for t ≤ τ ≤ T.

Alternatively one can consider an operator defined on the set S of finite strings
(v0, v1, . . . , vN ). H induces an operator W̃ : S 7→ S by

W̃(s) = (H̃(v0), H̃(v0, v1), . . . , H̃(s)) for s = (v0, . . . , vN ) ∈ S.

We also write Wf for the functional H.

The following operator plays an essential role in the definition of general Preisach
operators.

Definition 2.2 (Play operator). We define the scalar play operator Fr :
C([0, T ]) 7→ C([0, T ]) as

Fr(v)(0) = fr(v(0), 0), Fr(v)(t) = fr(v(t),Fr(v)(ti)) (2.2)
for ti < t ≤ ti+1, 0 ≤ i ≤ N − 1,

where 0 = t0 < t1 < · · · < tN = T is a monotonicity partition of v on [0, T ] and

fr(v, s) = max{v − r,min{v + r, s}}.

The corresponding functional of Fr is thus defined as

Fr,f (v0) = fr(v0, 0), (2.3)
Fr,f (v0, . . . , vn) = fr(vn,Fr,f (v0, . . . , vn−1)), (2.4)

where vi = v(ti) and 0 = t0 < t1 < · · · < tN = T is a monotonicity partition of v
on [0, T ].

We present some properties of the play operator here.
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Lemma 2.3. For all v, v1, v2 ∈ C([0, T ]), all ω−1, ω−1,1, ω−1,2 ∈ R, all 0 ≤ t′ ≤
t ≤ T and s ≥ 0

‖Fr(v1;ω−1,1)−Fr(v2;ω−1,2)‖[0,T ]
0 ≤ max{‖v1 − v2‖[0,T ]

0 , |ω−1,1 − ω−1,2|}, (2.5)

|Fr(v)(t)−Fr(v)(t′)| ≤ sup
t′≤τ≤t

|v(τ)− v(t′)|, (2.6)

Fr(v;ω−1) = Fr(v − ω−1) + ω−1, (2.7)
Fr(v1;ω−1,1) ≤ Fr(v2;ω−1,2), if v1 ≤ v2, and ω−1,1 ≤ ω−1,2. (2.8)

To define general Preisach operators we will need a few additional auxiliary defi-
nitions.

Definition 2.4 (Preisach memory curves). We define the set of admissable
Preisach memory curves as

Ψ0 := {φ| φ : R+ 7→ R, |φ(r)− φ(r̄)| ≤ |r − r̄| ∀r, r̄ ≥ 0, Rsupp(φ) <∞}

where
Rsupp(φ) := sup{r| r ≥ 0, φ(r) 6= 0}.

Definition 2.5 (Evolution of Preisach memory curves). Let ψ−1 ∈ Ψ0 be an
initial memory curve. Let s = (v0, . . ., vN ) ∈ S. The Preisach evolution is defined as

ψi(r) := fr(vi, ψi−1(r)), r ≥ 0, 0 ≤ i ≤ N

and it holds
ψN (r) = Fr,f (s, ψi(r)) ∀r ≥ 0.

Definition 2.6 (Hysteresis operators of Preisach type). Let s = (v0, . . ., vN ) ∈
S. The operator Ff : S ×Ψ0 7→ Ψ0 with

Ff (s;ψ−1)(r) := Fr,f (s;ψ−1(r)), ∀r > 0

is called Preisach memory operator. A hysteresis operator W with output functional
Q defined by

Wf (s;ψ−1) := Q(Ff (s, ψ−1)), s ∈ S
is called a hysteresis operator of Preisach type.

Definition 2.7 (Preisach operators). A hysteresis operator P of Preisach type is
called a Preisach operator if its output functional Q : Ψ0 7→ R is of the form

Q(φ) =
∫ ∞

0

q(r, φ(r))dν(r) + ω00,

where ν denotes a regular σ-finite Borel measure, ω00 ∈ R and q is given by

q(r, s) = 2
∫ s

0

ω(r, σ)dσ

for some given ω ∈ L1,loc(R+ × R; ν ⊗ λ).
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Preisach operators have some very important growth and regularity properties.

Proposition 2.8. Let W be an operator of Preisach type with output functional
Q : Ψ0 7→ R. Then it holds

— Let η(δ;Q) := sup{|Q(φ) − Q(ψ)| : φ, ψ ∈ Ψ0, ‖φ − ψ‖ L∞ < δ}. Then for
limδ→0 η(δ;Q) = 0 the operator W is uniformly continuous on C([0, T ])×Ψ0 and
maps bounded subsets of C([0, T ])×Ψ0 onto bounded subsets in C([0, T ]).

— If there exist constants C > 0 and α ∈ (0, 1] with

η(δ;Q) ≤ Cδα, (2.9)

then W is Hölder continuous with exponent α on C([0, T ])×Ψ0. Further for every
β ∈ (0, 1] W maps bounded subsets of C0,β([0, T ]) × Ψ0 onto bounded subsets in
C0,αβ([0, T ]).

— If (2.9) holds for α = 1, then W is Lipschitz on C([0, T ]) × Ψ0 and maps
bounded subsets of B × Ψ0 onto bounded subsets of B, where B = BV [0, T ] or
B = W 1

p (0, T ), 1 ≤ p ≤ ∞. In particular we get

|W(v)′(t)| ≤ C|v′(t)| (2.10)

for every t ∈ [0, T ] for which both derivatives exist.

Proposition 2.9 (Regularity properties of Preisach operators). Let P be a
Preisach operator with initial memory curve ψ−1 ∈ Ψ0. Then

— If

c1 :=
∫ ∞

0

sup
s∈R

|ω(r, s)|d|ν|(r) <∞

holds it follows η(δ;Q) ≤ 2c1δ and the results of Proposition 2.8 hold. In particular
for almost all t ∈ [0, T ]

P(v)′(t) = 2
∫ ∞

0

ω(r,Fr(v;ψ−1(r))(t)) · Fr(v;ψ−1(r))′(t)dν(r)

and thus
|P(v)′(t)| ≤ 2c1|v′(t)|

for every t ∈ [0, T ] for which both exist.
— If ∂sω(r, s) is measurable and in addition to the constant c1 above, there exists a

c2 with

c2 :=
∫ ∞

0

sup
s∈R

|∂sω(r, s)|d|ν|(r) <∞,

then it holds

‖P(v1)′ − P(v2)′‖L1 ≤ 2(c2‖v′1‖L1 + c1)‖v1 − v2‖BV .

In our analysis in this work we will restrict ourselves to Preisach operators with
linear growth. This is justified by the following proposition.
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Proposition 2.10 (Growth estimates for Preisach operators). Let P be a
Preisach operator with initial memory curve ψ−1 ∈ Ψ0. Then for all v ∈ C([0, T ]) it
holds

|P(v)(t)| ≤
∫ ∞

0

2

∣∣∣∣∣
∫ ψ(t,r)

0

|ω(r, s)|ds

∣∣∣∣∣ d|ν|(r) + |ω00|. (2.11)

If v is large enough, i.e. ‖v‖0 ≥ max{‖ψ−1‖0, Rsupp}, then it holds

|P(v)(t)| ≤ qM‖v‖0 + |ω00|

with
qM (y) := 2

∫ y

0

∫ y

−y
|ω(r, s)|dsd|ν|(r).

In particular the Preisach operator has linear growth

‖P(v)‖0 ≤ c0‖v‖0 + c1,

if ∫ y

0

∫ y

−y
|ω(r, s)|dsd|ν|(r) ≤ c2|y|+ c3, y ≥ 0. (2.12)

Since we are analyzing partial differential equations with Preisach operators, we
need the notion of a space-dependent Preisach operator.

Definition 2.11 (Space dependent Preisach operators). We define the
space-dependent Preisach operators as

P(v;ψ−1)(x, t) := P(v(x, ·), ψ−1)(t). (2.13)

This definition is a special case of the so-called x-dependent Preisach operator

P(v;ψ−1;x)(x, t) := P(v(x, ·);ψ−1(x))(t), (2.14)

where different values of x are associated with different initial memory curves. How-
ever, for our purposes, space-dependent Preisach operators will be sufficient.

3. THE DIRECT PROBLEM

Now we consider the solvability of direct semilinear problem with hysteresis. Let
Ω ⊂ Rn be open and simply connected, let ∂Ω be a C3-boundary and let T > 0. We
set D := Ω× (0, T ) and S := ∂Ω× (0, T ). In this section we consider the solvability
of the initial-boundary value problems

∂u

∂t
(x, t)−∆u(x, t) + cu(x, t) = P(u)(x, t) + γ(x, t), (x, t) ∈ D, (3.1)

∂u

∂ν
(x, t) + b(x, t)u(x, t) = g(x, t), (x, t) ∈ S, (3.2)

u(x, 0) = ψ(x), x ∈ Ω, (3.3)
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and

∂u

∂t
(x, t)−∆u(x, t) + c(x, t)u(x, t) = P(u)(x, t) + γ(x, t), (x, t) ∈ D, (3.4)

u(x, t) = h(x, t), (x, t) ∈ S, (3.5)
u(x, 0) = ψ(x), x ∈ Ω, (3.6)

where P(u)(x, t) is a Preisach operator. First we want to consider the existence and
uniqueness of classical solutions for the initial-boundary value problems above and
we make the following assumptions:

(a1) ψ ∈ C2+α(Ω̄);
(a2) P is a Preisach operator that satisfies ‖P(v)‖0 = C‖v‖0 + C0 and ‖P(v) −

P(u)‖0 ≤ c1‖u− v‖0;
(a3) γ ∈ Cα,α/2(D̄);
(a4) c(x, t) ≥ c0 > 0, c0 > C and c0 > c1;
(a5) b(x, t) > 0;
(a6) g ∈ C1+α,1+α/2(S), g(x, 0) = ∂ψ

∂ν (x) + b(x, 0)ψ(x), for x ∈ ∂Ω;
(a7) h ∈ C2+α,1+α/2(S), h(x, 0) = ψ(x), for x ∈ ∂Ω;

Before we present one of the main results, we show that the function P (u)(x, t) is
an element of Cα,α/2(D̄) if u is an element of Cα,α/2(D̄).

Lemma 3.1. Let u ∈ Cα,α/2(D̄) and P satisfy assumption (a2). Then P(u) is an
element of Cα,α/2(D̄) as well.

Proof. ‖P(v)(x, t)‖D̄0 ≤ C‖v(x, t)‖D̄0 + C0 is valid. We consider points P = (x1, t1) 6=
Q = (x2, t2), t1 ≤ t2, and Q1 = (x2, t1) as well as Q′ = (x2, t

′) with |v(x2, t
′) −

v(x2, t1)| = ‖v(x2, ·)− v(x2, t1)‖[t1,t2]0 . Then

|P(v)(x1, t1)− P(v)(x2, t2)|
ρ(P,Q)α

=
|P(v(x1, ·))(t1)− P(v(x2, ·))(t2)|

ρ(P,Q)α
= (3.7)

=
|P(v(x1, ·))(t1)− P(v(x2, ·))(t1) + P(v(x2, ·))(t1)− P(v(x2, ·))(t2)|

ρ(P,Q)α
≤ (3.8)

≤ |P(v(x1, ·))(t1)− P(v(x2, ·))(t1)|
ρ(P,Q)α

+
|P(v(x2, ·))(t1)− P(v(x2, ·))(t2)|

ρ(P,Q)α
≤ (3.9)

≤ C
‖v(x1, ·)− v(x2, ·)‖[0,T ]

0

‖x1 − x2‖α
+ C

|v(x2, t1)− v(x2, t
′)|

ρ(Q1, Q′)α
(3.10)

and since we have ‖P(v)‖D̄0 ≤ C‖v‖D̄0 + C0 we can conclude that

‖P(v)‖D̄α,α/2 ≤ 2C‖v‖D̄α,α/2 + C0.
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Now we present one of the main results.

Theorem 3.2. Let conditions (a1)−(a6) hold. Then there exists at least one solution
u ∈ C2+α,1+α/2(D̄) of the initial-boundary value problem

∂u

∂t
(x, t)−∆u(x, t) + c(x, t)u(x, t) = P(u)(x, t) + γ(x, t), (x, t) ∈ D, (3.11)

∂u

∂ν
(x, t) + b(x, t)u(x, t) = g(x, t), (x, t) ∈ S, (3.12)

u(x, 0) = ψ(x), x ∈ Ω. (3.13)

Proof. We set B := Cα,α/2(D̄). The initial-boundary value problem

∂u

∂t
(x, t)−∆u(x, t) + cu(x, t) = σP(v)(x, t) + σγ(x, t), (x, t) ∈ D, (3.14)

∂u

∂ν
(x, t) + b(x, t)u(x, t) = σg(x, t), (x, t) ∈ S (3.15)

u(x, 0) = σψ(x), x ∈ Ω (3.16)

therefore has a unique solution u ∈ C2+α,1+α/2(D̄) for every v ∈ B. With a parabolic
standard estimate we see that a constant c2 (see for example [8, Chapter IV]) exists,
with

‖u‖D̄2+α,1+α/2 ≤ c2(‖ψ‖Ω̄2+α + ‖g‖S1+α,1+α/2 + ‖γ‖D̄α,α/2 + ‖P(v)‖D̄α,α/2). (3.17)

To prove the existence we define a map T : B × [0, 1] 7→ C2+α,1+α/2(D̄) ⊂⊂ B
by T (v, σ) = u and show that T satisfies all the conditions of the Leray-Schauder
fixed-point theorem (see for example [2]).

— T (v, 0) = 0 for every v ∈ B.
— Let T (u, σ) = u. It follows from equation (3.17) that

‖u‖D̄2+α,1+α/2 ≤ c2(‖ψ‖Ω̄2+α+‖γ‖D̄α,α/2 +‖g‖S1+α,1+α/2 +2C‖u‖D̄α,α/2 +C0). (3.18)

Using a parabolic interpolation result (see [7, Chapter 8]), we get

2c2C‖u‖D̄α,α/2 ≤
1
2
‖u‖D̄2+α,1+α/2 + L‖u‖D̄0 (3.19)

for a L ∈ R+. From a parabolic standard estimate (see [8, Lemma 5.3]) it follows
that a constant c3 > 0 exists with

‖u‖D̄0 ≤ 1
c0

(‖P(u)‖D̄0 + C0 + ‖γ‖D̄0 ) + ‖ψ‖Ω̄0 + c3‖g‖S0 (3.20)

and thus, because of c > C, for a constant c4 > 0

‖u‖D̄0 ≤ c4(‖γ‖D̄0 + ‖ψ‖Ω̄0 + ‖g‖S0 + C0). (3.21)

Substituting (3.18) and (3.21) in (3.19) we see that

‖u‖B ≤M (3.22)

with a positive constant M .
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— Now let σ ∈ [0, 1], M0 > 0, v1, v2 ∈ B, and ‖v1‖B ≤ M0, ‖v2‖B ≤ M0 with
T (v1, σ) = u1, T (v2, σ) = u2. Then for u := u1 − u2, we get

∂u

∂t
(x, t)−∆u(x, t) + cu(x, t) = σ(P(v1)(x, t)− P(v2)(x, t)), (x, t) ∈ D,

∂u

∂ν
(x, t) + b(x, t)u(x, t) = 0, (x, t) ∈ S,

u(x, 0) = 0, x ∈ Ω.

Thus we get

‖u1 − u2‖D̄0 ≤ 1
c0
‖P(v1)− P(v2)‖D̄0 ≤ C

c
‖v1 − v2‖D̄0 . (3.23)

and the estimates

‖u1 − u2‖D̄2+α/2,1+α/4 ≤ K‖P(v1)− P(v2)‖D̄α/2,α/4 (3.24)

with K ∈ R+,

‖u1 − u2‖D̄α,α/2 ≤ ‖u1 − u2‖D̄2+α/2,1+α/4 + L0‖u1 − u2‖D̄0 (3.25)

and L0 ∈ R+. Therefore

‖u1 − u2‖D̄α,α/2 ≤ K‖P(v1)− P(v2)‖D̄α/2,α/4 +
C

c0
L0‖v1 − v2‖D̄0 . (3.26)

To show the continuity of T (v, σ) for a fixed σ, we estimate the term ‖P(v1) −
P(v2)‖D̄α/2,α/4. Since ‖P(v1)−P(v2)‖D̄0 ≤ C‖v1 − v2‖D̄0 , we only have to estimate
the Hölder coefficient Hα/2,α/4(P(v1)− P(v2)).
Let ε > 0 and ‖v1 − v2‖D̄α,α/2 < δ with 0 < δ < ε2/8C2M0. We consider P =
(x1, t1), Q = (x2, t2), P 6= Q. If ρ(P,Q)α/2 < ε/4CM0, it follows that

|P(v1)(x1, t1)− P(v2)(x1, t1)− P(v1)(x2, t2) + P(v2)(x2, t2)|
ρ(P,Q)α/2

≤

≤ ρ(P,Q)α/2(HD̄
α,α/2(P(v1)) +HD̄

α,α/2(P(v2))) ≤

≤ d(P,Q)α/2(2CHD̄
α,α/2(v1) + 2CHD̄

α,α/2(v2)) ≤

≤ ρ(P,Q)α/24CM0 < ε.

If ρ(P,Q)α/2 > ε/4CM0, it follows that

|P(v1)(x1, t1)− P(v2)(x1, t1)− P(v1)(x2, t2) + P(v2)(x2, t2)|
ρ(P,Q)α/2

≤

≤ |P(v1(x1, ·))(t1)− P(v2(x1, ·))(t1)|+ |P(v1(x2, ·))(t2)− P(v2(x2, ·))(t2)|
ρ(P,Q)α/2

≤

≤ 4C2M0

ε
2‖v1 − v2‖D̄0 ≤ ε.
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Thus we have shown that T (v, σ) is continuous in v for a fixed σ. From
the compactness of the embedding C2+α,1+α/2(D̄) ⊂⊂ B, we see that T (v, σ) is
compact in v for fixed σ.

— Let us now consider ui = T (v, σi), i = 1, 2. Then the difference u := u1 − u2

satisfies
∂u

∂t
(x, t)−∆u(x, t) + cu(x, t) = (σ1 − σ2)P(v)(x, t), (x, t) ∈ D, (3.27)

∂u

∂ν
(x, t) = (σ1 − σ2)g(x, t), (x, t) ∈ S, (3.28)

u(x, 0) = (σ1 − σ2)ψ(x), x ∈ Ω. (3.29)

It follows that

‖u‖D̄2+α,1+α/2 ≤ c2|σ1 − σ2|(2C‖v‖D̄α,α/2 + ‖ψ‖Ω̄2+α + ‖g‖S1+α,1+α/2) (3.30)

and we see that T is uniformly continuous with respect to σ.

Thus we have shown that all the conditions of the Leray-Schauder Theorem are
satisfied and the proof is complete.

The result above still holds under more general conditions if we replace some of the
conditions (a1)–(a6) with alternative conditions. Apart from the available uniqueness
results in [12] for weak solutions we can also easily prove a uniqueness result for
classical solutions.

Theorem 3.3. Let the conditions of Theorem 3.2 hold. Then there exists exactly one
classical solution of the initial boundary value problem

∂u

∂t
(x, t)−∆u(x, t) + cu(x, t) = P(u)(x, t) + γ(x, t), (x, t) ∈ D, (3.31)

∂u

∂ν
(x, t) + b(x, t)u(x, t) = g(x, t), (x, t) ∈ S, (3.32)

u(x, 0) = ψ(x), x ∈ Ω. (3.33)

Proof. Let u1 and u2 be different solutions of (3.31). Then u := u1 − u2 satisfies

∂u

∂t
(x, t)−∆u(x, t) + cu(x, t) = P(u1)(x, t)− P(u2)(x, t), (x, t) ∈ D,

∂u

∂ν
(x, t) = 0, (x, t) ∈ S,

u(x, 0) = 0, x ∈ Ω

and thus, due to assumption (a2),

‖u‖D̄0 ≤ 1
c0
‖P(u1)− P(u2)‖D̄0 ≤ C

c
‖u1 − u2‖D̄0 =

C

c0
‖u‖D̄0 .

Since c0 > C, it follows that
‖u‖D̄0 = 0.
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The above results can also easily be adjusted to the case of Neumann or Dirichlet
boundary conditions. In particular, the following result holds.

Corollary 3.4. Assume the conditions of Theorem 3.2 hold, except for (a6). Instead
we assume that (a7) holds. Then the initial boundary value problem

∂u

∂t
(x, t)−∆u(x, t) + c(x, t)u(x, t) = P(u)(x, t) + γ(x, t), (x, t) ∈ D, (3.34)

u(x, t) = h(x, t), (x, t) ∈ S, (3.35)
u(x, 0) = ψ(x), x ∈ Ω (3.36)

has at least one classical solution u ∈ C2+α,1+α/2(D̄). The solution is unique if the
conditions of Theorem 3.3 hold.

In the next section, we show how these results can be used to hysteresis parameters
from overdetermined boundary data in partial differential equations.

4. APPLICATIONS TO INVERSE PROBLEMS

Inverse problems for partial differential equations with classical solutions are often
easier to solve than inverse problems without classical solutions (see for example
[3, 4, 10, 11]). This is also the case for partial differential equations with hysteresis.
Let conditions (a1)–(a6) hold and let the additional information

u(xo, t) = θ(t) for a x0 ∈ ∂Ω, 0 < t < T. (4.1)

be given. To recover the properties of the Preisach operator P in (3.11), (3.12), (3.13),
we use the following auxilliary result. Consider the initial boundary value problem

∂u

∂t
(x, t)−∆u(x, t) + u(x, t) = p(u(x, t)) + γ(x, t), (x, t) ∈ D, (4.2)

∂u

∂ν
(x, t) = g(x, t), (x, t) ∈ S, (4.3)

u(x, 0) = 0, x ∈ Ω. (4.4)

If the function p is Lipschitz and p, γ and g are given, the initial boundary value
problem (4.2), (4.3), (4.4) has the unique classical solution u. The inverse problem now
consists of recovering p on its maximal domain, where besides γ and g the additional
information

u(xo, t) = θ(t) for a x0 ∈ ∂Ω, 0 < t < T, (4.5)

is given. We further assume that p lies in the function space

LFB := {f : f ∈ Lip1(R), f(0) = 0, ‖f‖1 ≤ B},
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for some positive B and Lip1(R) is the space of Lipschitz functions on R. To obtain
sufficient conditions for the solvability of the inverse problem we consider another
auxilliary problem

ψt(x, t)−∆ψ(x, t) = γ(x, t), (x, t) ∈ D, (4.6)
∂ψ

∂ν
(x, t) = g(x, t), (x, t) ∈ S, (4.7)

ψ(x, 0) = 0, x ∈ Ω. (4.8)

Using the solution ψ of the above initial boundary value problem one can show the
following.

Theorem 4.1. Let g, γ and θ be as in (4.2) and (4.5) and let the following conditions
hold:

(c1) γ ∈ Lip1(D), γ > 0;
(c2) gt(x, t) ∈ Lip1(D), g(x, t) ≤ g(x0, t), gt(x, t) > 0, g(x, 0) = 0, g(x, t) ≥ 0;
(c3) θ′(t) ∈ Lip1([0, T ]), θ(0) = 0, θ′(t) > 0, θ′(0) = γ(x, 0);
(c4) ‖θ′(t)− ψt(x0, t)‖1 < 1/2C1, where ψ is the solution of (4.6), (4.7), (4.8).

Then the inverse problem of finding p ∈ LFC1 such that

∂u

∂t
(x, t)−∆u(x, t) + u(x, t) = p(u(x, t)) + γ(x, t), (x, t) ∈ D, (4.9)

∂u

∂ν
(x, t) = g(x, t), (x, t) ∈ S, (4.10)

u(x, 0) = 0, x ∈ Ω (4.11)

has the unique solution p on the maximal domain I(u).

Proof. See [10].

Remark. Conditions (c1) and (c2) secure that u obtains its maximum at u(x0, t) and
thus the function p can be determined on its maximal domain. If g(x, t) ≤ g(x0, t) is
not valid, then p(u) can only be determined on [0, θ(T )]. However this is sometimes
sufficient to determine a hysteresis operator, as we will see later.

Instead of LFB we will work with a slightly weaker version to recover P.

Definition 4.2. For every B ∈ R+ and every interval I with 0 ∈ I, we define the set
LFI,B as

LFI,B := {f : f ∈ Lip1(I), f(0) = 0, ‖f‖I1 ≤ B}.

The result in 4.1 obviously remains valid, if we substitute the condition p ∈
LFI(u),C1 for

p ∈ LFC1 .

Now we present two examples, where one can retrieve information about a hysteresis
operator.
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Example 4.3 (Play operator). Here we consider a special inverse problem for the
Play operator P = Fr. We want to recover the parameters β and r in the initial value
problem

∂u

∂t
(x, t)−∆u(x, t) + cu(x, t) = βFr(u)(x, t) + γ(x, t), (x, t) ∈ D, (4.12)

∂u

∂ν
(x, t) = g(x, t), (x, t) ∈ S, (4.13)

u(x, 0) = 0, x ∈ Ω. (4.14)

The additional data for the inverse problem to g and γ is as in Theorem 4.1:

u(xo, t) = θ(t) for a x0 ∈ ∂Ω, 0 < t < T. (4.15)

We assume that g, γ and θ satisfy the following conditions:

(b1) gt(x, t) ∈ Lip1(∂Ω× [0, T ]), g(x, t) ≥ 0, g(x, 0) > 0;
(b2) θ′(t) ∈ Lip1([0, T ]), θ(0) = 0, θ′(0) = γ(x, 0);
(b3) ‖θ′(t)− ψt(x0, t)‖1 < 1/2C1, where ψ is the solution of (4.6), (4.7), (4.8);
(b4) There exists a t0 > 0 with θ(t0) > r, θ′(t) > 0 in [0, t0), where t0 is a local

maximum of θ and gt(x, t) ≥ 0 in [0, t0];
(b5) γ ∈ Lip1(D), γ > 0, γt(x, t) ≥ 0, on [0, t0];
(b6) β ≤ c and p : R 7→ R with p(u) := cu − βhr(u) satisfies p ∈ LFI(u),C1 , where

hr(u) = max{u− r, 0}.

Theorem 4.4. Under conditions (b1)–(b6), the additional data (4.15) is sufficient
for the unique determination of the hysteresis-output βFr(θ) on [0, t0], which in turn
can be used to uniquely determine the parameters β and r.

Proof. We present a constructive proof here, which can be used as basis for a numerical
algorithm. The main idea is not to calculate β and r directly, but to determine the
hysteresis output βFr(θ)(t) first.
Using basic calculus one can show that the time-derivative ut satisfies the positivity
principle on Ω× (0, t0) (see [5, Theorem 5.1.7]), i.e.,

ut(x, t) ≥ 0 in Ω× (0, t0).

This yields that on Ω× (0, t0)

Fr(u)(x, t) = hr(u(x, t)), hr(u) = max{u− r, 0}.

Now we set p(u) := hr(u)− cu, which yields

∂u

∂t
(x, t)−∆u(x, t) = p(u(x, t)) + γ(x, t), (x, t) ∈ Ω× (0, t0), (4.16)

∂u

∂ν
(x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, t0), (4.17)

u(x, 0) = 0, x ∈ Ω. (4.18)
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Since the functions g, γ, θ and p satisfy all conditions of Theorem 4.1 on Ω × (0, t0),
we conclude that p(u) is uniquely determined on [0, θ(t0)]. In particular p(θ(t)) =
βFr(θ)(t)− cθ(t)) is uniquely determined. To determine the unknown parameters we
proceed as follows.

— Determine t0.
— Set p(u) := hr(u) − cu and recover p(u). This gives us knowledge of θ(t) and

w(t) := Fr(θ)(t) on [0, t0].
— To recover β and r, we determine the values w(t) and θ at two points s1 and s2,

with w(s1) 6= 0, w(s2) 6= 0 and θ(s1) 6= θ(s2). This yields

w(s1) = βθ(s1)− βr = β(θ(s1)− r),
w(s2) = βθ(s2)− βr = β(θ(s2)− r).

Since β 6= 0, we get

r = θ(s1)−
w(s1)
β

.

And since θ(s1) 6= θ(s2), we get

β =
w(s2)− w(s1)
θ(s2)− θ(s1)

.

Remark. The result above can easily be adjusted to recover the parameters αi, ri,
1 ≤ i ≤ m of the operator P =

∑m
i=1 αiFri

.

Remark. In the same way, one can also retrieve partial (or sometimes global) in-
formation about the shape function of a general Prandtl operator [5]. In the following
example, we consider the recovery of a special Preisach operator, the nonlinear play
operator q(Fr). Here we want to determine the function q and the parameter r.

Example 4.5 (Nonlinear play operator). The nonlinear play operator P is de-
termined through a Lipschitz continuous function q, i.e.,

P(v) = q(Fr(v)).

We consider the initial boundary value problem

∂u

∂t
(x, t)−∆u(x, t) + cu(x, t) + q(Fr(u)(x, t)) = γ(x, t), (x, t) ∈ D, (4.19)

∂u

∂ν
(x, t) = g(x, t), (x, t) ∈ S, (4.20)

u(x, 0) = 0, x ∈ Ω. (4.21)

Let conditions (b1)–(b5) of Example 4.3 hold, as well as

(b6’) q ◦ hr ∈ LFI(u),C1 , q is strictly monotonically increasing.
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Analogously to the proof of Theorem 4.4, one can determine the parameter r and the
function q as well on [0,Fr(θ)(t0)]. Here it is of course of interest to recover the
function q on the largest interval possible. To show that this can be done, we prove
the following theorem.

Theorem 4.6 (A special positivity result). Let u be a solution of (4.19), (4.20),
(4.21) and let the above conditions hold, as well as, for some x0 ∈ ∂Ω:

(e1) γ(x0, t) > γ(x, t) for every x ∈ Ω, t ∈ (0, T );
(e2) g(x0, t) > g(x, t) for every x ∈ ∂Ω, t ∈ (0, T ), gt(x, t) > 0 on S.

Then it also holds that u(x, t) ≤ u(x0, t) for every x ∈ Ω, t ∈ (0, T ).

Proof. The function u(x0, t) satisfies the equation

∂u

∂t
(x0, t)−∆u(x0, t) + cu(x0, t) + q(Fr(u(x0, ·))(t)) = γ(x0, t), t ∈ (0, T ).

If we set w(x, t) := u(x0, t)− u(x, t), using the Lipschitz property of q and q(0) = 0,
we conclude that

∂w

∂t
(x, t)−∆w(x, t) + cw(x, t) + α(x, t)(Fr(u(x0, ·))(t)−Fr(u(x, ·))(t)) = (4.22)

= γ(x0, t)− γ(x, t)︸ ︷︷ ︸
>0

, (x, t) ∈ D,

∂w

∂ν
(x, t) = g(x0, t)− g(x, t) > 0, (x, t) ∈ S, (4.23)

w(x, 0) = 0, x ∈ Ω (4.24)

with some α(x, t) ∈ L∞ and α(x, t) ≥ 0, ∀(x, t) ∈ D, since we assumed q to be strictly
monotonically increasing. Now we assume that at some point in D there is w < 0
and set

t∗ := inf{t : w(x, t) < 0 for a X = (x, t) ∈ D̄}.
Since ∂w

∂ν > 0 on S, there exists a X∗ = (x∗, t∗) with w(X∗) = 0 in D̄. Due to
Fr(u)(x0, 0) = Fr(u)(x, 0) = 0 and r > 0, there exists a t0 > 0 with

∂w

∂t
(x, t)−∆w(x, t) + cw(x, t) = γ(x0, t)− γ(x, t), (x, t) ∈ Ω× (0, t0),

∂w

∂ν
(x, t) = g(x0, t)− g(x, t) > 0, (x, t) ∈ ∂Ω× (0, t0),

w(x, 0) = 0, x ∈ Ω.

From Lemma 2.3[(2.8)], we can conclude that w(x, t) ≥ 0 on Ω × (0, t0). Condition
(e2) then gives that X∗ is inside of D. Since w(·, t∗) has its minimum in X∗ we get

wt(X∗) ≤ 0 ∆w(X∗) ≥ 0.

Using (4.22) gives

wt(X∗)−∆w(X∗)− α(X∗)(Fr(u(x0, ·))(t∗)−Fr(u(x∗, ·))(t∗)) > 0
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and since α(X∗) ≥ 0 we conclude that

Fr(u(x0, ·))(t∗)−Fr(u(x∗, ·))(t∗) < 0.

Since Fr(u)(x0, 0) = Fr(u)(x, 0) = 0, using Lemma 2.3 there must be a t1, 0 < t1 < t∗

with u(x0, t1) < u(x, t1). However, this is a contradiction to

t∗ := inf{t : w(x, t) < 0 for a X = (x, t) ∈ D̄}.

To ensure that the function q is recovered on a maximum interval, one can impose
the conditions

q(Fr(u)(x, t) ≤ γ(x, t), θ(t0) ≥ θ(t), 0 < t < T,

The first condition ensures u(x, t) ≥ 0 on D and the second one, together with The-
orem 4.6, ensures that u(x, t) ≤ u(x0, t) on D. All in all we get 0 ≤ u(x, t) ≤ θ(t0).
Thus the maximum domain for u is given by the interval [0,Fr(θ)(t0)].

Remark. We are aware that the conditions above seem quite severe. However, one
has to bear in mind that we do not use global knowledge of the function u, but a
simple overdetermination and we have shown that given classical solutions of partial
differential equations with hysteresis, it is often possible to recover knowledge about the
type of hysteresis. More examples for inverse problems with hysteresis using classical
solutions can be found in [5]. There it is also shown how one can recover more general
properties of Preisach operators.
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