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Abstract. The limitations of Hall MHD as a model for turbu- the turbulent fluctuations and the inevitable conversion of
lence in weakly collisional plasmas are explored using quanthe fluctuation energy into plasma he&tfekochihin et al.
titative comparisons to Vlasov-Maxwell kinetic theory over 2009 Howes 2008.
a wide range of parameter space. The validity of Hall MHD  The simple fluid model of MHD is not sufficient to de-
in the cold ion limit is shown, but spurious undamped wave scribe this new regime of kinetic turbulence in the weakly
modes exist in Hall MHD when the ion temperature is finite. collisional solar wind plasma. The appealing simplicity of
It is argued that turbulence in the dissipation range of thethe Hall MHD model — an extension of MHD that main-
solar wind must be one, or a mixture, of three electromag-tains a fluid description while accounting for the Hall terms
netic wave modes: the parallel whistler, oblique whistler, orin Ohm’s Law, leading to dispersive behavior at small scales
kinetic Alfvén waves. These modes are generally well de— has lead a number of investigators to use it to study tur-
scribed by Hall MHD. Determining the applicability of linear bulence at these small scale lengtBsébalin 1991 Huba
kinetic damping rates in turbulent plasmas requires a suite1994 Ghosh et al. 1996 Sahraoui et al.2003 Krishan
of fluid and kinetic nonlinear numerical simulations. Con- and Mahajan2004 Hori et al, 2005 Mininni et al, 2005
trasting fluid and kinetic simulations will also shed light on Dmitruk and Matthaeys2006 Servidio et al. 2007, with
whether the presence of spurious wave modes alters the nogome recommending Hall MHD as the preferred model for
linear couplings inherent in turbulence and will illuminate the study of solar wind turbulencélétthaeus et al2008.
the turbulent dynamics and energy transfer in the regime ofThe applicability of the Hall MHD model to turbulence in a
the characteristic ion kinetic scales. weakly collisional plasma such as the solar wind, however,
has been called into questiokldwes et al. 20080). Here
we investigate the limitations of the Hall MHD model for the
study of turbulence in kinetic plasmas.

Hall MHD is a rigorous limit of the kinetic behavior in a

Understanding the dynamical evolution of the turbulence inweakly collisional plasma only if all of the following con-
the solar wind and its thermodynamic consequences for thélitions are satisfiedl; < 7., andkv; Kw<kjve (Ito et al,
energy balance in the heliosphere is a major goal of helio2004. Although thiscold ion limitis not universally applica-
spheric physics. As the time resolution of in situ satellite ble to the turbulent solar wind, we nevertheless would like to
measurements of this turbulence is increased, ever smalléstimate quantitatively the error in using the fluid description
length scales of the turbulence are probed. We have nov@iven by Hall MHD rather than a kinetic description. Al-
reached a new frontier in the study of turbulence as we begithough a turbulent plasma inherently involves dynamically
to focus on the dynamics of the plasma turbulence at kineticsignificant nonlinear wave-wave interactions which drive the
scales — e.g., the ion Larmor radius. Understanding the turturbulent cascade of energy to small scales, we focus our at-
bulence at these small scales is critical because the kinetitention on the ability of compressible Hall MHD to repro-

plasma physics at these scales determines the dissipation 8¢/Ce the properties of the linear wave modes of the Vlasov-
Maxwell kinetic theory. If the linear physics described by

Hall MHD deviates from the kinetic description, then it is
Correspondence td5. G. Howes likely that the nonlinear wave-wave couplings that comprise
BY (gregory-howes@uiowa.edu) the turbulence will be incorrect as well.
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ap
Table 1. Definitions. m +V-(pu)=0 (1)
i au 1 1
variable Symbol U VU=-"Vp+ - (VxB)xB %)
- ot o 4p
Species s
Speed of light c 9B )
Mass ms W=V><[u><B—4L@(V><B)xB} 3)
Charge qs TP gi
Number Density ng d [ p
Temperature T di <,0V> (4)

Species Plasma Beta  B;=8rnn,T;/B?
where the substantial time derivativelisgdr=0,/0¢+u-V and

Plasma Frequency — wps=y/4mnsq2/my alum '
" P other terms are defined in Takle Although there exist nu-

Cyclotron Frequency  Qg=gsB/(mgc)

Thermal Velocity vis=/2T; /s merous variations of Hall MHD — e.g., employing a dou-

Alfv én Velocity va=B//Amn;m; ble adiabatic equation of state — this is the simplest com-
lon Larmor Radius 0i=vti/ 2 pressible system incorporating the Hall effect, and gener-
lon Inertial Length  dj=c/wpi=p;//Bi ally appears to be the most widely used in studies employ-

ing Hall MHD (Lighthill, 1960 Kuvshinoy, 1994 Mininni
et al, 2002 Ohsaki and Mahajar2004 Hirose et al. 2004
A comparison of the (complex) linear eigenfrequenciesServidio et al. 2007. We therefore refer to this particular
determined by compressible Hall MHD and Vlasov-Maxwell System astandardHall MHD.
kinetic theory provides a simple quantitative measure of the The linear dispersion relation for standard Hall MHD may
fidelity of the Hall MHD description to the kinetic physics be written in dimensionless form as
in a weakly collisional plasmaKrauss-Varban et a(19949 ~2 N2 [~4 ~2.0 . 2 32 32
have already published a very thorough comparison of th = kyds) ] [w —0"(kd)"(L+Po) +(kdi)" (ki) ﬁo]
Iow_—frequency wave 'mode propgrties of Hall MHD and ki- _ @2 (kd;)? (kyd;)? [5)2 _ (kdi)z,BO] (5)
netic theory, concluding that “fluid theory does not correctly
describe the mode structure and mode properties for moswhere the frequency is normalized to the ion cyclotron fre-
plasmas of interest in space physics”. Their study, howevergquency o=w/ 2;, the plasma beta iﬁozcsz/vf\ with the
evaluated the properties at a particular wavenurkbBe£0.1, sound speed defined by=yp/p. Itis clear from the form of
where thed; is ion inertial length — see Tablefor all sym-  this dispersion relation that the eigenfrequencies depend on
bol definitions. Because the turbulent cascade extends over@nly three dimensionless parameters: the normalized com-
large range of scales (more than four orders of magnitude irponents of the wave vector with respect to the mean mag-
the solar wind), the accuracy of Hall MHD in describing the netic field, k, d; andk;d;, and the plasma betgy. Thus,
turbulence must be assessed over a logarithmic scale in wawe=wy, (k_ d;, kd;, Po).
vector spaceék | , k). The six solutions of the standard Hall MHD dispersion Re-
This paper aims to identify the regimes of parameter spaceation (5) correspond to three distinct physical wave modes,
for which Hall MHD is not an accurate description. The Hall each with two counter propagating solutibngn the MHD
MHD and Vlasov-Maxwell systems are specified, and theirlimit kd; «1, the three solutions to Ecp)(give the usual fast,
properties briefly explored, in Sec&and3. In Sect4, some  Alfvén, and slow wave eigenmodes. We will refer to the con-
of the subtleties involved in quantitatively comparing Hall tinuation of each these modeskak >1 by their name in the
MHD to kinetic theory are discussed and the measures oMHD limit: thus, whistler waves correspond to the fast wave
comparison are defined. The results of the comparison argranch, and kinetic Alfén waves and ion cyclotron waves
presented in Seck, the implications of choosing the Hall are the extension of the Alén branch into the nearly per-
MHD model to describe kinetic turbulence are discussed inpendicular and nearly parallel kinetic regimes, respectively.
Sect.6, and the key findings are summarized in S&ct. Hirose et al(2004 andlito et al.(2004) found that the Hall
MHD dispersion Relation5) is a rigorous limit of Vlasov-
Maxwell kinetic theory if

0 <L Q; (6)
Consider a fully ionized, homogeneous plasma of protons )
and electrons threaded by a straight, uniform magnetic field"d only if
Bo. By retaining thel x B Hall term in Ohm’s law during the 1already factored out from Eq5] is a non-propagatingy=0
derivation of the MHD equations, the following form for the entropy mode, corresponding to pressure balance but a non-zero
compressible Hall MHD equations is obtained: entropy fluctuation. This mode, examinedHameiri et al.(2005,

is not discussed in this paper.

2 Standard Hall MHD
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T, < T, (7 3 Vlasov-Maxwell kinetic theory

w > kv (8) To test the Hall MHD model, we compare the real fre-
quency from its dispersion relation to the complex eigen-

o L kjve. (9)  frequencies from the Vlasov-Maxwell dispersion relation

. ) . o (Stix, 1992 assuming a homogeneous, fully ionized proton
Although Condition 6) is sufficient to recover the kinetic re- - 54 gectron plasma with isotropic Maxwellian equilibrium

sults, itis not a necessary condition under all circumstanCesgisyipytion functions and no drift velocities. This disper-

In a study of the fluid closures for collisionlegs plasmas,sion relation is solved numerically (s€uataert 1998 for
Chust and Belmor200§ suggested two constraints for va- 3 gescription of the code used to solve it), performing the
lidity: (&) appropriate modeling of the pressure term in the gegge function sums to 100 terms to ensure accurate results
momentum Eq.2); and (b) the negligibility of the pressure -5 nigh x| 4;. The linear Viasov-Maxwell dispersion rela-
gradient term in Ohm's law. They showed a sufficient condi-jo depends on five parameters: the normalized perpendic-
tion satzlsfylng the second'constrglnt undgr general conditions, 5 wavenumbet , d;, the normalized parallel wavenumber

1S (kpi.) </ ;. For the isotropic equation of state E€) ( kyd;, the ion plasma betg;, the ion to electron tempera-
used in standard Hall MHD, the scalar treatment of the PréStyre ratio7; /7, and the ratio of ion thermal velocity to the

sure means that the pressure gradient term in Ohm's law igaqq of lighty,; /c. The solution may then be expressed as
always negligible because Ohm’s law enters the mducuonw:wv(hdh kyd:, Bi. T/ To. vii /). A realistic ratio of pro-

Eq. @) only throughiits curl. _ . ton to electron massy;/m.=1836, is used. We note here

A complementary calculation shows that gyrokinetics ¢ in the non-relativistic limit,; <c relevant to the turbu-
(Rutherford and Friemarl968 Frieman and Cherl982 ot gojar wind, the low-frequency modes are rather insen-
Howes et al. 2009, a rigorous anisotropic limit of kinetic ;e to the specific value af,; /¢, so we choose the typical
theory fork <k andw<€2;, yields areduced (anisotropic) \5jyey,; /=104 for all comparisons in this paper. Just as in
version of Hall MHD in the limit7; <7, (Schekochihinetal. e Hall MHD case, we choose to label to the low-frequency
2009. The description of a collisionless plasma by a fluid ;56 mode solutions (low compared to the electron cyclotron
model, such as Hall MHD, is only valid when wave-particle ¢oqyencyq,) of Viasov-Maxwell kinetic theory by their
interactions and finite-Larmor-radius effects are negligible oo a5 in the MHD limit — the fast, Al&n ., and slow waves.
(Ballai et al, 2002); this is ensured by the Condition8)¢
©

Condition () is the cold ion approximation, meaning that 4 Comparing Hall MHD to kinetic theory
the ion temperature is negligible compared to the electron
temperature. In this limit, the sound spegdn the standard 4.1 Subtle aspects of the comparison
Hall MHD system is the ion acoustic spe€d=1,/m;. Con- o _ _ _ _
dition (8) means that the ion Landau resonance is negligibleTW0 complications arise when making a detailed comparison
because the ions are too cold, while Conditiyreans that  °f standard Hall MHD with Viasov-Maxwell kinetic theory.
the electron Landau resonance is negligible because the ele¢he first is the use of an isotropic equation of Stagit
trons are too hot. Implied by Conditiof)( but not explicitly ~ Standard Hall MHD. Conditiond) suggests that the electron
stated inlto et al. (2004, is the requirement that, p; <1 response is so fast that, if the ion temperature is |gn0rable,
(Ballai et al, 2002 the ions must be cold enough such that the pressure response may be correctly trea_ted as isothermal
the ion Larmor radius is small compared to the perpendicu-2nd isotropickiirose et al.2004. But for finite ion tempera-
lar scales of interest, and therefore finite-ion-Larmor-radiustures, the ion response is anisotropic and appears to be better
effects may be neglected. The ion acoustic Larmor radiugiescribed with a double polytropic equation of state,
ps=cs/ i, however, may be comparable to the perpendicu- _
lar scalek | ps>1. 4 ( PL ) —0 and & <M> =0

Although few weakly collisional plasmas in space or as- dt \ pBri—1 dt pYl
trophysical environments satisfy these very restrictive Condi-
tions 6)—(9), one may ask at what point will non-negligible

kmetlc. ?ﬁeCtS I_ead to a poor _desc_rlptlon by Hall M.HD' _In 1956 Abraham-Shrauner 973 Ballai et al, 2002. Even
this spirit, we wish to evaluate in this paper the practical lim- ) : . .
this more complicated closure, however, fails to yield a dis-

itations of the Hall MHD model for turbulence in a weakly . . . ; . -
. . . . persion relation that is a rigorous limit of kinetic theory for
collisional plasma, making quantitative comparisons of stan-

dard Hall MHD with Vlasov-Maxwell kinetic theory in the a yveakly collisional plasmg with a finite ion temperature
; . (Hirose et al. 2004. But, it appears that the slow wave
parameter regime relevant to turbulent solar wind.

branch is the most strongly affected by this complication;
for example, the one-dimensional collisionless dynamics of
ions along the magnetic field leads to a parallel sound speed

For example, a choice of; =2 andy;=3 corresponds to
the double adiabatic, CGL closure for the io@héw et al.
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C‘§:(Te+3T,~)/m,‘ (Hirose et al. 2004, and this produces fine ﬁo:vf/v%, where we take an isotropic sound speed
unusual behavior, even at MHD scalgg<1, suchasaslow v2=(T,+T;)/m;. Thus, the necessary relation is given by
wave with a faster phase speed than the &tfwave Ballai Bo=pBi(1+T;/T,)/(2T;/ T,). Note that, in the limifl; « T, in
et al, 2003. The closest connection between kinetic theory which Hall MHD s rigorously valid, the ion pressure is ig-
and the standard Hall MHD dispersion relation appears tonorable and so,— c,=+/T,/m;, the ion acoustic speed; for
occur by defining an isotropic sound spage=(7.+1;)/m;  turbulence in the solar wind, the ion and electron tempera-
(Hirose et al. 2004, so this is the definition taken here. Al- tures are comparablg~7,, but standard Hall MHD has no
though this choice is not entirely satisfactory, we will see thatmeans to account for distinct ion and electron temperatures,
the slow wave is strongly damped via wave-particle interac-so we merely quote the value &/ 7, used for the Vlasov-
tions when warm ions are present, so the differences arisingnaxwell calculation.
from the details of the fluid closure are often irrelevant.

The second complication in comparing Hall MHD with 4.2 Comparative measures
kinetics is that the linear fluid modes of Hall MHD cannot _ ) o _
be assigned a one-to-one correspondence with the linear ki@l MHD is a fluid theory of the behavior in a magnetized
netic modes over all parameter spa@eléwski et al, 1994 plgsma, and thgrefore dogs not accouqt for the effect of col-
Krauss-Varban et al1994 Yoon and Fang2008. For ex- I|§|onle§s dampmg; the eigenfrequencies of_ the Hall MHD
ample, in a study of low-frequency waves in the solar wind diSpersion Relatiors)) are realsw;,. Therefore, in comparing
upstream of Venugrlowski et al (1994 found a correspon- Wlth the_: comple_x eigenfrequencies of the Vlasov-Maxwell
dence to the fast Hall MHD mode at lgfvand to the Alfién dispersion relat|0raov_—iyv, we must separately acc_ount for
Hall MHD mode at highg, while the results were uniformly the error due to the differences in t_he r.eal frequenmesf and the
consistent with the fast mode of kinetic theory. A subsequen€Tor due to the absence of damping in Hall MHD. Discrep-
study comparing Hall MHD with kinetic theory found this &ncies in the real mode frequencies may yield Hall MHD re-
mixing of modes to be commonplad&rauss-Varban et al. sults for a tu.rbullent cascade that are quantltatl\{ely'lncorrect
1994, perhaps accounting for the surprising changes in thé)_ut still quglltanvely correct with respect to a klnetlc so_lu-
linear wave properties of Hall MHD at small scales noted in tion. But without capturing the often strong kinetic damping
a recent papeiHameiri et al, 2005. (y|a wave-particle interactions) occurring ina weakly colli-

This mixing of solutions to the linear dispersion relations Sional plasma, the Hall MHD model may give results for tur-

can lead to confusion about the connections between wavBUlence in the plasma that are both quantitatively and quali-

modes in different regimes of parameter space. For a chot@tively incorrect. _

sen set of plasma parametess 7;/T,, and v,;/c, each _ We therefore _W|II pr_esent two measures of comparison:

solution to the dispersion relation describes a manifold infirst. the normalized difference between the Hall MHD fre-

(Relw/ i1, k. d;. kyd;) space, termed a “dispersion surface” quency and the real part of the complex _k|net|c f.re.quency

(Andre, 1989. A single dispersion surface may describe 2@=lon—wy|/wy; and, second, the normalized collisionless

distinct wave modes (with different physical properties) in 4@MPping ratey, /e, in linear kinetic theory. In general , a

different regimes of wave vector space. For example, the'ormalized damping rate of/w=1/(27)=0.16 is sufficient

Alfvén dispersion surface describes the MHD Aliwvave (0 reduce the amplitude of a wave .mOdedel:O?? over

at large scalek( d; <1 andk;d; <1), the ion cyclotron wave & single wave period. The.posmpr.l is taken in this wprk_that

at small parallel scales ( d; <1 andkyd; >1), and the kinetic ~ 21Y dampmg rat@'/wzo..l is sufficient to cause qualitative

Alfv én wave at small perpendicular scalesd;>1//g; and  differences in the dynamics.

kjd; <«1) (Yoon and Fang2008. In this paper we avoid con-

fusion by naming the solution branch of the dispersion rela-g  Rasylts

tion according to the MHD mode to which it is topologically

connected along the dispersion surface. Thus, we willinvess 1 Cold ion limit, 7;/T,«1

tigate the properties of the slow (S), Atfa (A), and fast (F)

branch solutions of both the linear Hall MHD and Vlasov- First, we wish to verify that standard Hall MHD and Vlasov-

Maxwell systems. Since the solutions of these branches ilMaxwell kinetic theory do agree in the limif; «7,. We

the two systems do not exhibit a one-to-one correspondencehoose the plasma betg=1 and takel; / 7,=10"2, yielding

we take the position that we want to compare the Hall MHD an ion plasma beta in the kinetic theg8y~2x10-3. Fig-

wave modes with the most similar kinetic mode at each pointure 1 presents real frequencies (dashed line for Hall MHD,

in parameter space, and will remark upon which modes weralotted line for Vlasov-Maxwell) in the top panel and damp-

chosen when relevant. ing rates (solid line for Vlasov-Maxwell) in the bottom panel
To connect quantitatively Hall MHD to kinetic theory, we for parallel wavenumbers I@fkud,-flo and perpendicular

must specify the relation betwegdg in the Hall MHD dis-  wavenumbek  d;=10"2. The solution labeled F is the fast

persion relation ang; in the Vlasov-Maxwell dispersion magnetosonic wave &jd; <1 and the parallel whistler wave

relation. For a finite ion temperature, we choose to de-atk;d;>1. At kjd;<1, the solution A is the shear Alén
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Fig. 1. Top: Normalized real frequency/; vs. parallel ~ Fig. 2. Top: Normalized real frequency/<2; vs. perpendicu-
wavenumbekd; from Hall MHD (dashed) and kinetic theory (dot-  lar wavenumbek d; from Hall MHD (dashed) and kinetic theory
ted) for the fast (F), Alfén (A), and slow (S) modes for the param- (dotted) for the fast (F), Alfén (A), and slow (S) modes for the pa-
etersfo=1, T;/ T,=10"3, andk  d;=10~2. Inset is an expanded rameterso=1, T;/T.=103, andk)d;=102. Bottom: Normal-
view of the boxed region. Bottom: Normalized damping rat¢e  ized damping rateg/w vs. perpendicular wavenumbier d; for the
vs. parallel wavenumbet;d; for the same three low-frequency Same three low-frequency modes from kinetic theory (solid).
modes from kinetic theory (solid). Values above the dashed line
y /w=0.1 indicate strong linear kinetic damping.
here the numerical solver used is unable to follow the fast
wave root as it undergoes a mode conversion into an ion
wave and the solution S is the slow wave, often termed theBernstein mode. Bernstein waves arise due to finite Larmor
ion acoustic wave in this cold ion limit. In Fid, the insetin  radius effects that have no counterpart in cold plasma theory
the top panel shows an expanded view of the region aroundnd that are not described by Hall MHBWanson 1989;
kjd;~0.1, demonstrating that neither the Hall MHD nor the the impact of the ion Bernstein waves is discussed at length
kinetic solutions cross. An examination of the linear kinetic in Sect.5.3.
eigenfunctions (not shown) shows that the A and S solution Despite some of these difficulties with ion Bernstein waves
branches undergo a mode conversiBwanson1989 Stix,  and non-negligible kinetic damping, Figkand2 bear out
1992 atk;d;~0.09, exchanging physical characteristics with the general findingHirose et al.2004 Ito et al, 2004 that
each other. Thus, dfd;>0.1, the A branch corresponds to Hall MHD is a valid limit of kinetic theory in the cold ion
the slow wave and the S branch corresponds to the ion cyapproximationJ; «7,.
clotron wave. This mixing of the A and S branches occurs
commonly in Hall MHD Krauss-Varban et al1994 Yoon 5.2 Finite ion temperature T;
and Fang2008. In this limit T;«T,, the real frequencies
for all three modes are in excellent agreement; damping isNext, we explore the limit of warm ions relevant to most
weak for all modes over this range except for the S branch agpace and astrophysical plasmas. We tae-1 and
kyd; >3, due to cyclotron damping of the corresponding ion 7; /T,=1, giving an ion plasma beta in the kinetic theory
cyclotron waves. Bi=1. Figure3 presents real frequencies (top) and damp-
Figure 2 presents real frequencies and damping ratesng rates (bottom) for parallel WavenumberS‘ingd,-flO
for perpendicular wavenumbers1xk d;<10 and parallel  and perpendicular wavenumberd;=10-2. The frequency
wavenumbek|‘d[:10—2. The Hall MHD slow wave solution  of the kinetic fast wave F (dotted) is well reproduced by Hall
S agrees well with the weakly damped kinetic solution. TheMHD solution F' (dashed), and its damping is weak except
Alfv én wave mode A also shows good agreement, but after ifor a small region arouné;d;~2x10~2. Comparison of the
transitions to the kinetic Alfen wave at; d;~1, damping  slow and Alf\en wave solutions demonstrates some of the
via the Landau resonance becomes significarit,a >4. complications arising in a comparison of Hall MHD to ki-
The fast wave solution F from kinetic theory, on the other netic theory as described in Seétl The kinetic slow wave
hand, deviates from the Hall MHD solution &t d; >0.5; solution S (dotted) has a phase speed that is faster than that

www.nonlin-processes-geophys.net/16/219/2009/ Nonlin. Processes Geophys., 28222009
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Fig. 3. Top: Normalized real frequencyw/; vs. parallel Fig. 4. Top: Normalized real frequenay/2; vs. perpendicular

wavenumbekd; for the Hall MHD (dashed) fast (F’), Alfen (A), W?venumberiudi’ for the Hall MHD (da_lshgd) fast (), Alfen
and slow (S’) modes and for the kinetic theory (dotted) fast (F), (A), and slow (S') modes and for the kinetic theory (dotted) fast

Alfv én (A), and slow (S) modes for the parametgys-1, 7; / T.=1, (F), Alfvén (A), and SI_OZW (S) mo‘?'es for th.e parametﬁrys;l,
andk | d;=10"2. Inset is an expanded view of the boxed region. 7i/ Te=1, andkd;=10"*. Bottom: Normalized damping rates

Bottom: Normalized damping rates/w vs. parallel wavenumber y/w vs. perpendicular V\{ave_numbéid,» f‘?f the same three low-
k) d; for the same three low-frequency modes from kinetic theory frequency modes from kinetic theory (solid).
(solid).

of fluid and kinetic modes complicates any attempted com-

of the Alfvén wave solution A (dotted) of kinetic theory (this parison of the two models, but a careful matching of the most
is perhaps more easily seen Fy; the anisotropic ion pres-  similar wave modes will yield a fair evaluation. Again, how-
sure response in the kinetic theory that leads to this curiougver, the major discrepancy between the models is that Hall
result Ballai et al, 2002 is not captured by the isotropic MHD does not capture the strong kinetic damping of the ki-
equation of state used in the standard Hall MHD model. Butnetic S branch at all scales and of the solution A from kinetic
this error is overshadowed by a far more serious discrepanctheory (the ion cyclotron wave) &jd; >0.4 .
between Hall MHD and kinetic theory: at finite ion tempera-  Figure 4 presents real frequencies and damping rates
ture the kinetic slow wave S (dotted) — the ion acoustic wavefor perpendicular wavenumbers &<k d; <10 and parallel
— is heavily damped witly, /w,~1, yet a fluid theory such wavenumber;d; =102 for the warm ion case wito=1
as Hall MHD does not account for this damping. Therefore,andT;/T,=1. The kinetic branch S is once again strongly
at finite ion temperature the Hall MHD slow wave representsdamped by the warm ions, so Hall MHD supports a spuri-
an unphysical, spurious wave that does not exist in a weaklyus, undamped slow wave mode S’. The kinetic branch A,
collisional plasma. representing MHD Alfén waves and kinetic Alen waves,

The second complication apparent in Rigs the mixing  is quite well represented over the entire wavenumber range,
of the modes between the solution branches of kinetic theoryvith some discrepancy near d;~1. The kinetic fast wave
and those of Hall MHD Krauss-Varban et gl1994 Yoon solution F is well matched by the Hall MHD fast wave so-
and Fang2008. The inset in the top panel of Fi§.shows  lution F’, with only a slight deviation, fokd; <0.4. At
that the Hall MHD solutions do not cross, however the corre-k 1 d;=0.4, however, the kinetic branch F goes through a
spondence between kinetic A and S branches and Hall MHDmMode conversion to become an ion Bernstein wave, a situ-
A and S’ branches changes with increaskg;: atk;d; <1, ation discussed at length in SeBi3.
the solution A (dotted) of kinetic theory agrees closely with  In summary, at finite ion temperature, Hall MHD does a
the Hall MHD solution A’ (dashed); but &fd; >0.1, the so-  good job modeling the kinetic fast wave branch F for nearly
lution A (dotted) from kinetic theory (the ion cyclotron wave) parallel wave vectors and the kinetic Aéfla wave branch for
appears to correspond to the Hall MHD solution S’ (dashed)nearly perpendicular wave vectors. But, it fails to capture
and the kinetic solution S (dotted) appears to correspondhe strong kinetic damping of the slow mode branch in all
most closely with the Hall MHD solution A. This mixing up cases and of the Al&n branch in the nearly parallel case.
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The correspondence of the Hall MHD fast wave branch F’ at 10 ——rrr —— T

nearly perpendicular wave vectors to a series of kinetic ion [ —n=9 =]

Bernstein waves is discussed next. 8= 8 T

| n=v _ _ __ _______ _ 7T

5.3 lon Bernstein waves _ g[n=6 T
¢ [.n=b ___ _ ___ _ __________ T

The fast solution F from kinetic theory in Fid. deviates 8 ,[_n=4 /7'\\*-_

greatly from the Hall MHD fast solution F' ak; d;=>0.4. D=3 ™ T

The cause of this deviation is the conversion, in kinetic the- olm=2_ _ _/7’“,\~~__

ory, from an MHD fast wave to an=1 ion Bernstein wave n=1 T ]

(with w<£;) on the dispersion surface of solution branch F. P e ]

Not shown in Fig4 is the conversion of an=1 ion Bern- T

stein wave (witho> ;) to a continuation of the fast wave at -

w>%;; this wave lies on a different dispersion surface from < to-

branch F. Mode conversion from fast wave solutions to ion

Bernstein waves at nearly perpendicular propagation is a well

known physical phenomenoByanson1989 Stix, 1992 Li
and Habbal2001). Here we aim to evaluate the accuracy of
the Hall MHD description of the kinetic plasma behavior in
this regime. (!1: & Top: N lized real f /0 dicul
In Fig. 5 are presented the real frequencies (top panel) an '9- 5. 10p: orma ized real requenay/ z; vs. perpendicuiar
damping rates (bottom panel) for the Hall MHD fast branch wavenumbek  d; for the Hall MHD fast mode (', dashed), the

kinetic theory fast mode (F, dotted), and the kinetiel to n=9

F’ (dashed), the kinetic fast branch F (dotted), and the kinetiGg, gernstein wave modes for the paramefgys1, T,/ T,=1, and

n=1 throughn=9 ion Bernstein solutions for perpendicu- kyd;=5x10"2. Bottom: Normalized damping rates/e vs. per-
lar wavenumbers 1¢ <k, d; <10 and parallel wavenumber pendicular wavenumbek d; for the modes from kinetic theory,
kyd;=5x% 102 for Bo=1 andT;/T,=1. Note that each of the the fast (dotted) and=1 to n=9 ion Bernstein wave modes.

ion Bernstein solutions lie on distinct dispersion surfaces. In

the top panel, the relation between the Hall MHD branch F’

and the series of ion Bernstein wave solutions is clear, yet thek | , k); this is clearly seen in the dispersion relations of
summed effect of these kinetic wave modes differs signifi-both the Hall MHD and the Vlasov-Maxwell systems with
cantly in a number of ways from the Hall MHD fast branch their dependence on the parameterg; andkd;. There-
solution F'. First, between each of the ion Bernstein solutionsfore, plots of the real frequency differencas and of the
lies a frequency gap in which no solution exists. Second, thekinetic damping rate, /w, on the planék |, k) provide ex-
real frequency of the ion Bernstein waves (and thus the pereellent quantitative measures of the fidelity of Hall MHD to
pendicular phase velocity/ k) is only coincident with the  the kinetic physics in a weakly collisional plasma over a wide
frequency given by Hall MHD at a single point for each of range of scales.

the then>2 Bernstein modes. Finally, although the perpen- |n panel (a) of Fig6, the normalized real frequency dif-
dicular group velocity (the slope of the pla@/dk,) of the  ference between Hall MHD and Vlasov-Maxwell kinetics,
Hall MHD F’ solution is always positive and increasing with Aw=|wp—wy|/wy, is plotted for the Alfien solution over
k1 d;, each of the ion Bernstein waves have a positive but1g-2<, d;<10 and 102§k”d,v§10; in panel (b) is plotted
smaller group velocity at lowek d;, and a negative group the normalized linear kinetic damping rate,/w,. Plasma
velocity at higherk 1 d;, corresponding to a backward wave parameters relevant to the near-earth solar wihes1 and
(Stix, 1992 at these scales. The lower panel of FBghows T;/T,=1, are chosen. Areas of panel (a) withw=>0.1
that the kinetic fast branch F ane-1 throughw=9ion Bern-  are shaded to highlight the regions of parameter space over
stein waves are not strongly damped. Our conclusion is thajyhich the frequency using Hall MHD deviates significantly
the kinetic dynamics of the fast branch for nearly perpendic-from the kinetic value; as evident, the Aéfa solution from
ular wave vectors in a weakly collisional plasma is not well Hall MHD? deviates substantially from the Vlasov-Maxwell

represented by Hall MHD. frequency atk;d; >1 and moderately a, d;~1. Areas of
_ panel (b) withy,/w,>0.1 are shaded to denote regions of
5.4 Comparison on the(k ., k) plane parameter space over which the linear collisionless damping

The axisymmetric nature of any uniform magnetized plasma  2gecayse of the tendency for the kinetic modes to correspond to
about the direction of a uniform, straight magnetic fiB§l  gifferent fluid modes as parameters vary, as discussed in &ct.
reduces the dependence on the wave vektdo its two in this paper the calculation @ at each point uses the Hall MHD
components perpendicular and parallel to the magnetic fieldmode that the yields the minimum value of this difference.
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Fig. 6. (a)Normalized difference in the real frequensyv=|w;, —wy|/wy for the Alfvén wave branch on thé , k) plane forg;=1 and
T;/ T,=1. Shading denotes values aiw>1, corresponding to a parameter regime where Hall MHD differs significantly from Vlasov-
Maxwell kinetic theory. (b) The corresponding normalized linear damping ratgw,, where shading of areas with /w, >1 highlights
regimes in which the collisionless damping of kinetic theory is substantial.

of this mode in Vlasov-Maxwell kinetic theory is strong. Itis 5.5 Plasma parameters; and 7; /T, variations

evident that fork)d; 21, the regime corresponding to ion cy-

clotron waves, strong damping occurs via the ion cyclotronA very important aspect of the behavior of weakly collisional
resonance; it seems likely that this strong damping, due t@lasmas is made clear by the damping rate plots in panel (b)
wave-particle interactions not captured by Hall MHD, is also of both Figs.6 and7: at small length scales, with wavenum-
responsible for the poor agreement in real frequency. Alsdberskd; 21, there exist only four regimes in which undamped
evident in panel (b) is the increasingly strong damping of thewave modes occur. These are:

Alfv én solution ak | d;>1 andk | >k ; this is the regime of
kinetic Alfvén waves in which damping occurs via Landau
resonance with the electrons.

1. Kinetic Alfvén Waves: The Alfén branch solution of
Vlasov-Maxwell kinetic theory in the nearly perpendic-

] ) ular regimekd; <1 andk d; 21 corresponds to the ki-
The analogous calculation for the fast wave branch is pre-  petic Alfven wave mode (KAW) .

sented in Fig.7, with the frequency differencaw plotted

in panel (a) and the kinetic damping ratg/w, in panel (b), 2. Parallel Whistler Waves: The fast branch solution in the
again for plasma parametess=1 and7;/7T,=1. Note that regimekd; 21 andk | d; <1 corresponds to the whistler
this calculation employs only the kinetic solutions on the dis- wave with a nearly parallel wave vector (PW).

persion surface of the F branch and does not consider the

n>1 ion Bernstein wave dispersion surfaces. The real fre- 3. Oblique Whistler Waves: The fast branch solution in the
quency derived from Hall MHD differs from the kinetic value regimekd; 21 andk d; 21 corresponds to the whistler
in two regimes: a moderate difference occurgat <1 and wave with an oblique wave vector (OW).

0.05<k, d;<0.5; and the difference becomes more dramatic
atk d; 21 andkd; <1 due to the mode conversion in kinetic
theory of the F branch from the fast wave to an ion Bernstein
wave in this regime. The kinetic damping, shown in panel
(b), is relatively weak except for the regime of the ion Bern-

4. lon Bernstein Waves: The fast branch solution in the
nearly perpendicular regimed; <1 andk d; 21 cor-
responds to an ion Bernstein wave (IBW).

i Since the plasma turbulence at small length scales — for ex-
stein wavesk,d; 21 andkd; S1; these waves are strongly ample, the dissipation range in the solar wind — is likely to
damped unlesk;d; <1 (Swanson1989). consist of one, or a mixture, of these four undamped modes,
The slow wave branch suffers very strong linear collision- we would like to explore the ability of Hall MHD to repro-

less damping in a plasma with finite ion temperature, suchduce their linear wave frequencies accurately (relative to lin-
as the solar wind, over the entire range of scales consideredar Vlasov-Maxwell kinetic theory). We note, however, that
in Figs.6 and7. A comparison of the real frequency in this the ion Bernstein wave is an electrostatic wave m&iesn-
case would be meaningless since a wave with a damping rateon 1989 Stix, 1992, and therefore has no corresponding
y/w~1 is so heavily damped that it can scarcely be consid-magnetic field fluctuation; since the solar wind dissipation
ered a wave. range is observed to have magnetic fluctuatidaslgstein

Nonlin. Processes Geophys., 16, 2292 2009 www.nonlin-processes-geophys.net/16/219/2009/



G. G. Howes: Limitations of Hall MHD 227

‘ ‘ ‘ . ‘ 1 ‘
(a) Fast Aw (b) Fast y/®

-0.5
log (kldi)
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Fig. 8. (a) Normalized difference in the real frequenay» for the kinetic Alfven wave ak | d;=1 andkd;=0.1 on the planég;, T; / T.).
(b) The corresponding normalized linear damping ratéo, .

et al, 1995 Leamon et a].1998 Smith et al, 2006 Hamil- (b) of Fig. 7, we plot the frequency difference and kinetic
ton et al, 2008, we do not further pursue the ion Bern- damping rate on thés;, T;/T,) plane in panels (a) and (b)
stein waves here, but rather we focus solely on the first thre®f Fig. 9. This parallel whistler wave appears to be well re-
modes, all of which are electromagnetic. produced by Hall MHD over all parameter spage, 7;/ T.)

For a kinetic Alfen wave atc, d;=1 andk d;=0.1, de- except_forﬂ,-23 and7;/T,20.1; in this pro_blematic regime,
noted by the triangle (KAW) in panel (b) of Fig, we plot the whlstler wave mode converts to an ion Bernstein wave
the frequency differencaw and kinetic damping ratg, /w, and is therefore both strongly damped and poorly described

over Q01<B; <100 and 1<T;/T,<100 in panels (a) and PY Hall MHD.
(b) of Fig. 8. The kinetic Alfven wave appears to be well g4 4 oplique whistler wave (on the fast wave branch) at
reproduced by Hall MHD fop; <1, but is less accurately de- kyd;=1 andkyd;=1, denoted by the triangle (OW) in panel
termined fOI’,B,'Zl. The linear kinetic damplng of the mode (b) of Flg 7, we p|0t the frequency difference and kinetic
appears to become strong only {21 and7; /7. S1. damping rate on thég;, 7;/T,) plane in Fig.10. The re-

For a parallel whistler wave (on the fast wave branch) atsults are very similar to those for the parallel whistler wave,
k1 d;=0.1 andkd;=1, denoted by the triangle (PW) in panel with strong damping, and correspondingly poor agreement
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in linear real frequency, occurring over the regifhe:1 and
T;/T,>0.1.

With the exception of the regimg; =1 andT7;/T,2>1 for
the kinetic Alfven wave, where Hall MHD predicts a quan-
titatively different real frequency from kinetic theory, all of
the differences between Hall MHD and kinetic theory occur
when the damping becomes strong, withyw,>0.1. That

6 Discussion

The detailed comparison of linear eigenfrequencies pre-
sented in Sect5 provides a solid quantitative foundation
upon which to construct a thorough discussion of the cen-
tral question of this papetdow does choosing the standard

Hall MHD system affect the description of the dynamics and

the weakly damped wave modes should be well repr(':'seme((-.!volution of turbulence in a weakly collisional plasma?

by Hall MHD is precisely what is expected — the fluid limit of
the kinetic plasma physics is valid only when kinetic effects,
such as collisionless damping by wave-particle interactions
are negligible Ballai et al, 2002).

Nonlin. Processes Geophys., 16, 2292 2009

One functional definition of turbulence is that it is nothing

more than the sum of all nonlinear wave-wave couplings that
serve to transfer energy from one spatial scale to another; in a
three-dimensional physical system such as the solar wind, the

generally accepted picture is that energy in large scale fluc-
tuations is transferred via these nonlinear interactions to ever
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smaller scales, cascading until eventually reaching a scale @&.2 Kinetic damping rates
which some dissipation mechanism damps the fluctuations,
ultimately thermalizing their energy (s&ehekochihinetal.  How effective are linear collisionless damping mechanisms
2009andHowes 2008for a theoretical picture of how this in a turbulent plasma where nonlinear interactions are con-
process may occur in a weakly collisional plasma). Three im-tinually transferring energy from one wave mode to another?
portant questions essentially frame the frontier of research off his question essentially weighs the importance of linear ki-
kinetic turbulence, and are particularly relevant to an evaluanetic wave-particle interactions versus nonlinear fluid wave-
tion of the Hall MHD description for turbulence in a kinetic wave interactions in turbulent, weakly collisional plasma.
plasma: According to models for turbulent fluids, the energy in a par-
1. What are the characteristic wave modes of the turbu-tICUIar wave _mode_ will be_ transferred to other wave mod_es
lence at scalekd, >1°? throu_gh nonlinear interactions on some character|§t|c nonlin-
~ ear time scale. The theory for strong incompressible MHD
2. Is the collisionless damping of the turbulence at scalesturbulence takes this nonlinear timescale to be the eddy-
kd; 21 well described by linear damping rates? turnover time in the perpendicular directioBdldreich and
. . . Sridhar 1995 the central conjecture of this theory is that, as
3. Are the nonlinear wave-wave couplings that drive the . .
turbulent cascade altered by the presence of unphysicatrIe t_urbulent energy cr?lscades to s_maller sfc_ales, this non_l|n-
wave modes? ear t!mescale,remams inan approximate critical balan.ce with
the linear Alf\en wave period, and consequently predicts an
6.1 The wave modes comprising kinetic turbulence anisotropic cascade to high perpendicular wavenumbers that
is supported by numerical evidendgho and Vishniac200Q
By exploiting the highly super-Alfg¢nic speed of the solar Maron and Goldreich200]) and is consistent with a care-
wind flow, the temporal fluctuations measured by in situ ful analysis of solar wind turbulence observatiok®ibury
spacecraft can be mapped, according to the Taylor hypothet al, 2008.
esis {Taylor, 1938, to spatial fluctuations. Thus, the break in ~ The key question in weakly collisional plasmas is whether
the solar wind magnetic energy spectrum, typically observedr not this nonlinear transfer suppresses the linear collision-
at aroundf ~0.4 Hz, is thought to correspond to some char- less damping via wave-particle interactions. Conversely, it
acteristic length scale in the plasma, perhaps the ion inertials possible that nonlinear wave-wave interactions can trans-
lengthd; or the ion Larmor radiug; (Leamon et a].1998 fer energy into a strongly damped mode, ultimately lead-
Howes et al. 2008a Hamilton et al, 2008. At frequen- ing to energy loss from the turbulent fluctuations through
cies above this spectral break, corresponding to yet smallelinear wave-particle interactions of that strongly damped
spatial scales, the magnetic energy spectrum appears steepgpde. But it is conceivable that nonlinear couplings involv-
(Smith et al, 2006 — this regime is denoted the “dissipation ing strongly damped modes are inhibited by an impedance
range.” mismatch, thus preventing energy loss in such a manner. Ul-
The kinetic theory results presented in Séc# clearly  timately, of course, the turbulence must be dissipated via ki-
demonstrate that, for a weakly collisional plasma with a finite netic damping mechanismsigwes 2008; in this case, an
ion temperature — such as the solar wind — all slow branchevaluation of both the rate of energy transfer by the turbulent
modes, the ion cyclotron wave of the Affa branch, and cascade and the rate of kinetic damping is necessary to deter-
the fast branch ion Bernstein wavekat/; >0.1 are strongly ~ mine the dissipation as a function of wavenumber, as in the
damped. Only three weakly damped electromagnetic waveascade model diowes et al(20083.
modes exist at scaldsi;>1: the kinetic Alf\en wave, the These important questions will most likely only be an-
parallel whistler wave, and the oblique whistler wave. It swered through detailed nonlinear kinetic numerical simula-
seems unlikely, even in a nonlinearly turbulent plasma, thations. On this front, turbulence simulations using undamped
wave modes with strong linear kinetic damping rates couldfluid models, such as Hall MHD, will provide valuable com-
be responsible for the dissipation range fluctuations. The linparison points for analysis and interpretation of the kinetic
ear wave properties are quite likely to play a large role in thesimulation results.
turbulent dynamics, in particular at the small length scales Until such work can provide further guidance, it seems a
kd; 21 where the amplitude of the magnetic fluctuations isreasonable strategy to assume the applicability of the lin-
small compared to the magnitude of the local interplanetaryear kinetic damping rates to turbulent plasmas. In fact,
magnetic field Howes et al.20083. This line of reasoning the first such nonlinear kinetic simulation of turbulence at
suggests that the fluctuations in the dissipation range mughe scale of the ion Larmor radius has been well fit by a
consist of one, or perhaps a mixture, of the three undampedhodel assuming linear damping ratétogves et al.20089.
electromagnetic wave modes. The finding of SBd.sug-  The plasma parameters chosen for this study, however, pre-

gests that, for typical solar wind parameters w1, Hall dicted rather weak linear collisionless damping over the
MHD generally does an adequate job of describing these unrange of scales simulated, so we must await further simu-
damped wave modes. lations in more strongly damped parameter regimes to test
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more thoroughly the effectiveness of the kinetic damping inMaxwell kinetic theory, both the Alfén and slow branch
a turbulent plasma. The study did show, however, that thenodes are heavily damped in this regime, leaving only fast
damping via kinetic mechanisms in the turbulent plasma wasranch waves available. But the Hall MHD model supports
not stronger than the linear prediction, a result that is not obundamped Alfén and slow waves. It seems unlikely that
vious a priori. the nonlinear dynamics would be the same in the presence of
Despite the many unanswered questions about damping ithree undamped modes as when only the fast mode is avail-
kinetic turbulence, there is no question that the dissipation ofable, but just how the presence of the unphysical modes will
turbulence in a weakly collisional plasnsannotbe studied  alter the nonlinear wave-wave couplings is unclear. Here,
by Hall MHD, or any standard fluid model. The viscous and once again, a promising avenue for progress is a detailed
resistive dissipation terms used in such models are merely agtudy contrasting nonlinear couplings in the presence and ab-
hoc fluid closures that do not accurately represent the undersence of these spurious modes. A suite of nonlinear kinetic
lying kinetic mechanisms. Only a much more complicated simulations compared to Hall MHD simulations in the same
model, such as a Landau-fluid mod&nfyder et al.1997, regime will provide valuable insight, identifying the regimes
Passot and Sulerg007), is capable of adequately represent- of validity for which Hall MHD provides an adequate de-
ing the kinetic dissipation. The steeper spectral index of thescription.
magnetic energy spectrum in the dissipation range of solar Two arguments exist that may serve to diminish the im-
wind turbulence has been variously attributed to either ki-pact of the spurious undamped waves in Hall MHD. First,
netic dissipationColeman1968 Leamon et a].1999 Gary, as shown in Fig4, in the limit thatk, >k, the fast wave
1999 Howes et al.20083 or to wave dispersionStawicki  frequency is much higher than the A#fa wave frequency;
et al, 2002, Krishan and Mahajar2004 Galtier, 2006. If since the strength of nonlinear interactions typically dimin-
dissipation does play a significant role, further investigationishes rapidly as the wave mode frequencies become widely
requires a kinetic model. It has even been argued that, withseparated, the presence of a spurious wave mode may neg-
out a kinetic model to determine that kinetic dissipation is ligibly impact the turbulent couplings in such a case. Of
negligible for a specific case, the use of a fluid model such agourse, in the opposite limit, <k, seen in Fig3, all three

Hall MHD is unjustified Howes et al.2008H). wave modes have similar frequencies fqe/; <1. A sec-
_ . _ ond argument, derived in the gyrokinetic lithit, >k and
6.3 Nonlinear wave-wave interactions <, shows that the turbulent cascade of &fvwaves

does not exchange energy with the slow wave cascade ex-
Hall MHD has proven to be a valuable framework for the cept in the regime where the perpendicular scale is near the
study of a number of plasma phenomena, in particular magion Larmor radiug | p;~1 (Schekochihin et §12009. Thus,
netic reconpection. For example, th'e finding that whistlerine existence of a spuriously undamped slow wave may not
waves mediated a faster reconnection rdtar{dt et al, jnfluence the Alfen wave cascade. To explore the exchange
1994 paved the way in identifying the importance of the Hall o energy between the separate cascades at the scale of the

term in magnetic reconnection. Such applications depend ok, Larmor radiusk | p;~1, however, will certainly require
the accurate description of the linear properties of a particuy,gnlinear kinetic simulations.

lar wave mode. But turbulence is consequence of nonlinear
wave couplings; to provide a useful framework for kinetic
turbulence, a model must accurately describe the behavior Conclusions

not of just one mode, but of all modes

Because the turbulent dynamics and evolution will dependS @ model that extends beyond the limits of MHD, Hall
on the nonlinear couplings between all possible wave modesY1HD has seen increasing use in recent years as a framework
the existence of certain undamped wave modes in Hall MHDfOr describing turbulence in weakly collisional plasmas, such
— modes that are strongly damped in a weakly collisional@S the near-earth solar wind. Its applicability to turbulence in
plasma according to kinetic theory — is troubling. These spu-Kinetic systems has been called into questir(ss-Varban
rious wave modes effectively provide additional degrees ofét al. 1994 Howes et al.2008D, so a thorough evaluation
freedom to the turbulence that would otherwise be strongly©f the limitations of Hall MHD in this context is desirable.
impeded in a kinetic plasma. Consider, for example, waves! NS paper takes the first step in this process by quantitatively
in the parameter regimigd; >1 in a plasma withg;=1 and ~ comparing the real linear eigenfrequencies of standard Hall
T:/T,=1 as presented in Fig of Sect.5.2 In Vlasov- MHD with the complex linear eigenfrequencies of Vlasov-
Maxwell kinetic theory.

3The nonlinear interactions in a turbulent plasma will depend  Previous work has shown that Hall MHD is a rigorous
not only on the complex eigenfrequencies of the normal modes butimit of kinetic theory only in the cold ion limit satisfying

on their eigenfunctions as well. Although this paper restricts its fo- 7 T, andkv,;; Kw<kjv, (Ito et al, 2004 Hirose et al,
cus to the frequencies, a detailed comparison of all mode properties

at kd;=0.1 found that the kinetic mode properties are not always  “4The fast wave branch is ordered out of the system in the gy-
well represented by Hall MHDKrauss-Varban et gl1994). rokinetic approximation.
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