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Abstract

This paper provides the requisite information and description of software that perform
numerical computations and graphics for the power method polynomial transformation.
The software developed is written in the Mathematica 5.2 package PowerMethod.m and
is associated with fifth-order polynomials that are used for simulating univariate and
multivariate non-normal distributions. The package is flexible enough to allow a user the
choice to model theoretical pdfs, empirical data, or a user’s own selected distribution(s).
The primary functions perform the following (a) compute standardized cumulants and
polynomial coefficients, (b) ensure that polynomial transformations yield valid pdfs, and
(c) graph power method pdfs and cdfs. Other functions compute cumulative probabilities,
modes, trimmed means, intermediate correlations, or perform the graphics associated
with fitting power method pdfs to either empirical or theoretical distributions. Numerical
examples and Monte Carlo results are provided to demonstrate and validate the use of
the software package. The notebook Demo.nb is also provided as a guide for user of the
power method.
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1. Introduction

The power method polynomial transformation (Fleishman,1978, Eq.1; Headrick, 2002, Eq.16)
is a popular moment-matching technique used for simulating continuous non-normal distri-
butions in the context of Monte Carlo or simulation studies. The primary advantage of this
transformation is that it provides computationally efficient algorithms for generating univari-
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2 Power Method Transformation Using Mathematica

ate or multivariate distributions with arbitrary correlation matrices (Vale and Maurelli 1983;
Headrick 2002; Headrick and Sawilowsky 1999).
The power method has been used in studies that have included such topics or techniques as:
ANCOVA (Harwell and Serlin 1988; Headrick and Sawilowsky 2000a; Headrick and Vineyard
2001; Klockars and Moses 2002; Olejnik and Algina 1987), computer adaptive testing (Zhu,
Yu, and Liu 2002), hierarchical linear models (Shieh 2000), item response theory (Stone 2003),
logistic regression (Hess, Olejnik, and Huberty 2001), microarray analysis (Powell, Anderson,
Chen, and Alvord 2002), regression (Harwell and Serlin 1988; Headrick and Rotou 2001),
reliability (Yaun and Bentler 2002), repeated measures (Beasley and Zumbo 2003; Lix, Algina,
and Keselman 2003; Kowalchuk, Keselman, and Algina 2003), structural equation modeling
(Hipp and Bollen 2003; Reinartz, Echambadi, and Chin 2002; Welch and Kim 2004), and
other univariate or multivariate (non)parametric tests (Beasley 2002; Finch 2005; Habib and
Harwell 1989; Rasch and Guiard 2004; Steyn 1993).
The power method transformation is also useful for generating multivariate non-normal dis-
tributions with specific types of structures. Some examples include, continuous non-normal
distributions correlated with ranked or ordinal structures (Headrick and Beasley 2003), ranked
data (Headrick 2004), systems of linear statistical equations (Headrick and Beasley 2004), and
distributions with specified intraclass correlations (Headrick and Zumbo 2004).
Until recently (Headrick and Kowalchuk 2007), two problems associated with the power
method were that its pdf (probability density function) and cdf (cumulative distribution
function) were unknown (Tadikamalla 1980; Kotz, Balakrishnan, and Johnson 2000, p. 37).
Thus, it was difficult (or impossible) to determine a power method distribution’s percentiles,
peakedness, tailweight, or mode (Headrick and Sawilowsky 2000b). However, these problems
were resolved in an article by Headrick and Kowalchuk (2007) where the power method’s pdf
and cdf were derived in general form. For a detailed discussion on the properties and theory
underlying the power method transformation see Headrick and Kowalchuk (2007).
In view of the above, the objective is not to discuss the theory underlying the power method
but to provide a Mathematica 5.2 (Wolfram 2003) package, executed under <<PowerMethod̀ ,
that performs numerical computations and graphics associated with the power method trans-
formation. In Section 2, we present the essential requisite information for the user of the
power method in the context of polynomials of order five. In Section 3, some Mathemat-
ica functions are described and numerical examples and simulation results are provided to
demonstrate and validate the use of the source code. For more detail, the user can inspect
the source code and its implementation in the files PowerMethod.nb and Demo.nb.

2. The power method transformation

2.1. Univariate non-normal data generation

The power method transformation is summarized by the polynomial

Y =
∑r

`=1
c`Z

`−1 (1)

where Z ∼ i.i.d.N(0, 1). Setting r = 6 in (1) gives the Headrick (2002) class of distributions
associated with polynomials of order five. We note that setting r = 4 in (1) would give the
smaller Fleishman (1978) class of distributions.
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The shape of Y in (1) is contingent on the values of the constant coefficients c`=1,...,6. These
coefficients are computed by solving the system of equations in Appendix A of Headrick and
Kowalchuk (2007) for a set of specified standardized cumulants γ`=3,...,6. Note that the mean
(γ1) and variance (γ2) are arbitrarily set to zero and one in A1 and A2. Thus, in terms of
univariate non-normal data generation, the transformation in (1) is computationally efficient
because it only requires an algorithm that generates standard normal random deviates and
the knowledge of six coefficients.

The pdf and cdf associated with Y in (1) are given in parametric form (<2) as in Headrick
and Kowalchuk (2007)

fY (Z)(Y (z)) = fY (Z)(Y (x, y)) = fY (Z)(Y (z),
fZ(z)
Y ′(z)

) (2)

FY (Z)(Y (z)) = FY (Z)(Y (x, y)) = FY (Z)(Y (z), FZ(z)) (3)

where −∞ < z < +∞, the derivative Y ′(z) > 0 (i.e. Y is a strictly increasing monotonic
function in Z), and where fZ(z) and FZ(z) are the standard normal pdf and cdf.

To illustrate, depicted in Figure 1 are the graphs of fifth-order power method pdfs and cdfs.
These graphs were obtained using (2) and (3) and the numerical and graphing techniques
for symmetric and asymmetric distributions described and demonstrated in PowerMethod.nb
and Demo.nb. The standardized cumulants γ`=3,...,6 listed in Panels A and B are associated
with Student’s tdf=7 and χ2

df=3 distributions, respectively.

One of the limitations associated with fifth-order polynomial transformations is that some
combinations of cumulants in this class of power method distributions will not produce valid
power method pdfs. For example, consider a logistic distribution which has standardized
cumulants of γ3 = 0, γ4 = 6/5, γ5 = 0, and γ6 = 48/7. These cumulants will yield coefficients
c` for (1) but will not produce a valid power method pdf because Y (z) in (2) is not a strictly
increasing monotonic function for all z ∈ (−∞,+∞) i.e., Y ′(z) = 0 at z = ±8.1813 for
the logistic pdf. However, a technique that can often be used to mitigate this limitation is
to increase γ6, ceteris paribus. For example, the values of γ3 = 0, γ4 = 6/5, γ5 = 0, and
γ6 = 62/7 will produce a valid power method pdf and thus allow for the more interpretable
values of skew (γ3) and kurtosis (γ4) to be preserved.

2.2. Multivariate non-normal data generation

The power method can be extended from univariate to multivariate non-normal data gener-
ation by specifying k equations of the form in (1) as

Yi =
∑r

`=1
c`iZ

`−1
i (4)

Yj =
∑r

`=1
c`jZ

`−1
j (5)

where i 6= j. A controlled correlation between two non-normal distributions Yi and Yj is
accomplished by making use of equation (17) in Appendix B. More specifically, the left-hand
side of (17) is set to a specified correlation ρYiYj , the coefficients c`i and c`j are substituted
into the right-hand side, and then (17) is numerically solved for the intermediate correlation
ρZiZj . This process is repeated for all k(k − 1)/2 specified correlations of ρYiYj .
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γ1 = 0, γ2 = 1, γ3 = 0, γ4 = 2, γ5 = 0, γ6 = 80
c1 = 0.0, c2 = 0.907394, c3 = 0.0, c4 = 0.014980, c5 = 0.0, c6 = 0.002780

A

γ1 = 0, γ2 = 1, γ3 = 2
√

2/3, γ4 = 4, γ5 = 16
√

2/3, γ6 = 160/3
c1 = −0.259037, c2 = 0.867102, c3 = 0.265362, c4 = 0.021276, c5 = −0.002108, c6 = 0.000092

B

Figure 1: Fifth-order polynomial power method pdfs and cdfs based on equations (2) and (3).
The standardized cumulants γ`=3,...,6 in Panels A and B are associated with Student’s tdf=7

distribution and a χ2
df=3 distribution.

The solved intermediate correlations ρZiZj are assembled into a k × k matrix that is subse-
quently decomposed (e.g., a Cholesky decomposition). The results from the decomposition
are used to generate standard normal deviates Zi and Zj , correlated at the intermediate lev-
els, that are then transformed by k polynomials of the form in (4) and (5) such that Yi and
Yj have their specified shapes and correlation.

3. Mathematica functions and numerical examples

3.1. Univariate distributions

Two Mathematica functions available for computing theoretical (empirical) standardized cu-
mulants γ`=3,...,6 (γ̂`=3,...,6) are based on the two sets of equations in Appendix A. There is
also a function available for computing values of γ̂`=3,...,6 based on Fisher’s k-statistics. These
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three functions require the user to specify a constant denoted as SixCon. Specifically, SixCon
is initially set equal to zero and ideally the computed standardized cumulants associated with
a theoretical density or an empirical data set will yield a valid power method pdf such as
a chi-square distribution (df > 1). There are cases where a constant will have to be added
to the sixth cumulant in order to produce a valid power method pdf e.g., SixCon=2 for the
logistic distribution as noted at the end of Section 1 and in Demo.nb.

Given a set of standardized cumulants, the coefficients c` associated with (1) can be com-
puted by one of three Mathematica functions depending on a user’s need. More specifi-
cally, the coefficients can be computed using PowerMethodX[cumulants_List] where X=1
for theoretical asymmetric pdfs or empirical data, X=2 for theoretical symmetric pdfs, or
PowerMethod3[gamma3_,..., gamma6_] for the case where the user may want to freely load
the cumulants. On solving for a set of coefficients, these values can then be used by functions
to determine if they will also yield a valid power method pdf. That is, test the condition that
the coefficients satisfy that Y ′(z) > 0 for all z ∈ (−∞,+∞) in (2). A number of examples
are provided in Demo.nb for the user’s perusal.

To demonstrate the use of the PowerMethod.m package, comparisons were made between vari-
ous theoretical pdfs and their power method analogs using the functions that perform graphics
and compute cumulative probabilities (or percentiles) and trimmed means. Specifically, de-
picted in Figure 2 are the graphs of the exponential, Beta, and Gamma pdfs with their power
method analogs superimposed on these theoretical pdfs. Inspection of these graphs, the per-
centiles in Table 1, and the trimmed means in Table 2 indicate that the power method pdfs
provide good approximations to these theoretical pdfs.

In terms of empirical pdfs, presented in Figure 3 are power method pdfs superimposed on
measures of body density, weight, height, and percent body fat taken from n = 252 adult males
(http://lib.stat.cmu.edu/datasets/bodyfat). Inspection of Figure 3 indicates that the
power method pdfs provide good approximations to the empirical data. Further, the trimmed
means listed in Table 3 are all within the 95% bootstrap confidence intervals based on the
data. The confidence intervals are based on 25000 bootstrap samples.

One way of determining how well a power method pdf models a set of data is to compute
a chi-square goodness of fit statistic. For example, listed in Table 4 are the cumulative
percentages and class intervals based on the power method’s pdf for the body density data.
The asymptotic value of p = .438 indicates the power method pdf provides a good fit to the
data. It is noted that the degrees of freedom for this test were computed as df = 3 = 10(class
intervals)−6(parameter estimates)−1(sample size).

3.2. Simulating multivariate non-normal distributions

Presented in Table 5 is a specified correlation matrix ρYiYj between the power method dis-
tributions depicted in Figure 2 where Y1, . . . , Y4 have the standardized cumulants associated
with Panels A,. . .,D, respectively. Table 6 gives the required intermediate correlation matrix
which was created by separately solving each of the six bivariate cases using the function
InterCorr as demonstrated in Demo.nb for ρZiZj . Table 7 gives the results of a Cholesky
decomposition on the intermediate correlation matrix. These results are subsequently used
in an algorithm to create Z1, . . . , Z4 having the specified intermediate correlations by making

http://lib.stat.cmu.edu/datasets/bodyfat
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µ = 1 c1 = −0.307740
σ = 1 c2 = 0.8005604
γ3 = 2 c3 = 0.318764
γ4 = 6 c4 = 0.033500
γ5 = 24 c5 = −0.003657
γ6 = 120 c6 = 0.000159

x1
A. Standard Exponential

µ = 1/2 c1 = 0.0
σ = 1/6 c2 = 1.093437
γ3 = 0 c3 = 0.0
γ4 = −6/11 c4 = −0.035711
γ5 = 0 c5 = 0.0
γ6 = 240/143 c6 = 0.000752

x2
B. Beta (a = 4, b = 4)

µ = 2/3 c1 = 0.108304
σ =

√
2/63 c2 = 1.104252

γ3 = −
√

7/32 c3 = −0.123347
γ4 = −3/8 c4 = −0.045284
γ5 =

√
63/32 c5 = 0.005014

γ6 = −75/176 c6 = 0.001285
x3

C. Beta (a = 4, b = 2)

µ = 100 c1 = −0.104760
σ =

√
1000 c2 = 0.980451

γ3 =
√

2/5 c3 = 0.105115
γ4 = 3/5 c4 = 0.002843
γ5 =

√
72/125 c5 = −0.000118

γ6 = 6/5 c6 = 0.000002
x4

D. Gamma (a = 10, b = 10)

Figure 2: Power method approximations (dashed lines) to various theoretical pdfs.



Journal of Statistical Software 7

Panel A: x1 = Standard Exponential

p(x1) x1 Power Method
0.01 0.010 0.015
0.025 0.025 0.037
0.05 0.051 0.060
0.1 0.105 0.109
0.25 0.288 0.286
0.5 0.693 0.692
0.75 1.386 1.387
0.9 2.303 2.303
0.95 2.996 2.996
0.975 3.689 3.688
0.99 4.605 4.605
0.995 5.298 5.298
0.999 6.908 6.908

Panel B: x2 = Beta (a = 4, b = 4)

p(x2) x2 Power Method
0.01 0.142 0.142
0.025 0.184 0.184
0.05 0.225 0.225
0.1 0.279 0.279
0.25 0.379 0.379
0.5 0.500 0.500
0.75 0.621 0.621
0.9 0.721 0.721
0.95 0.775 0.775
0.975 0.816 0.816
0.99 0.858 0.858
0.995 0.882 0.882
0.999 0.923 0.923

Panel C: x3 = Beta (a = 4, b = 2)

p(x3) x3 Power Method
0.01 0.222 0.221
0.025 0.284 0.283
0.05 0.343 0.343
0.1 0.416 0.416
0.25 0.546 0.546
0.5 0.686 0.686
0.75 0.806 0.806
0.9 0.888 0.888
0.95 0.924 0.924
0.975 0.947 0.946
0.99 0.967 0.965
0.995 0.977 0.974
0.999 0.990 0.992

Panel D: x4 = Gamma (a = 10, b = 10)

p(x4) x4 Power Method
0.01 41.302 41.303
0.025 47.954 47.954
0.05 54.254 54.254
0.1 62.213 62.213
0.25 77.259 77.259
0.5 96.687 96.687
0.75 119.139 119.139
0.9 142.060 142.060
0.95 157.052 157.052
0.975 170.848 170.848
0.99 187.831 187.831
0.995 199.985 199.985
0.999 226.580 226.580

Table 1: Percentiles of distributions (xi) and their power method analogs in Figure 2.
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m = 1.056 c1 = −0.006314
s = 0.019 c2 = 1.072274
γ̂3 = −0.020 c3 = 0.016962
γ̂4 = −0.327 c4 = −0.032974
γ̂5 = −0.376 c5 = −0.003549
γ̂6 = 2.148 c6 = 0.001703

A. Body Density

m = 178.924 c1 = −0.114166
s = 29.331 c2 = 0.777124
γ̂3 = 1.198 c3 = 0.097239
γ̂4 = 5.142 c4 = 0.062465
γ̂5 = 28.298 c5 = 0.005642
γ̂6 = 144.431† c6 = 0.000304

B. Weight

m = 70.308 c1 = −0.018003
s = 2.604 c2 = 1.087352
γ̂3 = 0.102 c3 = 0.016487
γ̂4 = −0.420 c4 = −0.038734
γ̂5 = −0.114 c5 = 0.000506
γ̂6 = 1.724 c6 = 0.001799

C. Height

m = 19.151 c1 = −0.022852
s = 8.352 c2 = 1.122603
γ̂3 = 0.145 c3 = 0.018029
γ̂4 = −0.351 c4 = −0.062403
γ̂5 = 0.474 c5 = 0.001608
γ̂6 = 2.735† c6 = 0.004094

D. Percent Body Fat

Figure 3: Power method approximations to empirical pdfs based on measures taken from
n = 252 men. †The values of γ̂6 associated with Weight and Percent Body Fat had to be
increased to 234.431 and 12.735 to ensure valid power method pdfs.



Journal of Statistical Software 9

Theoretical Distribution 20% Trimmed Mean Power Method

Standard Exponential 0.761 0.760
Beta (a = 4, b = 4) 0.500 0.500
Beta (a = 4, b = 2) 0.681 0.681
Gamma (a = 10, b = 10) 97.400 97.400

Table 2: Power method approximations of trimmed means from theoretical distributions.

Empirical Distribution 20% Trimmed Mean Power Method

Body Density 1.055 (1.054, 1.060) 1.056
Weight 176.554 (174.436, 178.621) 176.202
Height 70.262 (70.049, 70.477) 70.270
Percent Body Fat 19.071 (18.387, 19.749) 18.992

Table 3: Power method approximations of trimmed means from empirical distributions. Each
empirical trimmed mean is based on a sample size of n = 152 and has a 95% bootstrap
confidence interval enclosed in parentheses.

Cumulative % Power Method Class Intervals Observed Data Freq Expected Freq

10 < 1.031 25 25.2
20 1.031− 1.039 27 25.2
30 1.039− 1.045 24 25.2
40 1.045− 1.050 28 25.2
50 1.050− 1.056 25 25.2
60 1.056− 1.061 22 25.2
70 1.061− 1.066 21 25.2
80 1.066− 1.072 27 25.2
90 1.072− 1.081 28 25.2
100 > 1.081 25 25.2

χ2 = 2.048 Pr{χ2
3 ≤ 2.048} = 0.438 n = 252

Table 4: Observed and expected frequencies and χ2 test based on the power method approx-
imation to the body density data in Figure 3.
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Y1 Y2 Y3 Y4

Y1 1
Y2 0.4 1
Y3 0.5 0.7 1
Y4 0.6 0.8 0.9 1

Table 5: Specified correlations ρYiYj between the power method distributions in Figure 2.

Z1 Z2 Z3 Z4

Z1 1
Z2 0.444 1
Z3 0.583 0.708 1
Z4 0.643 0.811 0.939 1

Table 6: Intermediate correlation matrix for Table 5.

a11 = 1 a12 = 0.444 a13 = 0.583 a14 = 0.643
0 a22 = 0.896 a23 = 0.502 a24 = 0.587
0 0 a33 = 0.639 a34 = 0.423
0 0 0 a44 = 0.252

Table 7: Cholesky decomposition on the intermediate correlation matrix in Table 6.

Y1 Y2 Y3 Y4

Y1 1
Y2 0.400 1
Y3 0.500 0.700 1
Y4 0.601 0.801 0.900 1

Table 8: Empirical estimates of the population correlations (ρYiYj ) in Table 5. The estimates
are based on single draws of size n = 1000000 from each distribution.
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γ̂3 γ̂4 γ̂5 γ̂6

Y1 2.000 5.986 24.023 119.157
(2.000) (6.000) (24.000) (120.000)

Y2 0.000 −0.548 −0.000 1.705
(0.000) (−0.545) (0.000) (1.678)

Y3 −0.468 −0.378 1.403 −0.403
(−0.468) (−0.375) (1.403) (−0.426)

Y4 0.632 0.596 0.760 1.220
(0.632) (0.600) (0.759) (1.200)

Table 9: Empirical estimates of the population parameters (γ`=3,...,6) in Figure 2. The esti-
mates are based on 10000 replications of samples of size n = 1000000. Each cell contains the
parameter γ`=3,...,6 enclosed in parentheses and is rounded to three digits.

use of the formulae

Z1 = a11V1

Z2 = a12V1 + a22V2

Z3 = a13V1 + a23V2 + a33V3

Z4 = a14V1 + a24V2 + a34V3 + a44V4

where V1, . . . , V4 are independent standard normal random deviates. The values of Z1, . . . , Z4

are then used in equations of the form in (4) and (5) to produce Y1, . . . , Y4 with their specified
shapes in Figure 2 and the specified correlation structure in Table 5.

To empirically demonstrate, the four power method distributions depicted in Figure 2 were
simulated in accordance to the specified correlation matrix in Table 5 using an algorithm
coded in FORTRAN 77. The algorithm employed the use of subroutines UNI1 and NORMB1
(Blair 1987) to generate pseudo-random uniform and standard normal deviates. Single draws
of size n = 1000000 were drawn from each of the four distributions and the sample correlation
coefficients ρ̂YiYj were computed. These values are reported in Table 8.

The estimates of the standardized cumulants were obtained by applying equations (13), (14),
(15), and (16) in Appendix A to samples of size n = 1000000 for each of the four distributions.
The empirical estimates γ̂`=3,...,6 for each distribution were computed by taking the overall
average across the 10000 replications. Thus, each estimate γ̂`=3,...,6 was based on ten billion
random deviates and the results are reported in Table 9. Inspection of Table 8 and Table 9
indicate that the procedure produces excellent agreement between the empirical estimates
and parameters.
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4. Comments

The advantages and limitations of the power method transformation (Fleishman 1978; Head-
rick 2002; Headrick and Kowalchuk 2007) are similar to the transformation associated with
the generalized lambda distribution (e.g., Headrick and Mudgadi 2006; Karian and Dudewicz
2000; Ramberg, Tadikamalla, Dudewicz, and Mykytka 1979). Specifically, both procedures
can generate a variety of univariate pdfs as well as simulate correlated data sets in a compu-
tationally efficient manner. However, both classes of pdfs are limited to the extent that they
do not span the entire space in the plane defined by the inequality for skew (γ3 ) and kurtosis
(γ4 ) i.e. γ4 > γ2

3 − 2 where γ4 = 0 for the normal distribution.

Nevertheless, as demonstrated in Demo.nb, a user of the power method has the flexibility to
alter the sixth cumulant γ6 (or γ̂6) if needed to create a valid pdf e.g., the Extreme Value
pdf where SixCon=1. Such small alterations to γ6 (or γ̂6) should have little impact on an
approximation of a pdf and yet preserve the more important interpretable values of skew and
kurtosis. In terms of γ̂6, we would note that it has high variance (see equation six in the
PowerMethodX functions) and that errors in its estimation have the potential to be magnified.

It is also worth pointing out that the amount of increase to SixCon required to create a valid
power method pdf is positively correlated with the original estimate γ̂6 from the data. That
is, the larger the estimate of γ̂6 usually requires a larger increase in SixCon to create a valid
pdf. See, for example, the estimates of γ̂6 for Weight and Percent Body Fat given in Panels
B and D of Figure 3. We would also note that increasing γ6 (or γ̂6 ) in order to create a valid
pdf is not a panacea. For example, a theoretical density where the power method will not
yield valid pdfs are the values associated with the Beta[a,b] distribution when either a or b
is equal to one.

Finally, we note that the initial starting values (int1,...,int6) that are set for the command
FindRoot in the PowerMethodX functions obtained all solutions for the coefficients in Demo.nb,
the examples in this manuscript, as well as for a large set of Tables (available on request from
the first author) that provides a range of possibilities for the power method. As such, we
recommend that the user do not alter the initial starting values.
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A. Equations for moments and cumulants

For theoretical distributions, let X be a real-valued stochastic variable with distribution func-
tion F . The central moments of X are defined as

µr = µr(X) =
∫ +∞

−∞
(x− µ)rdF (x). (6)

If σ is defined as the population standard deviation associated with X, then the first r = 6
standardized cumulants (γi) for X are given as (Headrick 2002) γ1 = 0, γ2 = 1,

γ3 = µ3/σ3 (7)
γ4 = µ4/σ4 − 3 (8)
γ5 = µ5/σ5 − 10γ3 (9)
γ6 = µ6/σ6 − 15γ4 − 10γ2

3 − 15. (10)

For empirical data x1, . . . , xn the sample moments (mi) are defined as

m =
∑n

j=1
xj/n (11)

mi =
∑n

j=1
(xj −m)i/n (12)

for i = 2, . . . , r = 6. If s =
√

m2, then the empirical analogs to (7), (8), (9), and (10) are

γ̂3 = m3/s3 (13)
γ̂4 = m4/s4 − 3 (14)
γ̂5 = m5/s5 − 10γ̂3 (15)
γ̂6 = m6/s6 − 15γ̂4 − 10γ̂2

3 − 15. (16)

B. Equation for multivariate data generation

The equation used to solve for intermediate correlations ρZiZj is (Headrick 2002)

ρYiYj
= 3c5ic1j + 3c5ic3j + 9c5ic5j + c1i(c1j + c3j + 3c5j) + c2ic2jρ

ZiZj
+

3c4ic2jρ
ZiZj

+ 15c6ic2jρZiZj
+ 3c2ic4jρZiZj

+ 9c4ic4jρ
ZiZj

+

45c6ic4jρ
ZiZj

+ 15c2ic6jρ
ZiZj

+ 45c4ic6jρ
ZiZj

+ 225c6ic6jρ
ZiZj

+

12c5ic3jρ
2

ZiZj

+ 72c5ic5jρ
2

ZiZj

+ 6c4ic4jρ
3

ZiZj

+ 60c6ic4jρ
3

ZiZj

+

60c4ic6jρ
3

ZiZj

+ 600c6ic6jρ
3

ZiZj

+ 24c5ic5jρ
4

ZiZj

+ 120c6ic6jρ
5

ZiZj

+

c3i(c1j + c3j + 3c5j + 2c3jρ
2

ZiZj

+ 12c5jρ
2

ZiZj

). (17)
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