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Abstract. In the present paper, we have calculated the outgo-
ing longwave radiation at the top of the atmosphere (OLR at
TOA) using a deterministic radiation transfer model, cloud
data from ISCCP-D, and atmospheric temperature and hu-
midity data from NCEP/NCAR reanalysis, for the seventeen-
year period 1984–2000. We constructed anomaly time-series
of the OLR at TOA, as well as of all of the key input cli-
matological data, averaged in the tropical region between
20◦ N and 20◦ S. We compared the anomaly time-series of
the model calculated OLR at TOA with that obtained from
the ERBE S-10N (WFOV NF edition 2) non-scanner mea-
surements. The model results display very similar seasonal
and inter-annual variability as the ERBS data, and indicate a
decadal increase of OLR at TOA of 1.9±0.2 Wm−2/decade,
which is lower than that displayed by the ERBS time-series
(3.5±0.3 Wm−2). Analysis of the inter-annual and long-term
variability of the various parameters determining the OLR at
TOA, showed that the most important contribution to the ob-
served trend comes from a decrease in high-level cloud cover
over the period 1984–2000, followed by an apparent drying
of the upper troposphere and a decrease in low-level cloudi-
ness. Opposite but small trends are introduced by a decrease
in low-level cloud top pressure, an apparent cooling of the
lower stratosphere (at the 50 mbar level) and a small decadal
increase in mid-level cloud cover.

1 Introduction

Recent analysis of satellite broadband observations (ERBS
WFOV, ERBE/ERBS scanner, ScaRaB, CERES) of the out-
going longwave (thermal infrared) radiation (OLR) at the top
of the atmosphere (TOA) over the period 1979–2001 indi-
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cates that in the tropical region there has been a significant
increase in the OLR at TOA by about 2.8 Wm−2/decade1

(Chen et al., 2002; Wielicki et al., 2002a, b). Most of this
occurred from the late 1980s to the mid to late 1990s and ap-
pears to be related to a decrease in total cloudiness (as given
by ISCCP) for the same period over the tropics. Wang et
al. (2002) used a simple parameterisation for the cloud long-
wave radiative forcing, along with cloud vertical distribu-
tions derived from SAGE II solar occultation measurements,
to conclude that about 40% of the observed OLR trend for
the years 1985–1998 can be accounted for by changes in
the cloud vertical distribution, while they suggested that a
change in cloud effective emissivity (i.e. the product of cloud
fraction and emissivity) could account for the remainder of
the OLR changes. Chen et al. (2002) found that the ob-
served flux changes are associated with a decadal-time-scale
strengthening of the tropical Hadley and Walker circulations.
Trenberth (2002), however, challenged the reality of the OLR
trend, because of the great difficulty of deriving reliable flux
time-series from space, when there is no overlap between
satellite records. Observations from narrowband scanning ra-
diometers (AVHRR and HIRS) have been used (Wielicki et
al., 2002a, data supplement http://www.sciencemag.org/cgi/
content/full/295/5556/841/DC1) to derive broadband long-
wave radiative fluxes: AVHRR OLR fluxes showed a de-
crease of 2 Wm−2/decade in the tropical region, for the pe-
riod 1985–2000, while HIRS OLR data showed an increase
of about 1 Wm−2/decade for the same period. In the re-
cent reprocessing of AVHRR data, which resulted in the
PATMOS climate dataset, Jacobowitz et al. (2003) examined
the time-series of the OLR at TOA, in the tropics (20◦ N–
20◦ S), for the period from September 1981 through to De-
cember 1999. They found that the OLR decreased by a
little less than 2 Wm−2 for the period from 1985 to 2000.

1This is the revised value given by Wielicki et al., 2002b.
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Fig. 1. The upper panel shows the geographical distribution of the outgoing longwave radiation at the top of the atmosphere as calculated
by the model, while the lower panel as given by ERBE. Both maps give the annual long-term average calculated over the 52-month period
covered by the ERBE dataset (1985–1989).

However, this decrease was caused mainly by larger values
of the OLR from 1985 to 1988, compared to the rest of
the values from 1988 to 2000. They conclude that, on the
whole, there was no consistent trend throughout the 18-year
period. Finally, it is also noteworthy that General Circula-
tion Models, studied by Wielicki et al. (2002a) and Allan
and Slingo (2002), failed to show any long-term trend of the
OLR at TOA.

In the present paper, we have calculated the OLR at TOA
using a deterministic radiation transfer model, cloud data
from ISCCP-D, and atmospheric temperature and humid-
ity data from NCEP/NCAR reanalysis, for the period 1984–
2000. We then constructed anomaly time-series of the OLR
at TOA, as well as of all of the key input climatological data,
averaged in the tropical region between 20◦ N and 20◦ S.
We compared the anomaly time-series of the OLR at TOA
with that obtained from the ERBS S-10N (edition 2) mea-
surements. We then examined the effect of any long-term
changes detected in the time-series of the input data, to
changes of the OLR at TOA.

2 Model description and input data

The LW fluxes at TOA and at the Earth’s surface were com-
puted using the FORTH longwave radiative transfer model,
which is based on a detailed radiative-convective model (Var-
davas and Carver, 1984). The model has been successfully
tested (cf. Hatzianastassiou et al., 1999; Hatzianastassiou and
Vardavas, 2001) according to the Inter-comparison of Radi-
ation Codes in Climate Models (ICRCCM) program. The
same model was also used to calculate the downwelling long-
wave fluxes at the surface in Pavlakis et al. (2004).

Monthly fluxes were derived on a 2.5◦ resolution, for the
tropical region, between 20◦ N and 20◦ S. We used simple
expressions for the total absorption of infrared radiation by
the atmospheric molecules, independently in each 2.5◦

×2.5◦

pixel, dividing vertically the atmosphere (from the surface up
to 50 mb) in about 5 mb layers to ensure that they are opti-
cally thin with respect to the Planck mean longwave opac-
ity, and using simple transmission coefficients which depend
on the amount of absorbing molecules in each layer. The
molecules considered are; H2O, CO2, CH4, O3, and N2O.
The sky is divided into clear and cloudy fractions. The
cloudy fraction includes three non-overlapping layers of low,
mid and high-level clouds2. Expressions for the fluxes for
clear and cloudy sky can be found in Hatzianastassiou et
al. (1999). All of the cloud climatological data are taken from
the ISCCP-D2 data set (Rossow and Schiffer, 1999), which
supplies monthly means for 72 climatological variables in
2.5◦ equal-angle pixels for the period 1984–2000. For the
total amount of ozone, carbon dioxide, methane, and nitrous
oxide, we used the same values as in Hatzianastassiou and
Vardavas (2001).

The vertical distributions of the temperature and water va-
por are taken from the NCEP/NCAR reanalysis (Kistler et
al., 2001), corrected for topography as in Hatzianastassiou et
al. (2001).

2Quantification of the cloud overlap effect on the OLF is a diffi-
cult problem. However, for example, based on the maximum over-
lap scheme without conservation of the optical depth, described in
Chen et al (2000), we estimate that the observed trend in the OLF,
would be increased by up to 0.2 Wm−2/decade. On the other hand,
assuming conservation of the optical depth with maximum overlap,
there is an equivalent decrease in the OLF trend.
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Fig. 2. Average seasonal cycle displayed by the model OLR (black
line) and the ERBE OLR (red line), after having subtracted from the
model data the value of 4.6 Wm−2(model bias).

Above the 300 mb level, NCEP/NCAR does not provide
water vapor data, thus we have used a typical specific humid-
ity at 50 mb based on HALOE measurements at that level.
HALOE data do not cover the entire period studied here. We
have, thus, adopted the same average value for all years; this
point is further discussed later.

3 Model validation

The model calculated outgoing fluxes at the top of the at-
mosphere were validated against ERBE (Earth Radiation
Budget Experiment) scanner fluxes, for the years 1985–
1989 (for which ERBE data are available), for all 2.5◦ grid-
boxes within the 20◦ N–20◦ S zone. The correlation coeffi-
cient between model calculated and ERBE fluxes is R=0.96.
The average difference between model and ERBE fluxes is
4.6±0.1 Wm−2, with a standard deviation of 6.3 Wm−2, with
the model fluxes being higher on average than the ERBE
fluxes. Figure 1 shows the geographical distribution of the
long-term annual average of the longwave outgoing flux at
the top of the atmosphere as calculated by the model (upper
panel) and as given by ERBE (lower panel). The agreement
is generally very good, with differences less than 5% on a
pixel level over most of the area studied. The average sea-
sonal cycle displayed by the model fluxes for the tropical
zone is also in excellent agreement with the seasonal vari-
ability displayed by the ERBE data, as can be seen in Fig. 2.
A full analysis of the model results both regionally and glob-
ally, using different reanalysis input data for the temperature
and humidity profiles (along the lines of the study of Pavlakis
et al., 2004, for the downwelling longwave flux) are beyond
the scope of the present paper and will be the subject of a
future paper.

Fig. 3. Time-series of the tropical (20◦ N–20◦ S) mean outgoing
longwave radiation anomaly at the top of the atmosphere for the pe-
riod 1984–2000, as derived by the model (black line), using ISCCP-
D2 cloud data and NCEP/NCAR Reanalysis data. For comparison,
the red line shows the ERBE S-10N (WFOV NF edition 2) non-
scanner measurements for the same zone and for the period 1985–
1999.

4 OLR anomaly time-series

Figure 3 (black line) shows the time-series of the anomaly of
the mean monthly longwave outgoing flux at the top of the
atmosphere with respect to the 1985–19893 average monthly
fluxes (from which the average seasonal cycle has been re-
moved), for the tropical region (between 20◦ N and 20◦ S)
and for the period 1984–2000 for which ISCCP-D2 data are
available. For comparison we have overlaid on the same di-
agram the tropical mean anomaly shown by the ERBE S-
10N (WFOV NF edition 2) non-scanner data (red line). The
agreement between the two time-series is remarkable. Lin-
ear regression between the model and satellite data yielded
a correlation coefficient of R=0.84. Both time-series dis-
play very similar inter-annual variability. They both show
a broad maximum in 1987, concurrent with the 1986/1987
El Niño event, followed by a minimum in 1990, correspond-
ing to the 1989/1990 La Niña. A strong peak appears in
1998, corresponding to the El Niño of 1997/1998. The long-
term behavior of the two time-series is also quite similar.
They both show a decadal increase, but of different magni-
tude. The model calculated OLR time-series yields a for-
mal decadal increase of 1.9±0.2 Wm−2 for the period 1984–
2000, while the ERBS time-series gives a formal decadal in-
crease of 3.5±0.3 Wm−2, which is in broad agreement with
the Wielicki et al. (2002a) result4. Therefore, although the

3In agreement with the choice of Wielicki et al. (2002) for the
reference period used for the construction of the anomaly time se-
ries.

4The decadal increase found here for the ERBS dataset is in
agreement with the original Wielicki et al. (2002a) result. Wielicki
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(a)

(b)

(c)

Fig. 4. (a) Time-series of the tropical mean high-level cloudiness
anomaly (absolute percent) for the period 1984–2000.(b) Time-
series of the anomaly of the high-level cloud top pressure (mbar) for
the period 1984–2000. A significant peak is observed following the
Pinatubo eruption (June 1991).(c) Time-series of the anomaly of
the high-level cloud emissivity for the period 1984–2000. A signif-
icant peak is observed following the Pinatubo eruption (June 1991).

et al. (2002b) revised their estimate to 2.8 Wm−2 by introducing a
correction to the ERBS data. This new estimate is still significantly

model calculated fluxes show excellent agreement with the
ERBS data as far as short-term inter-annual variability is con-
cerned, the long term positive trend of the model OLR is
lower than the ERBS (or the Wielicki et al., 2002a) value.

5 Climatological data anomaly time-series

We have explored the long-term variability behaviour of all
of the main climatological parameters used as input to our
model (described in Sect. 2) and attempted to determine
which of these parameters contribute significantly to the ob-
served OLR trend (as calculated by our model), for the pe-
riod 1984–2000. The methodology used is simple: we con-
structed the anomaly time-series for each input parameter, in
exactly the same way as the OLR anomaly time-series was
constructed. Whenever a statistically significant decadal de-
crease or increase was observed, we introduced this change
for the particular parameter in the model, recalculated the
OLR at TOA, and derived the induced change (in Wm−2).
Table 1 summarizes the results of this analysis. Column 1
gives the list of input parameters, column 2 gives the actual
decadal increase, or decrease, found, along with the statis-
tical error, and column 3 the induced change in the OLR
at TOA. In the following paragraphs we discuss the results
separately for (i) the cloud parameters, (ii) the atmospheric
temperature profile and (iii) precipitable water in different
atmospheric layers. It should be emphasized here that the
individual radiative forcings of the different changes that ap-
pear in the following paragraphs and in Table 1 should not
be added in a simple fashion, as the climate system is highly
non-linear. They only provide a means of ranking the various
factors causing the observed variability of the OLR at TOA.

5.1 Cloud properties

High-level clouds: A uniform long-term decrease of high-
level cloudiness seems to have occurred over the tropics
(from 20◦ S to 20◦ N) during the period 1984–2000, at least
according to the ISCCP-D record, which is used in the
present study. According to the anomaly time-series shown
in Fig. 4a, the high-level cloud amount decreased signifi-
cantly, at a rate of about−10.1±0.5% 5 (relative, not ab-
solute, decrease) per decade, resulting in an increase of the
OLR at TOA of about 1.5 Wm−2 (Table 1).

Anomaly time-series for the high-level cloud top pressure
and emissivity have also been constructed (Figs. 4b and c).
The high-level cloud top pressure shows no overall signifi-
cant decrease, or increase in the period studied. However,
it did increase significantly, by about 50 mbar, in mid-1991
(after the Pinatubo eruption) and returned to the pre-Pinatubo

higher than the model calculated increase, found here.
5Percent difference is with respect to the 17-year aver-

age, i.e. (calculated percent difference)=100*(cloud cover decadal
change)/(mean cloud cover over 17 year period).
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Table 1.

Parameter Decadal trend Outgoing longwave radiative forcing at TOA (Wm−2)

Low-level cloud amount −6.5±0.4%∗ 0.23↑
Mid-level cloud amount 1.6±0.4%∗ 0.1↓
High-level cloud amount −10.1±0.5%∗ 1.5±0.1↑
Low-level cloud top pressure −1.8±0.2%∗ 0.34↓
Atmospheric temperature at 50 hP (K) −0.9±0.2 K 0.2↓
Precipitable water 500–300 hP (g cm−2) −3.1±0.6%∗ 0.53↑

∗ Relative change

values by the end of 1992 (Fig. 4b). At the same time, the
high-level cloud emissivity increased by about 30% (relative
increase), returning to the pre-Pinatubo average by the end
of 1992 (Fig. 4c). No significant overall trend was observed.
The peak in high-level cloud top pressure and the peak in
cloud emissivity introduce OLR changes of opposite sign,
which almost cancel out. This explains why the OLR shows
no similarly strong peak around 1992 (Fig. 3).

Mid-level clouds: Contrary to the high and low-level
cloudiness which appear to have decreased over the past cou-
ple of decades, according to the ISCCP record, mid-level
cloud amount shows a small decadal increase of 1.6±0.4%
(relative increase). This increase by itself would cause a
small decrease of the OLF at TOA (of about 0.1 Wm−2).
Mid-level cloud top pressure and emissivity show no signifi-
cant long-term change.

Low-level clouds: Low-level cloud amount decreased dur-
ing the period 1984–2000, at a rate of about−6.5±0.4%5

(relative decrease) per decade, which would result (by it-
self) in an increase of the OLR at TOA of about 0.2 Wm−2

per decade (Table 1). At the same time there has been
a decadal decrease of the low-level cloud top pressure by
about−1.8±0.2% (relative decrease), which would intro-
duce a small decadal decrease of the OLF at TOA, of about
−0.3 Wm−2/decade , which almost cancels out the effect of
the decrease in low-level cloudiness. So, on the whole, low-
level clouds seem to have almost a zero contribution in the
observed OLF trend.

The overall trend in OLR introduced directly by changes in
all cloud properties together is about 70% of the overall trend
in the model calculated OLR and it is mainly due to the high-
level cloud cover decrease. Wang et al. (2002) suggested that
part of the observed trend in the OLR could be attributed to
reduced mean cloud opacity. However, we have found no
significant trend in cloud emissivity that could contribute to
the overall trend in OLR, at least according to the ISCCP
record.

Fig. 5. Time-series of the upper tropospheric water vapour (500–
300 mbar) anomaly for the period 1984–2000.

5.2 Precipitable water

NCEP/NCAR water profiles are only available up to
300 mbar. Time-series of precipitable water in three lay-
ers (surface to 700 mbar, 700–500 mbar and above 500 mbar)
were constructed. A non-monotonic decrease of precipitable
water in the upper troposphere (above 500 mbar), amounting
to −3.1±0.6% per decade, is exhibited by the NCEP/NCAR
data (Fig. 5). This trend introduces (by itself) an increase
of the OLR at TOA of 0.53 Wm−2/decade. However, it
must be noted here that this drying of the upper troposphere,
which is also found in TOVS statistical retrievals (Schroeder
and McGuirk, 1998), is not supported by either microwave
or TOVS-physical retrievals (Soden and Schroeder, 2000).
Bates and Jackson (2001), based on 20-year HIRS data, ac-
tually find a positive trend for the upper tropospheric water
vapor in the deep tropics, definitely not shown by the NCEP
data used here. It is clear, therefore, that estimated trends in
upper tropospheric humidity remain ambiguous.

Another important issue is atmospheric humidity above
300 mbar. In our model calculation, we assumed a fixed
value of the specific humidity at 50 mbar, as explained in
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Fig. 6. Time-series of the atmospheric temperature anomaly at
50 mbar for the period 1984–2000.

Sect. 2. It is possible that the fact that we find a much
lower decadal increase of the OLR at TOA than shown by
the ERBS data, could be due to this assumption. If there was
a decrease, for example, of 10% per decade, for the specific
humidity at 50 mbar (see e.g. IPCC, 2001; Kley et al., 2000),
this would – by itself – cause an increase of the OLR at TOA
of about 0.25 Wm−2 per decade.

5.3 Atmospheric temperature profiles

Time-series of the atmospheric temperature (from
NCEP/NCAR reanalysis) at various atmospheric levels
were constructed. No significant decadal trends were
found for the air temperature at any atmospheric level
(see also Kistler et al., 2001), other than in the lower
stratosphere where there appears to be a decadal decrease of
0.9±0.2 K/decade (Fig. 6). This decrease is non-monotonic,
caused by a drop of about 1.3 K around 1993. Note that
IPCC 2001 gives a decrease for the period 1979–2000
ranging from 0.3–0.7 K/decade. The effect on the OLR
at TOA of this (0.9 K/decade) trend is of the order of
−0.23 Wm−2. The skin temperature shows a small increase
of 0.10±0.03 K/decade. This however has a very minor
effect on the OLF trend (of less than 0.1 Wm−2).

6 Conclusions

To summarize, our model calculations, which are based on
ISCCP-D2 cloud climatologies, and temperature and hu-
midity profile information from NCEP/NCAR reanalysis
show that there has been an increase of OLR at TOA of
1.9±0.2 Wm−2/decade between 1984–2000. This decrease
is lower than the decrease displayed by the ERBE S-10N
(WFOV NF edition 2) non-scanner OLR time-series, or by
the results of Wielicki et al. (2002a, b). Analysis of the inter-
annual and long-term variability of the various parameters

determining the OLR at TOA, showed that the most impor-
tant contribution to the observed trend comes from a decrease
in high-level cloud cover over the period 1984–2000, fol-
lowed by an apparent drying of the upper troposphere and a
decrease of low-level cloudiness. Opposite but small trends
are introduced by a decrease in low-level cloud top pressure,
an apparent cooling of the lower stratosphere (at the 50 mbar
level) and a small decadal increase in mid-level cloud cover.
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