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Abstract. Climate regulates fire activity through the buildup
and drying of fuels and the conditions for fire ignition
and spread. Understanding the dynamics of contemporary
climate–fire relationships at national and sub-national scales
is critical to assess the likelihood of changes in future fire
activity and the potential options for mitigation and adapta-
tion. Here, we conducted the first national assessment of cli-
mate controls on US fire activity using two satellite-based es-
timates of monthly burned area (BA), the Global Fire Emis-
sions Database (GFED, 1997–2010) and Monitoring Trends
in Burn Severity (MTBS, 1984–2009) BA products. For each
US National Climate Assessment (NCA) region, we ana-
lyzed the relationships between monthly BA and potential
evaporation (PE) derived from reanalysis climate data at 0.5◦

resolution. US fire activity increased over the past 25 yr, with
statistically significant increases in MTBS BA for the entire
US and the Southeast and Southwest NCA regions. Monthly
PE was strongly correlated with US fire activity, yet the cli-
mate driver of PE varied regionally. Fire season tempera-
ture and shortwave radiation were the primary controls on
PE and fire activity in Alaska, while water deficit (precip-
itation – PE) was strongly correlated with fire activity in
the Plains regions and Northwest US. BA and precipitation
anomalies were negatively correlated in all regions, although
fuel-limited ecosystems in the Southern Plains and South-
west exhibited positive correlations with longer lead times
(6–12 months). Fire season PE increased from the 1980’s–
2000’s, enhancing climate-driven fire risk in the southern and
western US where PE–BA correlations were strongest. Spa-
tial and temporal patterns of increasing fire season PE and
BA during the 1990’s–2000’s highlight the potential sensitiv-
ity of US fire activity to climate change in coming decades.
However, climate-fire relationships at the national scale are

complex, based on the diversity of fire types, ecosystems, and
ignition sources within each NCA region. Changes in the sea-
sonality or magnitude of climate anomalies are therefore un-
likely to result in uniform changes in US fire activity.

1 Introduction

Climate is a fundamental constraint on fire activity. Climate
conditions influence the quantity and condition of fuels (e.g.,
Arora and Boer, 2005; van der Werf et al., 2008b; Thonicke
et al., 2010), rate of fire spread (e.g., Rothermel, 1972; Scott
and Burgan, 2005), and frequency of fire ignitions from light-
ning (Bartlein et al., 2008; Christian et al., 2003). Globally,
fires are most common in regions with intermediate levels of
precipitation; fuel availability or moisture content limit fires
in regions with low or high precipitation, respectively (van
der Werf et al., 2008b). Human activities have amplified sea-
sonal fire activity in temperate and tropical ecosystems (e.g.,
Morton et al., 2008; Giglio et al., 2006) and modified natural
fire regimes through agricultural management (e.g., Le Page
et al., 2010) and fire suppression efforts (Girod et al., 2007;
Lenihan et al., 2008; Marlon et al., 2009). The timing, fre-
quency, and extent of recent fires therefore reflect this com-
plex suite of interactions among climate, ecosystems, and
human societies (e.g., Thonicke et al., 2010; Giglio et al.,
2006; Lavorel et al., 2007; Krawchuk et al., 2009; van der
Werf et al., 2010; Kloster et al., 2010; Bowman et al., 2011;
O’Connor et al., 2011).

Projections of higher fire activity under scenarios of cli-
mate change have elevated the science and policy inter-
est in understanding climate–fire relationships (e.g., Flan-
nigan et al., 2005; Scholze et al., 2006; Spraklen et al.,
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2009; Westerling et al., 2011b; Pechony and Shindell, 2010).
Fires also generate feedbacks to the climate system through
changes in land surface albedo (Randerson et al., 2006) and
emissions of greenhouse gases (van der Werf et al., 2010)
and aerosols (Tosca et al., 2010; Seiler and Crutzen, 1980).
Coupled carbon cycle and climate models that include fire il-
lustrate the potential for fires to accelerate changes in ecosys-
tem structure and composition expected from climate change
alone (e.g., Golding and Betts, 2008; Kloster et al., 2012).
Climate-driven changes in fire activity are one motivating
factor for the focus on forest carbon stocks in international
climate negotiations (Bonan, 2008; Malhi et al., 2008). Na-
tional assessments of fire activity and climate–fire interac-
tions are needed to connect the science and policy objectives
at a common scale (e.g., CCSP, 2008; USGCRP, 2009).

In the US, regional relationships between climate and fire
activity reflect a diversity of human and natural fire regimes.
Previous studies were typically limited to regional analyses
of climate–fire relationships because historical burned area
(BA) data were unavailable at national scales (e.g., Swetnam
and Betancourt, 1990; Westerling et al., 2011b; Kasischke et
al., 2002). Most previous studies were also limited to forests,
where stand age, charcoal records, or scarred trees retain ev-
idence of historical fire activity (e.g., McKenzie et al., 2004).

Analyses of recent forest fires in the US highlight three
broad patterns of climatic control on BA. First, summer tem-
peratures are positively correlated with the extent of for-
est fires in Alaska (e.g., Kasischke and Turetsky, 2006; Ka-
sischke et al., 2002; Duffy et al., 2005), the northwest US
(McKenzie et al., 2004; Spraklen et al., 2009), and montane
areas across the western US (Littell et al., 2009; Spraklen et
al., 2009; Westerling et al., 2011b). Second, precipitation is a
stronger control on fire activity than temperature in the south-
west US (Littell et al., 2009; McKenzie et al., 2004), where
long-term drought conditions (e.g., Westerling et al., 2002)
and seasonal water deficits linked to early snowmelt (West-
erling et al., 2006) increase regional fire activity. Third, coin-
cident temperature and precipitation anomalies that synchro-
nize regional fire activity in Alaska and the western US fre-
quently coincide with large-scale climate modes, such as the
Pacific Decadal Oscillation (Swetnam and Betancourt, 1990;
Duffy et al., 2005; Trouet et al., 2006) and El Niño Southern
Oscillation (e.g., Kitzberger et al., 2007; Heyerdahl et al.,
2002; Veblen et al., 2000; Schoennagel et al., 2005). Large-
scale studies of climate and fire activity in other US regions
are less common, and no study has used a national database
of fire activity to consider fire–climate relationships in forest
and non-forest ecosystems.

Satellite data provide consistent information on the spa-
tial and temporal dynamics of recent fire activity. Active fire
detections from satellite sensors offer unprecedented detail
about the diurnal and seasonal distribution of global fire ac-
tivity (Giglio, 2007; Giglio et al., 2006; Mu et al., 2011; Le
Page et al., 2010; Chuvieco et al., 2008). Satellite-based esti-
mates of BA integrate fire activity over time, capturing the

timing, extent, and severity of burning based on pre- and
post-fire imagery (e.g., Roy et al., 2008; Giglio et al., 2010).
Satellite BA can be combined with land cover information to
classify fires as savanna, woodland, forest, and agricultural
burns, and to further distinguish forest fires between inten-
tional deforestation and wildfires (e.g., van der Werf et al.,
2010). The satellite data record of BA in savannas and wood-
lands is particularly valuable because the history of fire ac-
tivity in these ecosystems is more difficult to determine from
other proxy measures (McKenzie et al., 2004; Marlon et al.,
2009; Bowman et al., 2009).

Here, we use two satellite-based estimates of monthly
BA to assess climate controls on recent US fire activity.
The Global Fire Emissions Database (GFED, version 3) BA
product is a 14 yr record of global fire activity (1997–2010)
derived from multiple satellite data sources (Giglio et al.,
2010). The GFED BA product has been used previously to
understand global trends in BA (Giglio et al., 2010), and
GFED emissions data have been used to evaluate climate–
fire relationships in equatorial Asia (van der Werf et al.,
2008a) and South America (Chen et al., 2011). The Monitor-
ing Trends in Burned Severity (MTBS) BA product (1984–
2009) provides a longer record of large fire activity in the US
based on pre- and post-fire Landsat imagery for large fires on
federal and state lands (Eidenshink et al., 2007). The MTBS
database offers an opportunity to evaluate the consistency of
fire–climate relationships over the past 25 yr. The goal of this
study was to conduct a national assessment of climate–fire
relationships using satellite BA data for forest and non-forest
fires. A baseline understanding of climate controls on BA is
a critical precursor to assessing how future climate change
may influence regional and sub-regional US fire activity. Po-
tential evaporation (PE), calculated at 0.5◦ resolution using
reanalysis climate data, was used to integrate the influence
of temperature, humidity, and other climate factors that in-
fluence monthly fire weather. Our results suggest that BA has
increased in the six major US fire regions over the past 25 yr,
consistent with increases in fire season PE during this period.

2 Data and methods

2.1 Study area

Relationships between monthly BA and climate variables
were analysed at 0.5◦ resolution and summarized at na-
tional and sub-national scales (Fig. 1). The US was ini-
tially divided into seven regions, as defined in the National
Climate Assessment (NCA,http://assessment.globalchange.
gov): Alaska and Arctic (AK), Northwest (NW), South-
west (SW), Great Plains (GP), Midwest (MW), Southeast
and Caribbean (SE), and Northeast (NE). For this study,
the GP region was subdivided into separate regions for
the northern plains (NP) and southern plains (SP) along
the Kansas-Nebraska state border to better characterize
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latitudinal changes in climate-fire relationships in the central
US. These administrative regions broadly reflect climate and
vegetation zones with similar climate-fire responses. Puerto
Rico and the US Virgin Islands (SE region) and the Hawaii
and Pacific Islands NCA region were excluded from the anal-
ysis because complete GFED and MTBS data time series
were not available for these islands.

2.2 GFED data

GFED data provide a consistent estimate of global BA on a
monthly time step. Daily BA information, based on a combi-
nation of 500 m BA maps and active fire detections, were ag-
gregated to monthly BA estimates at 0.5◦ resolution (Giglio
et al., 2010). Briefly, the main source of BA information for
the GFED BA product was the Moderate Resolution Imaging
Spectroradiometer (MODIS) direct broadcast BA algorithm
(MCD64A1). During 2001–2009,> 90 % of all global BA
was mapped directly using the 500 m MODIS product (van
der Werf et al., 2010). For periods without MCD64A1 data
(1997–2000, and selected months during the MODIS era),
BA estimates were based on the relationship between active
fire detections and MCD64A1 BA (Giglio et al., 2010). Ac-
tive fire detections from MODIS, Along Track Scanning Ra-
diometer (ATSR), and Tropical Rainfall Measurement Mis-
sion (TRMM) Visible and Infrared Scanner (VIRS) sen-
sors complemented the available MCD64A1 data to pro-
vide consistent, gridded estimates of monthly BA for 1997–
2010. GFED BA and emissions data are available online
(www.globalfiredata.org).

Information on fire type facilitated detailed comparisons
between GFED monthly BA and climate variables for the
US. Beginning with version 3, GFED BA and fire emissions
were partitioned into six fire types (van der Werf et al., 2010).
Four of these fire types occur in the US: forest, woodland,
grassland and savanna, and agricultural fires. In this study,
woodland, grassland and savanna, and agricultural fires were
combined into a single “herbaceous” fire category.

2.3 MTBS data

The MTBS project maintains the longest consistent BA time
series for the entire US. Large fire perimeters in the MTBS
database are derived from the combination of state and fed-
eral large fire inventories with pre- and post-fire Landsat im-
agery (Eidenshink et al., 2007). Large fires are defined as
> 500 ac (202 ha) in the eastern US and> 1000 ac (404 ha) in
the western US, with the east–west division along the eastern
border of North Dakota, South Dakota, Kansas, Oklahoma,
and Texas. Many smaller fires are also included in the MTBS
database, either due to differences between satellite and Inci-
dent Command System database (ICS 209) estimates of burn
size, or from the National Park Service’s request for an as-
sessment of burn severity for a small fire within a National
Park. Small fires accounted for approximately one quarter of

all burn perimeters in the MTBS database but only 1.5 % of
the total burned area.

The MTBS fire perimeter data were used to assess the con-
sistency of fire–climate relationships in the US between 1984
and 2009. MTBS fire perimeter data for 1984–2009 were
downloaded fromwww.mtbs.gov(December 2011 data re-
lease), and MTBS fire perimeter data were aggregated to
monthly BA estimates (km2) at 0.5◦ resolution. The fire start
date was used to identify the burn month for each fire for
comparisons with climate data.

2.4 Climate data

Climate data for this study were derived from the National
Centers for Environmental Prediction (NCEP) North Ameri-
can Regional Reanalysis (NARR) dataset at∼ 32 km spatial
and 3-hourly temporal resolutions (Mesinger et al., 2006).
Eleven NARR climate variables were used in this study: air
temperature at 2 m,u/v wind speeds at 10 m, precipitation,
snow depth, relative humidity, surface pressure, albedo, sur-
face downward shortwave radiation, and surface upward and
downward longwave radiation. The entire NARR data record
(1979–2010) was used as the baseline from which to estimate
monthly climate variable anomalies during the GFED (1997–
2010) and MTBS (1984–2009) time periods. NARR data
were converted from Northern Lambert Conformal Conic
to geographic projection for comparisons with GFED and
MTBS BA data.

2.5 Calculation of potential evaporation

In addition to individual NARR climatic variables, monthly
potential evaporation (PE) was used to represent the hy-
drologic demand of the atmosphere (Lu et al., 2005). PE
was calculated using the Food and Agriculture Organization
(FAO) version of the Penman–Monteith equation (Allen et
al., 1998):

PE=
1(Rn − G) + ρaCp (V/ra)

1 + γ (1+ rs/ra)
, (1)

where1 is the slope of the saturation pressure to tempera-
ture,Rn is the net radiation,G is ground heat flux,ρa is air
density,Cp is the specific heat of the air,V is the vapour pres-
sure deficit (VPD),γ is the psychrometric constant, andrs
andra are surface and aerodynamic resistance, respectively.
Except for the two resistance terms, the input parameters for
Eq. (1) are constants (Allen et al., 1998) or can be calculated
from the 3-hourly NARR climate variables. For this study,
the bulk canopy stomatal resistance (rs) was deemed irrel-
evant for fuel drying and was set to zero, and aerodynamic
resistance (ra) was calculated using the standard reference
grass canopy (Allen et al., 1998). The influence of stomatal
conductance on humidity and regional fire weather, likely a
second order climatic control on regional BA, could be ad-
dressed in a future study. To account for non-linear variabil-
ity in PE over diurnal time scales, PE was first calculated at
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the native 3-hourly time step of the NARR data and then ag-
gregated to daily and monthly time steps. The use of PE in
this study represents a methodological advance over previous
studies based on empirical indices of fuel condition (e.g., Lit-
tell et al., 2009; Balshi et al., 2009) or Thornthwaite PE es-
timates based only on monthly air temperature, latitude, and
date (e.g., Girardin and Wooton, 2009). Equation (1) mech-
anistically combines the interactions between temperature,
solar radiation, humidity, and wind into a single variable for
fuel drying potential.

2.6 Statistical analysis

Robust linear regression was used to calculate regional trends
in BA and PE, and least-squares linear regression was used
to estimate correlations and cross correlations between BA
and climate anomalies. Pearson’s correlation coefficients be-
tween climate anomalies and BA were calculated for the peak
fire month, defined as the month with the largest fraction
of annual fire activity. In addition, climate–fire relationships
were assessed for a 3-month fire season. The consecutive 3-
month period including the peak fire month with the highest
fraction of annual BA was selected as the fire season. The
significance of trends and correlations was assessed using a
student’s t-test and 95 % confidence level.

The statistical approach in this study considered a range of
lead times between climate and fire activity. Short lead times
(0–3 months) were considered for all variables, with lead
times relative to the peak fire month or the first month of the
3-month fire season. A moving 3-month window was used to
aggregate climate variables for comparisons with fire-season
BA. Lead times of up to 24 months were used to evaluate
the influence of precipitation and snow depth on fire activity,
since previous studies have shown that fuel build up and fuel
drying may occur over longer time scales in water-limited
systems (Westerling et al., 2003; Taylor and Beaty, 2005).

The relationships between BA and climate were initially
calculated at 0.5◦ resolution. Results were also calculated at
two coarser spatial resolutions to consider sub-regional and
regional relationships between climate and BA. First, BA
and climate data were aggregated to 5◦ resolution. BA at the
coarser resolution was calculated as the sum of BA at the na-
tive 0.5◦ resolution, whereas climate variables at the coarser
resolution were calculated as the area-weighted average of
the variable at native resolution. Second, we analyzed fire–
climate relationships for each NCA region. BA and climate
variables for each NCA region were aggregated from 0.5◦

data in a similar fashion. The distributions of climate and BA
at these scales supported a more robust statistical analysis,
since individual 0.5◦ grid cells may only burn once during
the study period.

Fig. 1. Mean annual GFED BA (1997–2009, top) and MTBS BA
(1997–2009, middle; 1984–2009, bottom), shown as the burned
fraction of each 0.5◦ grid cell. Sub-national study regions are out-
lined in black: Alaska and Arctic (AK), Northwest (NW), South-
west (SW), Northern Plains (NP), Southern Plains (SP), Midwest
(MW), Southeast (SE), and Northeast (NE).

3 Results

3.1 US burned area

Satellite-based BA data offer a consistent, national perspec-
tive on US fire activity. The spatial distribution of US BA
was similar for the GFED and MTBS products (Fig. 1).
Within each study region, areas of concentrated fire activity
appear in both datasets, including interior Alaska (AK), cen-
tral Idaho (NW), southern California (SW), eastern Kansas
(SP), and southern Florida (SE). Spatial patterns of recent fire
activity from the MTBS data record were similar between the
GFED years (1997–2009) and the full BA time series (1984–
2009, Fig. 1). Differences between GFED and MTBS esti-
mates of mean annual BA highlight areas with small fires or
fires on private lands, including agricultural areas in the Mis-
sissippi River Valley (MW, SE) and southern Texas (SP).

The timing of recent US fire activity also varied regionally,
with monthly BA peaking early in the year in the SE and SP
regions and progressively later across the western US and
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Fig. 2.Peak fire month in North America, defined as the month with
the largest fraction of annual GFED burned area during 1997–2010.
Colour values from 1–12 indicate the calendar month of peak fire
activity for each grid cell.

Alaska (Fig. 2, Table 1). The timing of peak fire activity was
more heterogeneous in the SP and SE than in other regions
with substantial fire activity (Table 1). Variability in the peak
fire month is consistent with a greater diversity of fire types
in these regions, including fires for agricultural and forest
management that do not appear in the MTBS record (Fig. 1).

Together, the spatial and temporal patterns of fire activity
highlight areas where climate or management exert strong
control over the burned area (Figs. 2, 3). More than 60 % of
the total GFED BA for the US occurred during June–August
(Fig. 3). Concentrated fire activity during warmer months
highlighted the importance of climate controls on BA. Six
of the eight study regions had a single 3-month fire season
that accounted for> 70 % of mean annual BA (Table 1). Fire
seasons in the other three regions did not coincide with sum-
mer months. Burning occurred year-round in the SE US, and
the January–March fire season accounted for only 33 % of
annual BA in the SE region. Fires in the SP also peaked
during drier winter months (February–April). Evidence for
year-round fire activity in the SE and SP regions underscores
the role of management for burning in these regions. Finally,
fires were rare in the NE US (Fig. 1).

3.2 Burned area trends

Annual GFED BA for the US averaged 18 800 km2 yr−1 dur-
ing 1997–2010 (Table 2). More than 70 % of all burning dur-
ing this period occurred in non-forest cover types, including
woodlands, grasslands, and agricultural areas. The NW re-
gion had the highest fractional BA, with nearly 0.5 % of the
region burning each year (Table 2).

Six NCA regions accounted for 98 % of BA in the GFED
and MTBS BA time series (Table 2). The regional distribu-
tion of GFED and MTBS BA estimates were similar in four
of the six major burning regions (AK, NP, NW, and SW).
Extensive fires for agricultural management may explain the
two to threefold difference between GFED and MTBS mean
annual BA estimates for the SP and SE regions (Table 2),
since small fires and fires on private lands are not included in
the MTBS dataset.

Table 1. Peak fire month, 3-month fire season, and the fraction of
mean annual GFED BA in these months for each study region. The
mean deviation in peak fire month highlights the heterogeneity of
fire activity within each region.

Region Peak Fire Mean Deviation % BA Fire Season % BA
Month (Months)

AK Jul 0.9 45.4 Jun–Aug 93.6
NW Aug 0.8 46.4 Jul–Sep 85.7
NP Aug 1.6 45.1 Jul–Sept 81.5
MW Apr 1.5 39.2 Mar–May 71.7
NE Dec 3.9 33.4 Oct–Dec 38.3
SW Jul 1.4 27.6 Jun–Aug 70.0
SP Apr 2.1 41.0 Feb–Apr 66.2
SE Feb 3.1 15.0 Jan–Mar 33.1
US Jul 1.8 25.8 Jun–Aug 62.2

At the regional scale, BA exhibited strong interannual vari-
ability (Fig. 4). Positive BA trends were only statistically
significant in the MTBS record (Table 2). Interestingly, posi-
tive MTBS BA trends were also statistically significant in the
SE region and the entire US during the GFED years (1997–
2009). MTBS BA trends (km2 yr−1) using robust linear re-
gression were also larger in the GFED years (Table 2), possi-
bly due to the lack of 2010 data for MTBS – a year with low
burned area in the US.

3.3 Climate and interannual variability in
burned area

Across the US, PE anomalies explained more variance in
GFED BA than anomalies in mean monthly temperature, pre-
cipitation, VPD, or incoming shortwave radiation (Fig. 5).
Correlations between BA and PE in the fire season were
strongest in the NW, NP, SP, and SE regions. PE anomalies
were not strongly correlated with fire season BA in portions
of the SW US, where average conditions during the June–
August fire season are typically hot and dry. Correlations be-
tween BA and input variables for the PE Eq. (1) highlight the
relative contributions of different climate drivers. The rela-
tionships between BA and VPD showed a similar spatial pat-
tern as the BA–PE relationship but with somewhat weaker
correlations in AK and the NW US (Fig. 5). Shortwave ra-
diation and temperature were better predictors of interannual
variability in BA at higher latitudes, and precipitation anoma-
lies and BA were negatively correlated during the fire season
in all regions (Fig. 5). Precipitation and associated cloudi-
ness often reduce shortwave radiation, VPD, and tempera-
ture, causing substantial reductions in PE. Similarly, temper-
ature, shortwave radiation, and VPD are all positively cor-
related with one another and negatively correlated with pre-
cipitation. This behaviour is reflected in Fig. 5, which shows
strong positive correlations for VPD, temperature, and short-
wave radiation and generally the strongest correlations when
combined as PE.

www.biogeosciences.net/10/247/2013/ Biogeosciences, 10, 247–260, 2013
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Table 2.Mean annual GFED (1997–2010) and MTBS (1984–2009) burned area (BA, km2 yr−1) for the US and sub-national NCA regions.
Mean annual BA as a fraction of the region area and trends in annual BA (km2 yr−1) are also shown. Asterisked values indicate statistically
significant BA trends based on robust linear regression (p < 0.05).

AK NW NP MW NE SW SP SE US

GFED Mean Annual BA (km2 yr−1) 4340.9 2984.8 1461.8 345.5 53.8 4686.6 2213.5 2779.6 18 866.4
Herbaceous BA (km2 yr−1) 2407 2427.1 1126.6 254.8 34.9 3771.5 1889.1 1727.8 13 638.7
Forest BA (km2 yr−1) 1775.2 449.5 278.6 58.3 18.3 699.6 214 938.1 4431.7
GFED BA per unit area (%) 0.284 0.474 0.118 0.029 0.01 0.264 0.201 0.206 0.202
GFED BA trend 1997-2010(km2 yr−1) 43.7 −42.3 26.3 8.7 −3.7 138.5 155.5 48.7 831.0
Herbaceous BA Trend (km2 yr−1) 5.8 −49.7 12.6 2.4 −2.2 61.0 120.3 25.9 372.4
Forest BA Trend (km2 yr−1) 32.0 7.2 1.7 5.3 −0.7 31.7 10.4 −11.1 315.3

MTBS Mean Annual BA (km2 yr−1) 3679.2 2942.8 1506.3 220.7 103.9 4973.5 1375.9 1165.1 10 993.9
MTBS BA per unit area (%) 0.24 0.468 0.122 0.018 0.02 0.28 0.125 0.086 0.118
MTBS Mean Annual BA (1997–2009) 5949.8 3594.2 1741.2 209.6 43.1 6850.7 2306.7 1797.4 15 642.0
MTBS BA per unit area (1997–2009) 0.389 0.571 0.141 0.017 0.008 0.386 0.21 0.133 0.167
MTBS BA Trend 1984–2009(km2 yr−1) 11.8 22.7 28.1 4.5 0.2 281.0* 38.9 82.6* 753.0*
MTBS BA Trend 1997-2009(km2 yr−1) 505.7 162.3 58.7 11.4 0.6 355.9 123.6 209.9* 1809.8*

Fig. 3. Seasonal distribution of GFED BA for each US National
Climate Assessment study region during 1997–2010.

The regional distribution and magnitude of correlations
between MTBS BA and fire season PE were similar to pat-
terns using the GFED data (Fig. 6). The relationship between
MTBS BA and PE was stronger during the GFED years than
over the entire data record, particularly in the NW and NP
regions. The slope of the regression relationships provided
an indication of the sensitivity of BA to recent climate con-
ditions (Fig. 6). BA in the NW and AK regions showed the
highest sensitivity to increases in fire season PE.

The lead times between monthly drying potential (PE) and
BA illustrated the diversity of time scales over which climate
influences fire activity (Fig. 7). Coincident (lead= 0) rela-
tionships between PE and BA were most common in regions
with abundant fuels (AK, NW, and MW). Cross correlations
between PE and BA in these regions decreased steadily with
longer lead times, suggesting that current drying conditions
are more important for monthly BA than dry conditions in
previous months. In contrast, PE anomalies 2–6 months prior
to the fire season were strongly correlated with BA in the
NP and SP regions. Extended dry periods may convert live

Fig. 4. Interannual variability in MTBS (blue) and GFED (red) BA
for each NCA region. Values in each panel indicate the trends in
annual BA (km2 yr−1) from robust linear regression for MTBS
(1984–2009) and GFED (1997–2010) BA time series, as shown in
Table 2.

plants into fine fuels in grassland and woodland ecosystems,
increasing fire spread rates and BA.

Monthly relationships between MTBS BA and PE were
similar to results using GFED BA data (Fig. 7). The longer
MTBS data record of fires on public lands indicated shorter
lead times for PE–BA cross correlations in the NP, and longer
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Fig. 5. Pearson’s correlation coefficients for the relationships be-
tween GFED BA (1997–2010) during the 3-month fire season and
climate metrics for each 5◦ × 5◦ grid cell in North America. The
colour scale indicates the Pearson’s correlation coefficient (r). Sep-
arate map panels show the correlation between fire-season BA and
potential evaporation (PE), precipitation, vapour pressure deficit
(VPD), mean monthly temperature, and incoming shortwave short-
wave (SW) radiation from reanalysis climate data. Cells without sta-
tistically significant correlation coefficients (p > 0.1) appear white.

lead times for the maximum cross correlation between PE
and BA in the SE US, similar to relationships in the Plains
regions. The relationships between PE and MTBS BA across
all regions were stronger for recent years (1997–2009) than
during the entire MTBS time series (1984–2009), as indi-
cated in Fig. 6.

Across the major US fire regions, monthly cross correla-
tions between PE and BA during the fire season were statisti-
cally significant (p < 0.05) based on both GFED and MTBS
data, especially for months with more than 20 % of annual
BA for a region (Fig. 7). The lack of statistically significant
relationships between PE and GFED BA in two of three fire
season months for the SW, SE, and MW regions suggested
that other climate variables or non-climate drivers of BA such
as agricultural management were more important controls on
fire activity during these months.

Climate controls on PE and BA varied both within and
among regions over the course of the fire season (Fig. 8).
Shortwave radiation (R) was the main driver of fire season
PE in the AK, whereas the best predictor of fire season BA in
the NP, SP, and NW regions was VPD or water deficit (D), as
a likely control on fuel availability via the conversion of live
plants to fine fuels. Climatic control on monthly BA changed
seasonally in the NW region, shifting fromR to D during the
fire season (Fig. 8). A similar shift occurred in the SE region
from R to VPD. Representation of bothR and VPD in the
PE calculation integrated the combined influence of warm-
ing and drying conditions on BA (Fig. 7). Climate anomalies
during the fire season were also important for fires in subse-

quent months (e.g., AK, NW, SP), suggesting that dry con-
ditions early in the fire season may influence the duration of
the fire season later in the year.

Over longer time scales, precipitation played an impor-
tant role in interannual variability of monthly BA in the SP
region. Precipitation in the each of the previous two grow-
ing seasons explained nearly 30 % of the variability of BA
(Fig. 9). This lag between climate conditions and fire activity
suggests that an increase in the interannual variability of pre-
cipitation could enhance fire activity in this region, especially
in fuel-limited savanna or woodland ecosystems (e.g., Taylor
and Beaty, 2005). In contrast, precipitation was more impor-
tant for fire suppression than fuel accumulation in the SE re-
gion (Fig. 9). Similar lagged relationships between NARR
snow depth and GFED BA for high-elevation areas in the
western US and AK were not statistically significant (data
not shown).

3.4 Climate and fire risk

PE provides an integrative measure of climate-driven fire
risk. Fires occurred in grid cells with above-average monthly
PE values in all northern regions with substantial fire activity
(AK, NW, NP, MW), with the largest difference in monthly
PE between fire and non-fire grid cells in AK (Fig. 10).
Higher PE values for fire cells in the first month of the fire
season are consistent with the need for drier conditions to
accelerate the fuel drying process for early-season fires rel-
ative to later months (NP, NW, MW). The absolute value
of PE in fire grid cells was less consistent than the ten-
dency for above-average PE in cells with GFED BA. PE
varied between 3 mm day−1 for late-season fires in AK or
early-season fires in the MW region and> 10 mm day−1 for
July fires in the NP.

The three southern regions exhibited contrasting patterns
of monthly PE for fire grid cells compared to grid cells with-
out GFED BA (Fig. 10). In the SE, PE values were higher in
fire cells despite lower PE values during the January–March
fire season than during other months of the year in this re-
gion. In the SW, PE values were also higher in fire grid
cells, but the distribution of monthly PE values was more
similar between fire and no-fire cells. Monthly PE values in
the SW region were the highest of any region in all three
months of the fire season (mean> 6 mm day−1), consistent
with other evidence (i.e., Fig. 5) that BA was less sensitive
to PE anomalies in this region. Finally, PE values in the SP
region were average or below average in cells with GFED
BA. Fires in these months may reflect agricultural manage-
ment, rather than wildfires, given differences in climate–BA
cross correlations between MTBS and GFED BA for this
region (Figs. 7, 8).

Climate controls on US burned area expressed as PE in-
creased over the past 30 yr (Fig. 11). The strongest positive
trends in fire season PE occurred in the NP and MW regions.
In other regions, decadal differences in PE during the fire
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Fig. 6. Correlations between fire season PE and GFED BA(a), MTBS BA 1997–2009(b), and MTBS BA 1984–2009(c) for each 5◦ × 5◦

grid cell in North America, calculated using Pearson’s correlation coefficient (r). Panels d–f show the slope of the BA–PE relationships for
the fire season (10 000 ha mm−1 day−1).

Fig. 7. Monthly cross correlation coefficients between PE and
GFED BA (1997–2010, top) and MTBS BA (1997–2009, middle;
1984–2009, bottom). Numbers indicate the lead time between cli-
mate and BA in months. Black text signifies Pearson’s correlation
coefficients withp < 0.05, and grey text indicates correlation co-
efficients with 0.05≤ p < 0.1. Months with< 2 % of annual BA
or months without statistically significant correlations between BA
and climate variables (p > 0.1) appear white. Blue boxes outline
months with≥ 20 % of annual BA for each region.

season were more pronounced than the 30 yr trends. Drying
potential increased between the 1980s–1990s in the SP and
SW regions, with further increases in fire season PE values

between the 1990s–2000s (Fig. 12). Subtle increases in fire
season PE across interior AK and the SE US were also con-
sistent over the past 30 yr (Figs. 11, 12). Fire season PE val-
ues increased for all US regions between the 1990s–2000s,
with statistically significant PE increases in the AK, NP, MW,
and NE regions. A strengthening relationship between cli-
mate and fire activity (Figs. 7, 12) is one potential driver of
recent increases in US wildfires (Table 2).

4 Discussion

This study provides the first national-scale assessment of cli-
mate controls on US fire activity using satellite BA data.
Satellite BA data provide unprecedented spatial and tem-
poral detail to assess fire–climate relationships at national,
regional, and sub-regional scales. Independent BA datasets
from GFED and MTBS indicated increasing fire activity
across the southern and western US in recent decades, with a
statistically significant increase in total US BA during 1984–
2009. Interannual variability in US BA was strongly corre-
lated with atmospheric drying potential during the fire sea-
son. Fire season PE increased from the 1980s–2000s, en-
hancing climate-driven fire risk in the SP, NP, NW, and AK
where PE–BA correlations were strongest. Variability in fire–
climate relationships during the fire season highlighted the
different time scales over which radiation, VPD, and water
deficit influence the timing and duration of fire activity. This
study expands upon the results of previous research on cli-
mate variability and fire activity in the US (Littell et al., 2009;
Westerling et al., 2006; Xiao and Zhuang, 2007; Kloster et
al., 2010) using a more mechanistic approach to estimate PE
(Allen et al., 1998) and satellite-based data for monthly BA
in forest and non-forest cover types. Evidence in this study
for increasing climatic control on US wildfires is also consis-
tent with previous research on temperature-driven changes in
BA for Canadian boreal forests (Balshi et al., 2009; Girardin
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Fig. 8. Maximum monthly cross correlation coefficients between
GFED (top) and MTBS (middle, 1997–2009; bottom, 1984–2009)
BA and alternate climate indices. Letters in each grid cell indi-
cate the monthly mean climate variable (R: shortwave radiation,
V : vapour pressure deficit,P : precipitation;D: water deficit, cal-
culated asP -PE), numbers represent the lead time between climate
and BA in months (max= 3), and colours represent the Pearson’s
correlation coefficient. Black text indicates correlation coefficients
with p < 0.05, and grey text signifies correlation coefficients with
0.05≤ p < 0.1. Months with< 2 % of annual BA or without sta-
tistically significant correlations between BA and climate variables
(p > 0.1) appear white. Blue boxes outline months with≥ 20 % of
annual BA for each region.

and Wooton, 2009; Xiao and Zhuang, 2007; Gillett et al.,
2004). The detailed PE–BA relationships in this study pro-
vide a lens for evaluating changes in the timing or duration
of regional fire activity under future climate conditions.

The US experiences a complex array of fire activity, from
small agricultural management fires (McCarty et al., 2007)
to large wildfires in the western US and Alaska (Westerling
et al., 2003; Grissino-Mayer and Swetnam, 2000; Kasischke
et al., 2002). Climate–fire relationships within each NCA re-
gion were similarly complex; no single climate variable ex-
plained more than 60 % of the variance in fire season BA.
The PE calculation in this study captured the interactions be-
tween humidity and temperature, in addition to wind speed
and net radiation, and changes in these conditions during the
fire season. Fire season PE was a good predictor of inter-
annual variability in US BA, particularly in regions such as
AK, NW, and NP where either higher temperatures or lower
humidity can dry existing fuels. Precipitation–fire relation-

Fig. 9. Cross correlation coefficients between fire season BA and
precipitation for the Southern Plains (SP) and Southeast (SE) re-
gions for lead times of 0 to 24 months prior to the start of the fire
season. Dashed lines indicate the limits for statistically significant
correlation at the 95 % confidence level.

ships were more variable, since precipitation can increase
fire risk in fuel-limited systems in the months–years follow-
ing increased rainfall (e.g., Littell et al., 2009; Westerling et
al., 2003; Taylor and Beaty, 2005). Fire–climate relationships
in the SW and SE regions were more difficult to generalize,
given large within-region climate variability and ecosystem
diversity. The distribution of peak fire month within these
two regions (Fig. 2) suggests that finer spatial partitioning of
fire–climate relationships may be warranted.

Differences in the climate–fire relationships between
GFED and MTBS BA in this study highlight regions with
human modifications of the natural fire regime. Year-round
GFED fire activity in the SE US did not exhibit consistent
relationships with climate variables. Seasonal differences in
the timing of management fires could be used to isolate the
management fire activity in BA or active fire datasets (e.g.,
Magi et al., 2012). Indeed, the inclusion of agricultural man-
agement fires in the GFED BA product may partially explain
this variability (Giglio et al., 2010; van der Werf et al., 2010),
as both climate and non-climate drivers contribute to fire ac-
tivity in this region. In contrast, the MTBS record of large
fires on public lands showed more consistent relationships
between BA and water deficits in the SP and SE regions.
Contrasting patterns of fire activity between the GFED and
MTBS BA products underscore the importance of fire type
on climate–fire relationships. One goal of this study was
to highlight the diversity of climate–fire interactions at the
national scale, including regions with few historical studies
(MW, NE). The ability to capture the heterogeneity in fire
activity at a region scale using satellite data provides a more
complete baseline of contemporary US fire activity than in
previous studies confined to regional scales (e.g., McKenzie
et al., 2004; Westerling et al., 2006; Xiao and Zhuang, 2007).
Further research is needed to explore the discrepancies in
burned area estimates from GFED and MTBS for regions
dominated by large wildfires (e.g., SW and NW regions). It
is possible that differences in spatial resolution or treatment
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Fig. 10.Histograms of monthly PE (1997–2010) for 0.5◦ fire grid
cells (solid lines) and all grid cells (dashed lines) by region. Blue,
red, and black lines indicate the first, second, and third months of
the fire season, respectively (see Table 1).

of unburned islands within the fire perimeter contribute to the
differences in burned area estimates.

Contemporary relationships between climate and fire pro-
vide a blueprint for assessing regional changes in US fire
activity under future climate conditions. The results of this
study illustrate how the spatial and temporal variability in
US climate–fire relationships complicate projections of fu-
ture fire activity. Increasing PE during the fire season could
lead to increases in fire activity in the NP, NW, and AK. In
contrast, increasing fire season PE in the SW US may have
little impact on BA because mean PE values during the fire
season are already favourable for fire activity. BA in the SP
region responded to short-term water deficits and long-term
anomalies in precipitation, such that increasing interannual
variability in precipitation could lead to additional fires in
the region. Thus, changes in the seasonality or magnitude of
climate anomalies are unlikely to result in uniform changes
in US fire activity. The results of this study could be used
to identify region-specific relationships between climate and
BA to improve the parameterization of models that project
future fire activity.

Recent efforts to model US fire activity under scenarios of
climate change project a climate-driven increase in the area

Fig. 11.Fire season PE (+) for each NCA region between 1980 and
2010. Values indicate the linear trends in fire season PE (black lines)
during this period. Starred values indicate statistically significant PE
trends based on robust linear regression (p < 0.05).

and severity of wildfires (e.g., Brown et al., 2004; Spraklen
et al., 2009; Westerling et al., 2011a). Different projections
of future fire activity depend, in large part, on the complexity
of the fire–climate feedbacks in the model. Models that sim-
ulated the response of vegetation and fire to climate warm-
ing suggest that some of the increase in net carbon losses
from wildfire could be offset by enhanced vegetation growth
(Bachelet et al., 2005) or by the combination of enhanced
vegetation growth plus fire suppression efforts (Lenihan et
al., 2008; Rogers et al., 2011). Coupled models of the cli-
mate system with projections of population, land use, and
wildfires also highlight the likely increase in US fire activity
under scenarios of land use and climate change (Pechony and
Shindell, 2010). However, studies that include other direct
and indirect climate feedbacks from fire are still needed, such
as the impacts of aerosols and long-lived trace gases (Seiler
and Crutzen, 1980; Andreae and Merlet, 2001; van der Werf
et al., 2010), albedo changes (Randerson et al., 2006), and
hydrological exchanges between the land surface and atmo-
sphere (Busch and Smith, 1993; Kang et al., 2006).

Five methodological limitations in this study could be ad-
dressed in future research. First, fire activity reflects the in-
fluence of climate anomalies over a range of temporal and
spatial scales (Parisien et al., 2011). The use of monthly
PE values in this study does not capture synoptic events or
longer-term evolution of climate phenomena, including car-
ryover effects from anomalies in previous months such as
soil water deficits. Second, climate controls on fire ignitions
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Fig. 12. Difference in decadal mean fire season PE for the 1980s,
1990s, and 2000s (mm day−1). Cells without GFED BA area in any
year (1997–2010) appear white.

and the duration of fire activity may differ (Abatzoglou and
Kolden, 2011), or be self-reinforcing through rainfall inhi-
bition from biomass burning aerosols (Tosca et al., 2010;
Rosenfeld, 1999). Daily BA and climate information can
help isolate climate conditions that favour ignition, growth,
and suppression of fire activities to better target mitigation
and adaptation efforts on a regional basis. Third, other cli-
mate phenomena, such as changes in atmospheric circulation
(Skinner et al., 1999; Macias Fauria and Johnson, 2006), may
provide a more mechanistic representation of the evolution of
warm, dry conditions that promote fire activity at mid–high
latitudes. Future efforts to capture changing atmospheric cir-
culation as a function of sea surface temperature anomalies
(e.g., Duffy et al., 2005; Chen et al., 2011) may provide an al-
ternate means to assess seasonal or long-term changes of fire
risk in the US and other regions. Fourth, some local interac-
tions between climate and fire were not well captured in this
study, such as the role of snowpack for fire activity at the wa-
tershed scale (Westerling et al., 2006). BA and climate data
on finer spatial scales may be needed to isolate climate–fire
relationships in ecosystems with complex terrain or hydrol-
ogy. Finally, the use of NCA administrative regions in this
study may have masked climate–fire relationships for spe-
cific biomes (Littell et al., 2009) or other sub-regions where

land cover, land use, or fragmentation are strong controls on
BA.

This study represents the first national assessment of
climate–fire relationships in the US. The MTBS (26 yr)
and GFED time series (14 yr) of satellite BA data provide
complementary information to evaluate the consistency of
climate–fire relationships on a regional basis. Spatial patterns
of BA in the US are complex, based on the diversity of fire
types, ecosystems, and ignition sources within each NCA re-
gion. We document a significant increase in US BA during
1984–2009. Fire season PE also increased during this pe-
riod, suggesting that stronger climate control on BA is one
potential driver of recent BA trends in the western US and
Alaska. Non-climate drivers of regional BA were also impor-
tant for the seasonal and interannual variability of fire activ-
ity across the southern US. Differences between GFED and
MTBS burned area estimates and weaker climate–fire rela-
tionships with GFED BA suggest a significant contribution
from agricultural management fires in the SP and SE regions.
This satellite-based assessment of US fire activity provides
a foundation for future work on the regional sensitivity of
US BA to climate change. Mid-term projections of future
fire activity may benefit from the regional characterization
of climate–fire relationships in this study, as climate-driven
fire activity reflects existing fuel loads rather than the cou-
pled response of vegetation growth and fire disturbance rates
to future climate conditions.
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