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Abstract. The limitations of Hall MHD as a model for turbu-
lence in weakly collisional plasmas are explored using quan-
titative comparisons to Vlasov-Maxwell kinetic theory over
a wide range of parameter space. The validity of Hall MHD
in the cold ion limit is shown, but spurious undamped wave
modes exist in Hall MHD when the ion temperature is finite.
It is argued that turbulence in the dissipation range of the
solar wind must be one, or a mixture, of three electromag-
netic wave modes: the parallel whistler, oblique whistler, or
kinetic Alfvén waves. These modes are generally well de-
scribed by Hall MHD. Determining the applicability of linear
kinetic damping rates in turbulent plasmas requires a suite
of fluid and kinetic nonlinear numerical simulations. Con-
trasting fluid and kinetic simulations will also shed light on
whether the presence of spurious wave modes alters the non-
linear couplings inherent in turbulence and will illuminate
the turbulent dynamics and energy transfer in the regime of
the characteristic ion kinetic scales.

1 Introduction

Understanding the dynamical evolution of the turbulence in
the solar wind and its thermodynamic consequences for the
energy balance in the heliosphere is a major goal of helio-
spheric physics. As the time resolution of in situ satellite
measurements of this turbulence is increased, ever smaller
length scales of the turbulence are probed. We have now
reached a new frontier in the study of turbulence as we begin
to focus on the dynamics of the plasma turbulence at kinetic
scales – e.g., the ion Larmor radius. Understanding the tur-
bulence at these small scales is critical because the kinetic
plasma physics at these scales determines the dissipation of
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the turbulent fluctuations and the inevitable conversion of
the fluctuation energy into plasma heat (Schekochihin et al.,
2009; Howes, 2008).

The simple fluid model of MHD is not sufficient to de-
scribe this new regime of kinetic turbulence in the weakly
collisional solar wind plasma. The appealing simplicity of
the Hall MHD model – an extension of MHD that main-
tains a fluid description while accounting for the Hall terms
in Ohm’s Law, leading to dispersive behavior at small scales
– has lead a number of investigators to use it to study tur-
bulence at these small scale lengths (Shebalin, 1991; Huba,
1994; Ghosh et al., 1996; Sahraoui et al., 2003; Krishan
and Mahajan, 2004; Hori et al., 2005; Mininni et al., 2005;
Dmitruk and Matthaeus, 2006; Servidio et al., 2007), with
some recommending Hall MHD as the preferred model for
the study of solar wind turbulence (Matthaeus et al., 2008).
The applicability of the Hall MHD model to turbulence in a
weakly collisional plasma such as the solar wind, however,
has been called into question (Howes et al., 2008b). Here
we investigate the limitations of the Hall MHD model for the
study of turbulence in kinetic plasmas.

Hall MHD is a rigorous limit of the kinetic behavior in a
weakly collisional plasma only if all of the following con-
ditions are satisfied:Ti�Te, andk‖vt i�ω�k‖vte (Ito et al.,
2004). Although thiscold ion limit is not universally applica-
ble to the turbulent solar wind, we nevertheless would like to
estimate quantitatively the error in using the fluid description
given by Hall MHD rather than a kinetic description. Al-
though a turbulent plasma inherently involves dynamically
significant nonlinear wave-wave interactions which drive the
turbulent cascade of energy to small scales, we focus our at-
tention on the ability of compressible Hall MHD to repro-
duce the properties of the linear wave modes of the Vlasov-
Maxwell kinetic theory. If the linear physics described by
Hall MHD deviates from the kinetic description, then it is
likely that the nonlinear wave-wave couplings that comprise
the turbulence will be incorrect as well.
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Table 1. Definitions.

Variable Symbol

Species s

Speed of light c

Mass ms

Charge qs

Number Density ns

Temperature Ts

Species Plasma Beta βs=8πnsTs/B
2

Plasma Frequency ωps=

√
4πnsq

2
s /ms

Cyclotron Frequency �s=qsB/(msc)

Thermal Velocity vts=
√

2Ts/ms

Alfv én Velocity vA=B/
√

4πnimi

Ion Larmor Radius ρi=vti/�i

Ion Inertial Length di=c/ωpi=ρi/
√

βi

A comparison of the (complex) linear eigenfrequencies
determined by compressible Hall MHD and Vlasov-Maxwell
kinetic theory provides a simple quantitative measure of the
fidelity of the Hall MHD description to the kinetic physics
in a weakly collisional plasma.Krauss-Varban et al.(1994)
have already published a very thorough comparison of the
low-frequency wave mode properties of Hall MHD and ki-
netic theory, concluding that “fluid theory does not correctly
describe the mode structure and mode properties for most
plasmas of interest in space physics”. Their study, however,
evaluated the properties at a particular wavenumberkdi=0.1,
where thedi is ion inertial length – see Table1 for all sym-
bol definitions. Because the turbulent cascade extends over a
large range of scales (more than four orders of magnitude in
the solar wind), the accuracy of Hall MHD in describing the
turbulence must be assessed over a logarithmic scale in wave
vector space(k⊥, k‖).

This paper aims to identify the regimes of parameter space
for which Hall MHD is not an accurate description. The Hall
MHD and Vlasov-Maxwell systems are specified, and their
properties briefly explored, in Sects.2 and3. In Sect.4, some
of the subtleties involved in quantitatively comparing Hall
MHD to kinetic theory are discussed and the measures of
comparison are defined. The results of the comparison are
presented in Sect.5, the implications of choosing the Hall
MHD model to describe kinetic turbulence are discussed in
Sect.6, and the key findings are summarized in Sect.7.

2 Standard Hall MHD

Consider a fully ionized, homogeneous plasma of protons
and electrons threaded by a straight, uniform magnetic field
B0. By retaining theJ×B Hall term in Ohm’s law during the
derivation of the MHD equations, the following form for the
compressible Hall MHD equations is obtained:

∂ρ

∂t
+ ∇ · (ρu) = 0 (1)

∂u
∂t

+ u · ∇u = −
1

ρ
∇p +

1

4πρ
(∇ × B) × B (2)

∂B
∂t

= ∇ ×

[
u × B −

c

4πρ

mi

qi

(∇ × B) × B
]

(3)

d

dt

(
p

ργ

)
= 0 (4)

where the substantial time derivative isd/dt=∂/∂t+u·∇ and
other terms are defined in Table1. Although there exist nu-
merous variations of Hall MHD – e.g., employing a dou-
ble adiabatic equation of state – this is the simplest com-
pressible system incorporating the Hall effect, and gener-
ally appears to be the most widely used in studies employ-
ing Hall MHD (Lighthill , 1960; Kuvshinov, 1994; Mininni
et al., 2002; Ohsaki and Mahajan, 2004; Hirose et al., 2004;
Servidio et al., 2007). We therefore refer to this particular
system asstandardHall MHD.

The linear dispersion relation for standard Hall MHD may
be written in dimensionless form as[
ω̃2

−(k‖di)
2
] [

ω̃4
−ω̃2(kdi)

2(1+β0)+(kdi)
2(k‖di)

2β0

]
= ω̃2(kdi)

2(k‖di)
2
[
ω̃2

− (kdi)
2β0

]
(5)

where the frequency is normalized to the ion cyclotron fre-
quency ω̃=ω/�i , the plasma beta isβ0=c2

s /v
2
A with the

sound speed defined byc2
s =γp/ρ. It is clear from the form of

this dispersion relation that the eigenfrequencies depend on
only three dimensionless parameters: the normalized com-
ponents of the wave vector with respect to the mean mag-
netic field, k⊥di and k‖di , and the plasma betaβ0. Thus,
ω=ωh(k⊥di, k‖di, β0).

The six solutions of the standard Hall MHD dispersion Re-
lation (5) correspond to three distinct physical wave modes,
each with two counter propagating solutions1. In the MHD
limit kdi�1, the three solutions to Eq. (5) give the usual fast,
Alfv én , and slow wave eigenmodes. We will refer to the con-
tinuation of each these modes atkdi&1 by their name in the
MHD limit: thus, whistler waves correspond to the fast wave
branch, and kinetic Alfv́en waves and ion cyclotron waves
are the extension of the Alfvén branch into the nearly per-
pendicular and nearly parallel kinetic regimes, respectively.

Hirose et al.(2004) andIto et al.(2004) found that the Hall
MHD dispersion Relation (5) is a rigorous limit of Vlasov-
Maxwell kinetic theory if

ω � �i (6)

and only if

1Already factored out from Eq. (5) is a non-propagating,ω=0
entropy mode, corresponding to pressure balance but a non-zero
entropy fluctuation. This mode, examined inHameiri et al.(2005),
is not discussed in this paper.
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Ti � Te (7)

ω � k‖vt i (8)

ω � k‖vte. (9)

Although Condition (6) is sufficient to recover the kinetic re-
sults, it is not a necessary condition under all circumstances.
In a study of the fluid closures for collisionless plasmas,
Chust and Belmont(2006) suggested two constraints for va-
lidity: (a) appropriate modeling of the pressure term in the
momentum Eq. (2); and (b) the negligibility of the pressure
gradient term in Ohm’s law. They showed a sufficient condi-
tion satisfying the second constraint under general conditions
is (kρi)

2
�ω/�i . For the isotropic equation of state Eq. (4)

used in standard Hall MHD, the scalar treatment of the pres-
sure means that the pressure gradient term in Ohm’s law is
always negligible because Ohm’s law enters the induction
Eq. (3) only through its curl.

A complementary calculation shows that gyrokinetics
(Rutherford and Frieman, 1968; Frieman and Chen, 1982;
Howes et al., 2006), a rigorous anisotropic limit of kinetic
theory fork‖�k⊥ andω��i , yields a reduced (anisotropic)
version of Hall MHD in the limitTi�Te (Schekochihin et al.,
2009). The description of a collisionless plasma by a fluid
model, such as Hall MHD, is only valid when wave-particle
interactions and finite-Larmor-radius effects are negligible
(Ballai et al., 2002); this is ensured by the Conditions (6)–
(9)

Condition (7) is the cold ion approximation, meaning that
the ion temperature is negligible compared to the electron
temperature. In this limit, the sound speedcs in the standard
Hall MHD system is the ion acoustic speedc2

s =Te/mi . Con-
dition (8) means that the ion Landau resonance is negligible
because the ions are too cold, while Condition (9) means that
the electron Landau resonance is negligible because the elec-
trons are too hot. Implied by Condition (7), but not explicitly
stated inIto et al. (2004), is the requirement thatk⊥ρi�1
(Ballai et al., 2002); the ions must be cold enough such that
the ion Larmor radius is small compared to the perpendicu-
lar scales of interest, and therefore finite-ion-Larmor-radius
effects may be neglected. The ion acoustic Larmor radius
ρs=cs/�i , however, may be comparable to the perpendicu-
lar scale,k⊥ρs&1.

Although few weakly collisional plasmas in space or as-
trophysical environments satisfy these very restrictive Condi-
tions (6)–(9), one may ask at what point will non-negligible
kinetic effects lead to a poor description by Hall MHD. In
this spirit, we wish to evaluate in this paper the practical lim-
itations of the Hall MHD model for turbulence in a weakly
collisional plasma, making quantitative comparisons of stan-
dard Hall MHD with Vlasov-Maxwell kinetic theory in the
parameter regime relevant to turbulent solar wind.

3 Vlasov-Maxwell kinetic theory

To test the Hall MHD model, we compare the real fre-
quency from its dispersion relation to the complex eigen-
frequencies from the Vlasov-Maxwell dispersion relation
(Stix, 1992) assuming a homogeneous, fully ionized proton
and electron plasma with isotropic Maxwellian equilibrium
distribution functions and no drift velocities. This disper-
sion relation is solved numerically (seeQuataert, 1998 for
a description of the code used to solve it), performing the
Bessel function sums to 100 terms to ensure accurate results
at high k⊥di . The linear Vlasov-Maxwell dispersion rela-
tion depends on five parameters: the normalized perpendic-
ular wavenumberk⊥di , the normalized parallel wavenumber
k‖di , the ion plasma betaβi , the ion to electron tempera-
ture ratioTi/Te, and the ratio of ion thermal velocity to the
speed of lightvt i/c. The solution may then be expressed as
ω=ωv(k⊥di, k‖di, βi, Ti/Te, vt i/c). A realistic ratio of pro-
ton to electron mass,mi/me=1836, is used. We note here
that, in the non-relativistic limitvt i�c relevant to the turbu-
lent solar wind, the low-frequency modes are rather insen-
sitive to the specific value ofvt i/c, so we choose the typical
valuevt i/c=10−4 for all comparisons in this paper. Just as in
the Hall MHD case, we choose to label to the low-frequency
wave mode solutions (low compared to the electron cyclotron
frequency�e) of Vlasov-Maxwell kinetic theory by their
names in the MHD limit – the fast, Alfv́en , and slow waves.

4 Comparing Hall MHD to kinetic theory

4.1 Subtle aspects of the comparison

Two complications arise when making a detailed comparison
of standard Hall MHD with Vlasov-Maxwell kinetic theory.
The first is the use of an isotropic equation of State (4) in
standard Hall MHD. Condition (9) suggests that the electron
response is so fast that, if the ion temperature is ignorable,
the pressure response may be correctly treated as isothermal
and isotropic (Hirose et al., 2004). But for finite ion tempera-
tures, the ion response is anisotropic and appears to be better
described with a double polytropic equation of state,

d

dt

(
p⊥

ρBγ⊥−1

)
= 0 and

d

dt

(
p‖B

γ‖−1

ργ‖

)
= 0.

For example, a choice ofγ⊥=2 andγ‖=3 corresponds to
the double adiabatic, CGL closure for the ions (Chew et al.,
1956; Abraham-Shrauner, 1973; Ballai et al., 2002). Even
this more complicated closure, however, fails to yield a dis-
persion relation that is a rigorous limit of kinetic theory for
a weakly collisional plasma with a finite ion temperature
(Hirose et al., 2004). But, it appears that the slow wave
branch is the most strongly affected by this complication;
for example, the one-dimensional collisionless dynamics of
ions along the magnetic field leads to a parallel sound speed
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C2
s =(Te+3Ti)/mi (Hirose et al., 2004), and this produces

unusual behavior, even at MHD scaleskρi�1, such as a slow
wave with a faster phase speed than the Alfvén wave (Ballai
et al., 2002). The closest connection between kinetic theory
and the standard Hall MHD dispersion relation appears to
occur by defining an isotropic sound speedv2

s =(Te+Ti)/mi

(Hirose et al., 2004), so this is the definition taken here. Al-
though this choice is not entirely satisfactory, we will see that
the slow wave is strongly damped via wave-particle interac-
tions when warm ions are present, so the differences arising
from the details of the fluid closure are often irrelevant.

The second complication in comparing Hall MHD with
kinetics is that the linear fluid modes of Hall MHD cannot
be assigned a one-to-one correspondence with the linear ki-
netic modes over all parameter space (Orlowski et al., 1994;
Krauss-Varban et al., 1994; Yoon and Fang, 2008). For ex-
ample, in a study of low-frequency waves in the solar wind
upstream of Venus,Orlowski et al.(1994) found a correspon-
dence to the fast Hall MHD mode at lowβ and to the Alfv́en
Hall MHD mode at highβ, while the results were uniformly
consistent with the fast mode of kinetic theory. A subsequent
study comparing Hall MHD with kinetic theory found this
mixing of modes to be commonplace (Krauss-Varban et al.,
1994), perhaps accounting for the surprising changes in the
linear wave properties of Hall MHD at small scales noted in
a recent paper (Hameiri et al., 2005).

This mixing of solutions to the linear dispersion relations
can lead to confusion about the connections between wave
modes in different regimes of parameter space. For a cho-
sen set of plasma parametersβi , Ti/Te, and vt i/c, each
solution to the dispersion relation describes a manifold in
(Re[ω/�i], k⊥di, k‖di) space, termed a “dispersion surface”
(Andre, 1985). A single dispersion surface may describe
distinct wave modes (with different physical properties) in
different regimes of wave vector space. For example, the
Alfv én dispersion surface describes the MHD Alfvén wave
at large scale (k⊥di�1 andk‖di�1), the ion cyclotron wave
at small parallel scales (k⊥di�1 andk‖di&1), and the kinetic
Alfv én wave at small perpendicular scales (k⊥di&1/

√
βi and

k‖di�1) (Yoon and Fang, 2008). In this paper we avoid con-
fusion by naming the solution branch of the dispersion rela-
tion according to the MHD mode to which it is topologically
connected along the dispersion surface. Thus, we will inves-
tigate the properties of the slow (S), Alfvén (A), and fast (F)
branch solutions of both the linear Hall MHD and Vlasov-
Maxwell systems. Since the solutions of these branches in
the two systems do not exhibit a one-to-one correspondence,
we take the position that we want to compare the Hall MHD
wave modes with the most similar kinetic mode at each point
in parameter space, and will remark upon which modes were
chosen when relevant.

To connect quantitatively Hall MHD to kinetic theory, we
must specify the relation betweenβ0 in the Hall MHD dis-
persion relation andβi in the Vlasov-Maxwell dispersion
relation. For a finite ion temperature, we choose to de-

fine β0=v2
s /v

2
A, where we take an isotropic sound speed

v2
s =(Te+Ti)/mi . Thus, the necessary relation is given by

β0=βi(1+Ti/Te)/(2Ti/Te). Note that, in the limitTi�Te in
which Hall MHD is rigorously valid, the ion pressure is ig-
norable and sovs→cs=

√
Te/mi , the ion acoustic speed; for

turbulence in the solar wind, the ion and electron tempera-
tures are comparableTi∼Te, but standard Hall MHD has no
means to account for distinct ion and electron temperatures,
so we merely quote the value ofTi/Te used for the Vlasov-
Maxwell calculation.

4.2 Comparative measures

Hall MHD is a fluid theory of the behavior in a magnetized
plasma, and therefore does not account for the effect of col-
lisionless damping; the eigenfrequencies of the Hall MHD
dispersion Relation (5) are real,ωh. Therefore, in comparing
with the complex eigenfrequencies of the Vlasov-Maxwell
dispersion relationωv−iγv, we must separately account for
the error due to the differences in the real frequencies and the
error due to the absence of damping in Hall MHD. Discrep-
ancies in the real mode frequencies may yield Hall MHD re-
sults for a turbulent cascade that are quantitatively incorrect
but still qualitatively correct with respect to a kinetic solu-
tion. But without capturing the often strong kinetic damping
(via wave-particle interactions) occurring in a weakly colli-
sional plasma, the Hall MHD model may give results for tur-
bulence in the plasma that are both quantitatively and quali-
tatively incorrect.

We therefore will present two measures of comparison:
first, the normalized difference between the Hall MHD fre-
quency and the real part of the complex kinetic frequency
1ω≡|ωh−ωv|/ωv; and, second, the normalized collisionless
damping rateγv/ωv in linear kinetic theory. In general , a
normalized damping rate ofγ /ω=1/(2π)'0.16 is sufficient
to reduce the amplitude of a wave mode bye−1

'0.37 over
a single wave period. The position is taken in this work that
any damping rateγ /ω≥0.1 is sufficient to cause qualitative
differences in the dynamics.

5 Results

5.1 Cold ion limit, Ti/Te�1

First, we wish to verify that standard Hall MHD and Vlasov-
Maxwell kinetic theory do agree in the limitTi�Te. We
choose the plasma betaβ0=1 and takeTi/Te=10−3, yielding
an ion plasma beta in the kinetic theoryβi'2×10−3. Fig-
ure 1 presents real frequencies (dashed line for Hall MHD,
dotted line for Vlasov-Maxwell) in the top panel and damp-
ing rates (solid line for Vlasov-Maxwell) in the bottom panel
for parallel wavenumbers 10−2

≤k‖di≤10 and perpendicular
wavenumberk⊥di=10−2. The solution labeled F is the fast
magnetosonic wave atk‖di�1 and the parallel whistler wave
at k‖di&1. At k‖di�1, the solution A is the shear Alfvén
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Fig. 1. Top: Normalized real frequencyω/�i vs. parallel
wavenumberk‖di from Hall MHD (dashed) and kinetic theory (dot-
ted) for the fast (F), Alfv́en (A), and slow (S) modes for the param-
etersβ0=1, Ti/Te=10−3, andk⊥di=10−2. Inset is an expanded
view of the boxed region. Bottom: Normalized damping ratesγ /ω

vs. parallel wavenumberk‖di for the same three low-frequency
modes from kinetic theory (solid). Values above the dashed line
γ /ω=0.1 indicate strong linear kinetic damping.

wave and the solution S is the slow wave, often termed the
ion acoustic wave in this cold ion limit. In Fig.1, the inset in
the top panel shows an expanded view of the region around
k‖di∼0.1, demonstrating that neither the Hall MHD nor the
kinetic solutions cross. An examination of the linear kinetic
eigenfunctions (not shown) shows that the A and S solution
branches undergo a mode conversion (Swanson, 1989; Stix,
1992) atk‖di'0.09, exchanging physical characteristics with
each other. Thus, atk‖di&0.1, the A branch corresponds to
the slow wave and the S branch corresponds to the ion cy-
clotron wave. This mixing of the A and S branches occurs
commonly in Hall MHD (Krauss-Varban et al., 1994; Yoon
and Fang, 2008). In this limit Ti�Te, the real frequencies
for all three modes are in excellent agreement; damping is
weak for all modes over this range except for the S branch at
k‖di>3, due to cyclotron damping of the corresponding ion
cyclotron waves.

Figure 2 presents real frequencies and damping rates
for perpendicular wavenumbers 10−2

≤k⊥di≤10 and parallel
wavenumberk‖di=10−2. The Hall MHD slow wave solution
S agrees well with the weakly damped kinetic solution. The
Alfv én wave mode A also shows good agreement, but after it
transitions to the kinetic Alfv́en wave atk⊥di∼1, damping
via the Landau resonance becomes significant atk⊥di>4.
The fast wave solution F from kinetic theory, on the other
hand, deviates from the Hall MHD solution atk⊥di>0.5;

Fig. 2. Top: Normalized real frequencyω/�i vs. perpendicu-
lar wavenumberk⊥di from Hall MHD (dashed) and kinetic theory
(dotted) for the fast (F), Alfv́en (A), and slow (S) modes for the pa-
rametersβ0=1, Ti/Te=10−3, andk‖di=10−2. Bottom: Normal-
ized damping ratesγ /ω vs. perpendicular wavenumberk⊥di for the
same three low-frequency modes from kinetic theory (solid).

here the numerical solver used is unable to follow the fast
wave root as it undergoes a mode conversion into an ion
Bernstein mode. Bernstein waves arise due to finite Larmor
radius effects that have no counterpart in cold plasma theory
and that are not described by Hall MHD (Swanson, 1989);
the impact of the ion Bernstein waves is discussed at length
in Sect.5.3.

Despite some of these difficulties with ion Bernstein waves
and non-negligible kinetic damping, Figs.1 and2 bear out
the general finding (Hirose et al., 2004; Ito et al., 2004) that
Hall MHD is a valid limit of kinetic theory in the cold ion
approximation,Ti�Te.

5.2 Finite ion temperatureTi

Next, we explore the limit of warm ions relevant to most
space and astrophysical plasmas. We takeβ0=1 and
Ti/Te=1, giving an ion plasma beta in the kinetic theory
βi=1. Figure3 presents real frequencies (top) and damp-
ing rates (bottom) for parallel wavenumbers 10−2

≤k‖di≤10
and perpendicular wavenumberk⊥di=10−2. The frequency
of the kinetic fast wave F (dotted) is well reproduced by Hall
MHD solution F’ (dashed), and its damping is weak except
for a small region aroundk‖di∼2×10−2. Comparison of the
slow and Alfv́en wave solutions demonstrates some of the
complications arising in a comparison of Hall MHD to ki-
netic theory as described in Sect.4.1. The kinetic slow wave
solution S (dotted) has a phase speed that is faster than that

www.nonlin-processes-geophys.net/16/219/2009/ Nonlin. Processes Geophys., 16, 219–232, 2009
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Fig. 3. Top: Normalized real frequencyω/�i vs. parallel
wavenumberk‖di for the Hall MHD (dashed) fast (F’), Alfv́en (A’),
and slow (S’) modes and for the kinetic theory (dotted) fast (F),
Alfv én (A), and slow (S) modes for the parametersβ0=1,Ti/Te=1,
andk⊥di=10−2. Inset is an expanded view of the boxed region.
Bottom: Normalized damping ratesγ /ω vs. parallel wavenumber
k‖di for the same three low-frequency modes from kinetic theory
(solid).

of the Alfvén wave solution A (dotted) of kinetic theory (this
is perhaps more easily seen Fig.4); the anisotropic ion pres-
sure response in the kinetic theory that leads to this curious
result (Ballai et al., 2002) is not captured by the isotropic
equation of state used in the standard Hall MHD model. But
this error is overshadowed by a far more serious discrepancy
between Hall MHD and kinetic theory: at finite ion tempera-
ture the kinetic slow wave S (dotted) – the ion acoustic wave
– is heavily damped withγv/ωv∼1, yet a fluid theory such
as Hall MHD does not account for this damping. Therefore,
at finite ion temperature the Hall MHD slow wave represents
an unphysical, spurious wave that does not exist in a weakly
collisional plasma.

The second complication apparent in Fig.3 is the mixing
of the modes between the solution branches of kinetic theory
and those of Hall MHD (Krauss-Varban et al., 1994; Yoon
and Fang, 2008). The inset in the top panel of Fig.3 shows
that the Hall MHD solutions do not cross, however the corre-
spondence between kinetic A and S branches and Hall MHD
A’ and S’ branches changes with increasingk‖di : atk‖di�1,
the solution A (dotted) of kinetic theory agrees closely with
the Hall MHD solution A’ (dashed); but atk‖di>0.1, the so-
lution A (dotted) from kinetic theory (the ion cyclotron wave)
appears to correspond to the Hall MHD solution S’ (dashed)
and the kinetic solution S (dotted) appears to correspond
most closely with the Hall MHD solution A’. This mixing up

Fig. 4. Top: Normalized real frequencyω/�i vs. perpendicular
wavenumberk⊥di for the Hall MHD (dashed) fast (F’), Alfv́en
(A’), and slow (S’) modes and for the kinetic theory (dotted) fast
(F), Alfvén (A), and slow (S) modes for the parametersβ0=1,
Ti/Te=1, andk‖di=10−2. Bottom: Normalized damping rates
γ /ω vs. perpendicular wavenumberk⊥di for the same three low-
frequency modes from kinetic theory (solid).

of fluid and kinetic modes complicates any attempted com-
parison of the two models, but a careful matching of the most
similar wave modes will yield a fair evaluation. Again, how-
ever, the major discrepancy between the models is that Hall
MHD does not capture the strong kinetic damping of the ki-
netic S branch at all scales and of the solution A from kinetic
theory (the ion cyclotron wave) atk‖di>0.4 .

Figure 4 presents real frequencies and damping rates
for perpendicular wavenumbers 10−2

≤k⊥di≤10 and parallel
wavenumberk‖di=10−2 for the warm ion case withβ0=1
andTi/Te=1. The kinetic branch S is once again strongly
damped by the warm ions, so Hall MHD supports a spuri-
ous, undamped slow wave mode S’. The kinetic branch A,
representing MHD Alfv́en waves and kinetic Alfv́en waves,
is quite well represented over the entire wavenumber range,
with some discrepancy neark⊥di∼1. The kinetic fast wave
solution F is well matched by the Hall MHD fast wave so-
lution F’, with only a slight deviation, fork⊥di.0.4. At
k⊥di=0.4, however, the kinetic branch F goes through a
mode conversion to become an ion Bernstein wave, a situ-
ation discussed at length in Sect.5.3.

In summary, at finite ion temperature, Hall MHD does a
good job modeling the kinetic fast wave branch F for nearly
parallel wave vectors and the kinetic Alfvén wave branch for
nearly perpendicular wave vectors. But, it fails to capture
the strong kinetic damping of the slow mode branch in all
cases and of the Alfv́en branch in the nearly parallel case.
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The correspondence of the Hall MHD fast wave branch F’ at
nearly perpendicular wave vectors to a series of kinetic ion
Bernstein waves is discussed next.

5.3 Ion Bernstein waves

The fast solution F from kinetic theory in Fig.4 deviates
greatly from the Hall MHD fast solution F’ atk⊥di&0.4.
The cause of this deviation is the conversion, in kinetic the-
ory, from an MHD fast wave to ann=1 ion Bernstein wave
(with ω<�i) on the dispersion surface of solution branch F.
Not shown in Fig.4 is the conversion of ann=1 ion Bern-
stein wave (withω>�i) to a continuation of the fast wave at
ω>�i ; this wave lies on a different dispersion surface from
branch F. Mode conversion from fast wave solutions to ion
Bernstein waves at nearly perpendicular propagation is a well
known physical phenomenon (Swanson, 1989; Stix, 1992; Li
and Habbal, 2001). Here we aim to evaluate the accuracy of
the Hall MHD description of the kinetic plasma behavior in
this regime.

In Fig. 5 are presented the real frequencies (top panel) and
damping rates (bottom panel) for the Hall MHD fast branch
F’ (dashed), the kinetic fast branch F (dotted), and the kinetic
n=1 throughn=9 ion Bernstein solutions for perpendicu-
lar wavenumbers 10−2

≤k⊥di≤10 and parallel wavenumber
k‖di=5×10−2 for β0=1 andTi/Te=1. Note that each of the
ion Bernstein solutions lie on distinct dispersion surfaces. In
the top panel, the relation between the Hall MHD branch F’
and the series of ion Bernstein wave solutions is clear, yet the
summed effect of these kinetic wave modes differs signifi-
cantly in a number of ways from the Hall MHD fast branch
solution F’. First, between each of the ion Bernstein solutions
lies a frequency gap in which no solution exists. Second, the
real frequency of the ion Bernstein waves (and thus the per-
pendicular phase velocityω/k⊥) is only coincident with the
frequency given by Hall MHD at a single point for each of
the then≥2 Bernstein modes. Finally, although the perpen-
dicular group velocity (the slope of the plot∂ω/∂k⊥) of the
Hall MHD F’ solution is always positive and increasing with
k⊥di , each of the ion Bernstein waves have a positive but
smaller group velocity at lowerk⊥di , and a negative group
velocity at higherk⊥di , corresponding to a backward wave
(Stix, 1992) at these scales. The lower panel of Fig.5 shows
that the kinetic fast branch F andn=1 throughn=9 ion Bern-
stein waves are not strongly damped. Our conclusion is that
the kinetic dynamics of the fast branch for nearly perpendic-
ular wave vectors in a weakly collisional plasma is not well
represented by Hall MHD.

5.4 Comparison on the(k⊥, k‖) plane

The axisymmetric nature of any uniform magnetized plasma
about the direction of a uniform, straight magnetic fieldB0
reduces the dependence on the wave vectork to its two
components perpendicular and parallel to the magnetic field,

Fig. 5. Top: Normalized real frequencyω/�i vs. perpendicular
wavenumberk⊥di for the Hall MHD fast mode (F’, dashed), the
kinetic theory fast mode (F, dotted), and the kineticn=1 to n=9
ion Bernstein wave modes for the parametersβ0=1, Ti/Te=1, and
k‖di=5×10−2. Bottom: Normalized damping ratesγ /ω vs. per-
pendicular wavenumberk⊥di for the modes from kinetic theory,
the fast (dotted) andn=1 ton=9 ion Bernstein wave modes.

(k⊥, k‖); this is clearly seen in the dispersion relations of
both the Hall MHD and the Vlasov-Maxwell systems with
their dependence on the parametersk⊥di andk‖di . There-
fore, plots of the real frequency difference1ω and of the
kinetic damping rateγv/ωv on the plane(k⊥, k‖) provide ex-
cellent quantitative measures of the fidelity of Hall MHD to
the kinetic physics in a weakly collisional plasma over a wide
range of scales.

In panel (a) of Fig.6, the normalized real frequency dif-
ference between Hall MHD and Vlasov-Maxwell kinetics,
1ω≡|ωh−ωv|/ωv, is plotted for the Alfv́en solution over
10−2

≤k⊥di≤10 and 10−2
≤k‖di≤10; in panel (b) is plotted

the normalized linear kinetic damping rate,γv/ωv. Plasma
parameters relevant to the near-earth solar wind,βi=1 and
Ti/Te=1, are chosen. Areas of panel (a) with1ω>0.1
are shaded to highlight the regions of parameter space over
which the frequency using Hall MHD deviates significantly
from the kinetic value; as evident, the Alfvén solution from
Hall MHD2 deviates substantially from the Vlasov-Maxwell
frequency atk‖di&1 and moderately atk⊥di∼1. Areas of
panel (b) withγv/ωv>0.1 are shaded to denote regions of
parameter space over which the linear collisionless damping

2Because of the tendency for the kinetic modes to correspond to
different fluid modes as parameters vary, as discussed in Sect.4.1,
in this paper the calculation of1ω at each point uses the Hall MHD
mode that the yields the minimum value of this difference.
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Fig. 6. (a)Normalized difference in the real frequency1ω≡|ωh−ωv |/ωv for the Alfvén wave branch on the(k⊥, k‖) plane forβi=1 and
Ti/Te=1. Shading denotes values of1ω>1, corresponding to a parameter regime where Hall MHD differs significantly from Vlasov-
Maxwell kinetic theory.(b) The corresponding normalized linear damping rateγv/ωv , where shading of areas withγv/ωv>1 highlights
regimes in which the collisionless damping of kinetic theory is substantial.

of this mode in Vlasov-Maxwell kinetic theory is strong. It is
evident that fork‖di&1, the regime corresponding to ion cy-
clotron waves, strong damping occurs via the ion cyclotron
resonance; it seems likely that this strong damping, due to
wave-particle interactions not captured by Hall MHD, is also
responsible for the poor agreement in real frequency. Also
evident in panel (b) is the increasingly strong damping of the
Alfv én solution atk⊥di�1 andk⊥�k‖; this is the regime of
kinetic Alfvén waves in which damping occurs via Landau
resonance with the electrons.

The analogous calculation for the fast wave branch is pre-
sented in Fig.7, with the frequency difference1ω plotted
in panel (a) and the kinetic damping rateγv/ωv in panel (b),
again for plasma parametersβi=1 andTi/Te=1. Note that
this calculation employs only the kinetic solutions on the dis-
persion surface of the F branch and does not consider the
n≥1 ion Bernstein wave dispersion surfaces. The real fre-
quency derived from Hall MHD differs from the kinetic value
in two regimes: a moderate difference occurs atk‖di�1 and
0.05.k⊥di.0.5; and the difference becomes more dramatic
atk⊥di&1 andk‖di.1 due to the mode conversion in kinetic
theory of the F branch from the fast wave to an ion Bernstein
wave in this regime. The kinetic damping, shown in panel
(b), is relatively weak except for the regime of the ion Bern-
stein waves,k⊥di&1 andk‖di.1; these waves are strongly
damped unlessk‖di�1 (Swanson, 1989).

The slow wave branch suffers very strong linear collision-
less damping in a plasma with finite ion temperature, such
as the solar wind, over the entire range of scales considered
in Figs.6 and7. A comparison of the real frequency in this
case would be meaningless since a wave with a damping rate
γ /ω∼1 is so heavily damped that it can scarcely be consid-
ered a wave.

5.5 Plasma parameterβi and Ti/Te variations

A very important aspect of the behavior of weakly collisional
plasmas is made clear by the damping rate plots in panel (b)
of both Figs.6 and7: at small length scales, with wavenum-
berskdi&1, there exist only four regimes in which undamped
wave modes occur. These are:

1. Kinetic Alfv én Waves: The Alfv́en branch solution of
Vlasov-Maxwell kinetic theory in the nearly perpendic-
ular regimek‖di�1 andk⊥di&1 corresponds to the ki-
netic Alfvén wave mode (KAW) .

2. Parallel Whistler Waves: The fast branch solution in the
regimek‖di&1 andk⊥di�1 corresponds to the whistler
wave with a nearly parallel wave vector (PW).

3. Oblique Whistler Waves: The fast branch solution in the
regimek‖di&1 andk⊥di&1 corresponds to the whistler
wave with an oblique wave vector (OW).

4. Ion Bernstein Waves: The fast branch solution in the
nearly perpendicular regimek‖di�1 andk⊥di&1 cor-
responds to an ion Bernstein wave (IBW).

Since the plasma turbulence at small length scales – for ex-
ample, the dissipation range in the solar wind – is likely to
consist of one, or a mixture, of these four undamped modes,
we would like to explore the ability of Hall MHD to repro-
duce their linear wave frequencies accurately (relative to lin-
ear Vlasov-Maxwell kinetic theory). We note, however, that
the ion Bernstein wave is an electrostatic wave mode (Swan-
son, 1989; Stix, 1992), and therefore has no corresponding
magnetic field fluctuation; since the solar wind dissipation
range is observed to have magnetic fluctuations (Goldstein
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Fig. 8. (a)Normalized difference in the real frequency1ω for the kinetic Alfvén wave atk⊥di=1 andk‖di=0.1 on the plane(βi , Ti/Te).
(b) The corresponding normalized linear damping rateγv/ωv .

et al., 1995; Leamon et al., 1998; Smith et al., 2006; Hamil-
ton et al., 2008), we do not further pursue the ion Bern-
stein waves here, but rather we focus solely on the first three
modes, all of which are electromagnetic.

For a kinetic Alfv́en wave atk⊥di=1 andk‖di=0.1, de-
noted by the triangle (KAW) in panel (b) of Fig.6, we plot
the frequency difference1ω and kinetic damping rateγv/ωv

over 0.01≤βi≤100 and 0.01≤Ti/Te≤100 in panels (a) and
(b) of Fig. 8. The kinetic Alfv́en wave appears to be well
reproduced by Hall MHD forβi<1, but is less accurately de-
termined forβi&1. The linear kinetic damping of the mode
appears to become strong only forβi&1 andTi/Te.1.

For a parallel whistler wave (on the fast wave branch) at
k⊥di=0.1 andk‖di=1, denoted by the triangle (PW) in panel

(b) of Fig. 7, we plot the frequency difference and kinetic
damping rate on the(βi, Ti/Te) plane in panels (a) and (b)
of Fig. 9. This parallel whistler wave appears to be well re-
produced by Hall MHD over all parameter space(βi, Ti/Te)

except forβi&3 andTi/Te&0.1; in this problematic regime,
the whistler wave mode converts to an ion Bernstein wave
and is therefore both strongly damped and poorly described
by Hall MHD.

For an oblique whistler wave (on the fast wave branch) at
k⊥di=1 andk‖di=1, denoted by the triangle (OW) in panel
(b) of Fig. 7, we plot the frequency difference and kinetic
damping rate on the(βi, Ti/Te) plane in Fig.10. The re-
sults are very similar to those for the parallel whistler wave,
with strong damping, and correspondingly poor agreement
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in linear real frequency, occurring over the regimeβi&1 and
Ti/Te&0.1.

With the exception of the regimeβi&1 andTi/Te&1 for
the kinetic Alfvén wave, where Hall MHD predicts a quan-
titatively different real frequency from kinetic theory, all of
the differences between Hall MHD and kinetic theory occur
when the damping becomes strong, withγv/ωv>0.1. That
the weakly damped wave modes should be well represented
by Hall MHD is precisely what is expected – the fluid limit of
the kinetic plasma physics is valid only when kinetic effects,
such as collisionless damping by wave-particle interactions,
are negligible (Ballai et al., 2002).

6 Discussion

The detailed comparison of linear eigenfrequencies pre-
sented in Sect.5 provides a solid quantitative foundation
upon which to construct a thorough discussion of the cen-
tral question of this paper:How does choosing the standard
Hall MHD system affect the description of the dynamics and
evolution of turbulence in a weakly collisional plasma?

One functional definition of turbulence is that it is nothing
more than the sum of all nonlinear wave-wave couplings that
serve to transfer energy from one spatial scale to another; in a
three-dimensional physical system such as the solar wind, the
generally accepted picture is that energy in large scale fluc-
tuations is transferred via these nonlinear interactions to ever
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smaller scales, cascading until eventually reaching a scale at
which some dissipation mechanism damps the fluctuations,
ultimately thermalizing their energy (seeSchekochihin et al.,
2009andHowes, 2008for a theoretical picture of how this
process may occur in a weakly collisional plasma). Three im-
portant questions essentially frame the frontier of research on
kinetic turbulence, and are particularly relevant to an evalua-
tion of the Hall MHD description for turbulence in a kinetic
plasma:

1. What are the characteristic wave modes of the turbu-
lence at scaleskdi&1?

2. Is the collisionless damping of the turbulence at scales
kdi&1 well described by linear damping rates?

3. Are the nonlinear wave-wave couplings that drive the
turbulent cascade altered by the presence of unphysical
wave modes?

6.1 The wave modes comprising kinetic turbulence

By exploiting the highly super-Alfv́enic speed of the solar
wind flow, the temporal fluctuations measured by in situ
spacecraft can be mapped, according to the Taylor hypoth-
esis (Taylor, 1938), to spatial fluctuations. Thus, the break in
the solar wind magnetic energy spectrum, typically observed
at aroundf ∼0.4 Hz, is thought to correspond to some char-
acteristic length scale in the plasma, perhaps the ion inertial
lengthdi or the ion Larmor radiusρi (Leamon et al., 1998;
Howes et al., 2008a; Hamilton et al., 2008). At frequen-
cies above this spectral break, corresponding to yet smaller
spatial scales, the magnetic energy spectrum appears steeper
(Smith et al., 2006) – this regime is denoted the “dissipation
range.”

The kinetic theory results presented in Sect.5.4 clearly
demonstrate that, for a weakly collisional plasma with a finite
ion temperature – such as the solar wind – all slow branch
modes, the ion cyclotron wave of the Alfvén branch, and
the fast branch ion Bernstein wave atk‖di&0.1 are strongly
damped. Only three weakly damped electromagnetic wave
modes exist at scaleskdi&1: the kinetic Alfv́en wave, the
parallel whistler wave, and the oblique whistler wave. It
seems unlikely, even in a nonlinearly turbulent plasma, that
wave modes with strong linear kinetic damping rates could
be responsible for the dissipation range fluctuations. The lin-
ear wave properties are quite likely to play a large role in the
turbulent dynamics, in particular at the small length scales
kdi&1 where the amplitude of the magnetic fluctuations is
small compared to the magnitude of the local interplanetary
magnetic field (Howes et al., 2008a). This line of reasoning
suggests that the fluctuations in the dissipation range must
consist of one, or perhaps a mixture, of the three undamped
electromagnetic wave modes. The finding of Sect.5.5 sug-
gests that, for typical solar wind parameters withβi.1, Hall
MHD generally does an adequate job of describing these un-
damped wave modes.

6.2 Kinetic damping rates

How effective are linear collisionless damping mechanisms
in a turbulent plasma where nonlinear interactions are con-
tinually transferring energy from one wave mode to another?
This question essentially weighs the importance of linear ki-
netic wave-particle interactions versus nonlinear fluid wave-
wave interactions in turbulent, weakly collisional plasma.
According to models for turbulent fluids, the energy in a par-
ticular wave mode will be transferred to other wave modes
through nonlinear interactions on some characteristic nonlin-
ear time scale. The theory for strong incompressible MHD
turbulence takes this nonlinear timescale to be the eddy-
turnover time in the perpendicular direction (Goldreich and
Sridhar, 1995); the central conjecture of this theory is that, as
the turbulent energy cascades to smaller scales, this nonlin-
ear timescale remains in an approximate critical balance with
the linear Alfv́en wave period, and consequently predicts an
anisotropic cascade to high perpendicular wavenumbers that
is supported by numerical evidence (Cho and Vishniac, 2000;
Maron and Goldreich, 2001) and is consistent with a care-
ful analysis of solar wind turbulence observations (Horbury
et al., 2008).

The key question in weakly collisional plasmas is whether
or not this nonlinear transfer suppresses the linear collision-
less damping via wave-particle interactions. Conversely, it
is possible that nonlinear wave-wave interactions can trans-
fer energy into a strongly damped mode, ultimately lead-
ing to energy loss from the turbulent fluctuations through
linear wave-particle interactions of that strongly damped
mode. But it is conceivable that nonlinear couplings involv-
ing strongly damped modes are inhibited by an impedance
mismatch, thus preventing energy loss in such a manner. Ul-
timately, of course, the turbulence must be dissipated via ki-
netic damping mechanisms (Howes, 2008); in this case, an
evaluation of both the rate of energy transfer by the turbulent
cascade and the rate of kinetic damping is necessary to deter-
mine the dissipation as a function of wavenumber, as in the
cascade model ofHowes et al.(2008a).

These important questions will most likely only be an-
swered through detailed nonlinear kinetic numerical simula-
tions. On this front, turbulence simulations using undamped
fluid models, such as Hall MHD, will provide valuable com-
parison points for analysis and interpretation of the kinetic
simulation results.

Until such work can provide further guidance, it seems a
reasonable strategy to assume the applicability of the lin-
ear kinetic damping rates to turbulent plasmas. In fact,
the first such nonlinear kinetic simulation of turbulence at
the scale of the ion Larmor radius has been well fit by a
model assuming linear damping rates (Howes et al., 2008c).
The plasma parameters chosen for this study, however, pre-
dicted rather weak linear collisionless damping over the
range of scales simulated, so we must await further simu-
lations in more strongly damped parameter regimes to test
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more thoroughly the effectiveness of the kinetic damping in
a turbulent plasma. The study did show, however, that the
damping via kinetic mechanisms in the turbulent plasma was
not stronger than the linear prediction, a result that is not ob-
vious a priori.

Despite the many unanswered questions about damping in
kinetic turbulence, there is no question that the dissipation of
turbulence in a weakly collisional plasmacannotbe studied
by Hall MHD, or any standard fluid model. The viscous and
resistive dissipation terms used in such models are merely ad
hoc fluid closures that do not accurately represent the under-
lying kinetic mechanisms. Only a much more complicated
model, such as a Landau-fluid model (Snyder et al., 1997;
Passot and Sulem, 2007), is capable of adequately represent-
ing the kinetic dissipation. The steeper spectral index of the
magnetic energy spectrum in the dissipation range of solar
wind turbulence has been variously attributed to either ki-
netic dissipation (Coleman, 1968; Leamon et al., 1999; Gary,
1999; Howes et al., 2008a) or to wave dispersion (Stawicki
et al., 2001; Krishan and Mahajan, 2004; Galtier, 2006). If
dissipation does play a significant role, further investigation
requires a kinetic model. It has even been argued that, with-
out a kinetic model to determine that kinetic dissipation is
negligible for a specific case, the use of a fluid model such as
Hall MHD is unjustified (Howes et al., 2008b).

6.3 Nonlinear wave-wave interactions

Hall MHD has proven to be a valuable framework for the
study of a number of plasma phenomena, in particular mag-
netic reconnection. For example, the finding that whistler
waves mediated a faster reconnection rate (Mandt et al.,
1994) paved the way in identifying the importance of the Hall
term in magnetic reconnection. Such applications depend on
the accurate description of the linear properties of a particu-
lar wave mode. But turbulence is consequence of nonlinear
wave couplings; to provide a useful framework for kinetic
turbulence, a model must accurately describe the behavior
not of just one mode, but of all modes3.

Because the turbulent dynamics and evolution will depend
on the nonlinear couplings between all possible wave modes,
the existence of certain undamped wave modes in Hall MHD
– modes that are strongly damped in a weakly collisional
plasma according to kinetic theory – is troubling. These spu-
rious wave modes effectively provide additional degrees of
freedom to the turbulence that would otherwise be strongly
impeded in a kinetic plasma. Consider, for example, waves
in the parameter regimek‖di&1 in a plasma withβi=1 and
Ti/Te=1 as presented in Fig.3 of Sect.5.2. In Vlasov-

3The nonlinear interactions in a turbulent plasma will depend
not only on the complex eigenfrequencies of the normal modes but
on their eigenfunctions as well. Although this paper restricts its fo-
cus to the frequencies, a detailed comparison of all mode properties
at kdi=0.1 found that the kinetic mode properties are not always
well represented by Hall MHD (Krauss-Varban et al., 1994).

Maxwell kinetic theory, both the Alfv́en and slow branch
modes are heavily damped in this regime, leaving only fast
branch waves available. But the Hall MHD model supports
undamped Alfv́en and slow waves. It seems unlikely that
the nonlinear dynamics would be the same in the presence of
three undamped modes as when only the fast mode is avail-
able, but just how the presence of the unphysical modes will
alter the nonlinear wave-wave couplings is unclear. Here,
once again, a promising avenue for progress is a detailed
study contrasting nonlinear couplings in the presence and ab-
sence of these spurious modes. A suite of nonlinear kinetic
simulations compared to Hall MHD simulations in the same
regime will provide valuable insight, identifying the regimes
of validity for which Hall MHD provides an adequate de-
scription.

Two arguments exist that may serve to diminish the im-
pact of the spurious undamped waves in Hall MHD. First,
as shown in Fig.4, in the limit thatk⊥�k‖, the fast wave
frequency is much higher than the Alfvén wave frequency;
since the strength of nonlinear interactions typically dimin-
ishes rapidly as the wave mode frequencies become widely
separated, the presence of a spurious wave mode may neg-
ligibly impact the turbulent couplings in such a case. Of
course, in the opposite limitk⊥�k‖, seen in Fig.3, all three
wave modes have similar frequencies fork‖di.1. A sec-
ond argument, derived in the gyrokinetic limit4 k⊥�k‖ and
ω��i , shows that the turbulent cascade of Alfvén waves
does not exchange energy with the slow wave cascade ex-
cept in the regime where the perpendicular scale is near the
ion Larmor radiusk⊥ρi∼1 (Schekochihin et al., 2009). Thus,
the existence of a spuriously undamped slow wave may not
influence the Alfv́en wave cascade. To explore the exchange
of energy between the separate cascades at the scale of the
ion Larmor radiusk⊥ρi∼1, however, will certainly require
nonlinear kinetic simulations.

7 Conclusions

As a model that extends beyond the limits of MHD, Hall
MHD has seen increasing use in recent years as a framework
for describing turbulence in weakly collisional plasmas, such
as the near-earth solar wind. Its applicability to turbulence in
kinetic systems has been called into question (Krauss-Varban
et al., 1994; Howes et al., 2008b), so a thorough evaluation
of the limitations of Hall MHD in this context is desirable.
This paper takes the first step in this process by quantitatively
comparing the real linear eigenfrequencies of standard Hall
MHD with the complex linear eigenfrequencies of Vlasov-
Maxwell kinetic theory.

Previous work has shown that Hall MHD is a rigorous
limit of kinetic theory only in the cold ion limit satisfying
Ti�Te, andk‖vt i�ω�k‖vte (Ito et al., 2004; Hirose et al.,

4The fast wave branch is ordered out of the system in the gy-
rokinetic approximation.
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2004); the fluid description is only valid when wave-particle
interactions and finite-Larmor-radius effects are negligible
(Ballai et al., 2002). The quantitative comparisons with ki-
netic theory in Sect.5 bear out the general finding that Hall
MHD is a valid limit of Hall MHD in the cold ion limit
Ti�Te; for finite ion temperatureTi∼Te, however, the lack
of collisionless damping in Hall MHD leads to undamped
wave modes that do not exist in a weakly collisional plasma.

Three key issues are identified regarding the use of Hall
MHD to describe turbulence in kinetic plasmas: (1) what are
the wave modes comprising the turbulence at scaleskdi&1?;
(2) are the collisionless damping rates from linear kinetic the-
ory applicable in a nonlinearly turbulent plasma?; and (3) are
the nonlinear wave-wave mode couplings inherent in turbu-
lence altered by the presence of spurious, undamped wave
modes in Hall MHD? In a weakly collisional plasma, the
only three undamped electromagnetic wave modes that ex-
ist at scaleskdi&1 are the kinetic Alfv́en wave, the parallel
whistler wave, and the oblique whistler wave; each of these
waves is generally well-described by Hall MHD forβi.1.
To determine the effective collisionless damping in a turbu-
lent plasma, a research program using nonlinear numerical
simulations to contrast the predictions of a kinetic approach
with those of a fluid approach is the most promising path for-
ward. For studies focusing on the dissipation of turbulence
and the thermalization of the turbulent energy, a kinetic de-
scription is certainly required. Both fluid Hall MHD and ki-
netic nonlinear numerical simulations will be instrumental in
shedding light on the question of whether the presence of
the spuriously undamped waves in Hall MHD alters the non-
linear couplings of the available wave modes, thus changing
the dynamics and evolution of the turbulence due to unphys-
ical effects. A study focused on the turbulent dynamics at
the characteristic length scales in the plasma, such as the ion
Larmor radius or the ion inertial length, is the natural start-
ing point for such a numerical investigation. In conclusion,
although nonlinear kinetic simulations will be indispensable
for the study of turbulence at kinetic scales in weakly col-
lisional plasmas, Hall MHD will certainly continue to pro-
vide useful insights and valuable points for comparison in
the study of kinetic turbulence.
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