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2Dept. de F́ısica i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
3Dept. d’Astronomia i Meteorologia, Universitat de Barcelona, C./ Martı́ Franqùes 1, 08028 Barcelona, Spain
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Abstract. The predictability of the monthly North Atlantic
Oscillation, NAO, index is analysed from the point of view
of different fractal concepts and dynamic system theory such
as lacunarity, rescaled analysis (Hurst exponent) and recon-
struction theorem (embedding and correlation dimensions,
Kolmogorov entropy and Lyapunov exponents). The main
results point out evident signs of randomness and the neces-
sity of stochastic models to represent time evolution of the
NAO index. The results also show that the monthly NAO
index behaves as a white-noise Gaussian process. The high
minimum number of nonlinear equations needed to describe
the physical process governing the NAO index fluctuations
is evidence of its complexity. A notable predictive instabil-
ity is indicated by the positive Lyapunov exponents. Besides
corroborating the complex time behaviour of the NAO index,
present results suggest that random Cantor sets would be an
interesting tool to model lacunarity and time evolution of the
NAO index.

1 Introduction

The North Atlantic Oscillation, NAO, index can be defined
as the difference between the normalized sea level atmo-
spheric pressures at Gibraltar and South-West Iceland. More
specifically, pressures at every location are normalised by
subtracting the mean and dividing by the standard devia-
tion. A standard period (1951–1980), instead of the whole
recording period, is considered for estimating the mean and
the standard deviation (Jones et al., 1997). Monthly and
annual NAO indices since 1823 are available at the Cli-
mate Research Unit of the University of East Anglia, UK
(http://www.cru.uea.ac.uk).
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Figure 1a depicts the time evolution of the monthly NAO
index along the period 1825–2007 (2196 monthly records).
Instead of monthly NAO indices, running averages of 13-
month window are represented. Basic statistics of the
monthly series are characterized by a range of variation from
–6.05 to 6.66, an expected value of 0.09 and a standard de-
viation of 1.76. The skewness and kurtosis are very close to
zero (0.06 and –0.15, respectively). In addition, remember-
ing that Mũnoz-D́ıaz and Rodrigo (2004) proved that win-
ter NAO indices are normal distributed, it should not be
discarded that monthly NAO indices, without distinguish-
ing seasons, were also normal distributed or, at least, very
symmetrically distributed around zero. This hypothesis of
normal distribution is verified by the Kolmogorov-Smirnov
and D’Agostino K-squared and Jarque-Bera tests (Bera and
Jarque, 1981; D’Agostino et al., 1990). The Kolmogorov-
Smirnov statistic for the empirical standardised data is 0.014.
Considering that the width of the Kolmogorov-Smirnov 95%
confidence bands is very approximately given by 1.36/

√
N ,

with N the number of samples, a critical value of 0.029 is
obtained. Thus, given that the statistic for the empirical stan-
dardised data does not exceed this critical value, monthly
NAO is assumed to be normal distributed. The other two
tests, based on samples of skewness and kurtosis and the as-
sumption that both statistics follow aχ2 distribution with two
degrees of freedom, also suggest that monthly NAO indices
follow a Gaussian distribution. Figure 1b compares the em-
pirical and theN (0, 1) complementary cumulative distribu-
tions. It is observed that the empirical distribution is within
the Kolmogorov-Smirnov 95% confidence bands for all the
monthly NAO range.

Nowadays, it is well established that fluctuations of the
NAO index are closely related to changes on the pluviomet-
ric and temperature regimes at regional and local scales for
wide areas of Western Europe, being detected short-term pe-
riodic variations (2–3 years) and statistically significant time
trends (Ulbrich and Christoph, 1999; Hurrell et al., 2001;
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Figure 1a.  Running average of monthly NAO indices for the recording period 1825-2007. 618 

Dashed line depicts the mean monthly NAO index for the whole recording period. 619 

620 

Fig. 1a.Running average of monthly NAO indices for the recording
period 1825–2007. Dashed line depicts the mean monthly NAO
index for the whole recording period.

Trigo et al., 2002; Martı́n et al., 2004; Krichak and Alpert,
2005). See Marshall et al. (2001) for a complete review of
the NAO variability, including phenomenology, impacts and
mechanisms due to ocean-atmosphere interactions.

The quantification of monthly or annual NAO predictabil-
ity should be very interesting as it would permit the uncer-
tainties on winter forecasts at monthly or seasonal scales
in Western Europe to be reduced. Many efforts have also
been devoted to search for stochastic models representing
NAO fluctuations. A few examples can be found in Feld-
stein (2000), who analysed time scale, power spectra and
noise properties; Stephenson et al. (2000) and Mills (2004),
who questioned random walk behaviour and proposed alter-
native models; and Collette and Ausloos (2004), who ap-
plied rescaled and detrended fluctuation analyses and pro-
posed fluid dynamics analogies.

The proposed analysis of NAO predictability is based on
several aspects of fractal theory, which application usually
requires long data series. Although it is well known the par-
ticular relevance of NAO index fluctuations in the winter pe-
riod, in the present work it would not be appropriate to dis-
tinguish winter season from every recording year. First, the
length of the analysed series would be notably reduced. Sec-
ond, it is to be expected that the interpretation of predictive
mechanisms and predictive instability could be affected by
computational artefacts generated by forced discontinuities
in NAO indices at the beginning and the end of every winter
period.
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Figure 1b. Empirical cumulative distribution (dots) of standardised monthly NAO 630 

indices fitted to the normal N(0,1) distribution (solid line). Kolmogorov-Smirnov 95% 631 

confidence bands are represented by dashed lines. 632 
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Fig. 1b. Empirical cumulative distribution (dots) of standardised
monthly NAO indices fitted to the normalN (0, 1) distribution (solid
line). Kolmogorov-Smirnov 95% confidence bands are represented
by dashed lines.

The concept of lacunarity (Turcotte, 1997) of monthly
NAO indices is analysed and modelled by means of ran-
dom Cantor sets (Korvin, 1992; Turcotte, 1997). The de-
gree of randomness of NAO index series is quantified by the
interpretation of the Hurst exponent of the rescaled analysis
(Lomnitz, 1994; Turcotte 1997; Diks, 1999). A deeper in-
sight into the complexity of monthly NAO indices is achieved
in terms of the reconstruction theorem (Grassberger and Pro-
caccia, 1983a; Diks, 1999), leading to derive the correlation
dimension, interpreted as the minimum number of nonlinear
equations governing the physical process of monthly NAO
index evolution. The Kolmogorov entropy (Grassberger and
Procaccia, 1983b; Cohen and Procaccia, 1983) describes the
loss of memory of the physical process, and the Lyapunov
exponents (Turcotte, 1997) quantify the predictive instability
of consecutive monthly NAO indices.

2 Lacunarity

The lacunarity,L(r), with r a segment length of the series
analysed, can be interpreted as a measure of the distribution
of clusters of consecutive monthly NAO indices exceeding a
threshold levelV0. Consequently, the concept ofL(r) would
be complementary to that of the cluster dimension (Theiler,
1988). From a quantitative point of view, following Tur-
cotte (1997),n(s, r) is introduced as the number of moving
windows of lengthr (in months) containing segments with
a numbers of consecutive monthly NAO indices above the
thresholdV0. After that, the probabilityp(s, r) is evaluated
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as

p(s,r) = n(s,r)/N(r) (1)

the total number of possible windows of lengthr being

N(r) = `−r +1 (2)

with ` the total number of recording months, including seg-
ments and gaps. The first and second order moments ofs

are

M1(r) =

t∑
s=1

s ·p(s,r) (3a)

M2(r) =

t∑
s=1

s2
·p(s,r) (3b)

and finally, the lacunarity is defined as the quotient

L(r) = M2(r)/[M1(r)]
2 (4)

Details about the computation ofL(r) as well as comparisons
among L(r)-curves of synthetic series generated from ran-
dom uniform distributions and pure, random and clumped
Cantor sets can be found in Turcotte (1997). Figure 2a shows
some examples of L(r)-curves of the NAO index, which are
well reproduced by the lacunarity of random Cantor sets.
These L(r)-curves are computed for three threshold levelsV0
equal to –1.0, 0.0, and 1.0 and related to gap sizesG of the
Cantor sets equal to 0.04, 0.08, and 0.15, respectively. It
should be remembered that the fractal dimension of the Can-
tor set is equal to log2/log[(1−G)/2] (Korvin, 1992), given
that, for any new iteration of the Cantor set generation, all
elements are fragmented into two new pieces and a gap. For
the rest of threshold levels,V0, at intervals of 0.25, the fit
of the empiricalL(r) to the synthetic lacunarity is also quite
good and, as expected,G increases systematically withV0
and all curves tend asymptotically to 1.0 forr tending to∞.
It is worth mentioning that L(r)-curves are not well fitted to
pure or clumped Cantor sets, whatever the lengthr and level
V0.

A complementary analysis of the lacunarity is achieved
by representing the evolution ofL(1) with V0 in Fig. 2b. It is
also remarkable that forr equal to 1, a picture of the monthly
behaviour of NAO index is obtained. Similarly to the pluvio-
metric series analysed by Martı́nez et al. (2007),L(1) can be
described by the exponential laws

L(1,V0) = 1.766·e0.226·V0 ; −2.25≤ V0 < −0.25
L(1,V0) = 1.863·e0.627·V0 ; −0.25≤ V0 < 2.25
L(1,V0) = 0.404·e1.303·V0 ; 2.25≤ V0 ≤ 5.0

(5)

with square regression coefficients 0.98, 0.99, and 0.99, re-
spectively. As expected, for threshold values ofV0 less than
–2.25,L(1) tends asymptotically to 1.0. For threshold levels
exceeding 5.0,L(1) depicts a sharp increase up toV0 close
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Figure 2a. Evolution of the empirical lacunarity of monthly NAO index and lacunarity 635 

derived from a random Cantor model for three V0 values. Window lengths are given in 636 

months. 637 
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Fig. 2a. Evolution of the empirical lacunarity of monthly NAO in-
dex and lacunarity derived from a random Cantor model for three
V0 values. Window lengths are given in months.

Fig. 2b. Evolution ofL(1) for a wide range of threshold valuesV0.
Dashed and solid straight lines depict the lacunarity corresponding
to Gaussian white-noise and real NAO indices, respectively.

to 6.5, which is the highest monthly NAO index observed.
In agreement with Mandelbrot (1982), lacunarity measures
the distribution of gap sizes in the series analysed. Large la-
cunarity implies large gaps, whereas small lacunarity means
a more uniform distribution of smaller gaps. According to
Eq. (5) and Fig. 2b, forr equal to 1, monthly NAO indices
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evolve from small gaps quite homogeneously distributed to
large gaps, especially for threshold valuesV0 exceeding a
critical value of –0.25. It is also worth mentioning that this
evolution towards large gaps is not monotonous, but it is
characterised by a fast increase forV0 above 2.25. Addi-
tionally, the symmetrical distribution of NAO indices around
zero is strongly enhanced by the fact that a thresholdV0=0.05
generates a lacunarity of 1.99, very close to the theoretical
value of 2.0, which would correspond to a threshold of 0.0 for
a perfect symmetrical distribution. This distribution around
zero of monthly NAO indices would be in agreement with a
Gaussian distribution with mean equal to 0.09 and standard
deviation of 1.75.

Another fact highlights the similarity of the monthly
NAO indices and the Gaussian distribution. The behaviour
of Gaussian white noise series, with the same number of
monthly values, is also represented in Fig. 2b. TheL(1)
curves for monthly NAO indices and the Gaussian noise se-
ries, generated with the same expected value and standard
deviation that NAO indices, are very similar.

3 Rescaled analysis

The rescaled analysis can be interpreted as an alternative
measure of long-range correlation in time series (Turcotte,
1997). This procedure consists of the computation of mean
values, cumulative differences, and after that, maximum
range of the integrated signal,R(τ), and standard deviations,
S(τ), for subsets of series with different numberτ of con-
secutive elements. If there exists fractal behaviour, the Hurst
exponent,H , defined as positive, is introduced through the
expression

R(τ)/S(τ) = aτH (6)

It should be remembered that a value ofH clearly exceeding
0.5 is a sign of time persistence in the dynamic system. Then,
time trends deduced for the analysed segment of lengthτ will
remain and the best prediction should be that based on the
extrapolation of these time trends. On the contrary, values
of H well below 0.5 indicate antipersistence. Time trends
will reverse and the best prediction should be an average over
the segment of lengthτ . Finally, values ofH very close to
0.5 indicate randomness. Successive steps of the dynamic
system are then uncorrelated and the best prediction should
be the last measure. A typical example could be a Gaussian
white noise series.

A log-log regression of Eq. (6) applied to annual NAO
indices yields forH a value of 0.53 (ρ2

≈0.99). Then, the
rescaled analysis shows the random character of the NAO
indices at annual scale. The robustness ofH is tested re-
peating the rescaled analysis removing a 5% of annual NAO
indices, first at the beginning of the record, and after at the
end. Hurst exponents derived for both tests are very close
to that obtained for the whole series and differences are de-

tected only in the third decimal digit. In addition, the em-
pirical monthly NAO indices are compared with a Gaus-
sian white noise series with the same length and the same
mean and standard deviation as the empirical series. The
results obtained are shown in Fig. 3a. Both Hurst expo-
nents are very similar and R/S series are well fitted to the
corresponding power laws. R/S analyses of monthly NAO
indices by Collette and Ausloos (2004) yields very similar
H values. In agreement with the usual interpretation of the
Hurst exponent (Turcotte, 1997), persistence (0.5<H<1.0)
or anti-persistence (0<H<0.5) have to be discarded in front
of randomness (H≈0.5) for annual and monthly NAO in-
dices. From this point of view, prediction of NAO indices
would be questionable and time trends would not be of great
help due to lack of persistence and evident signs of white
noise behaviour. Figure 3b depicts the evolution of the auto-
correlation of the monthly NAO indices and Gaussian white
noise for lags up to 100 months. The coefficients are very
small, varying within the (–0.05, 0.10) range, and are slightly
lower for the Gaussian series, in agreement with the lack of
correlation detected by the rescaled analysis.

4 Reconstruction theorem

The goals of the reconstruction theorem are to determine the
minimum number of nonlinear equations governing a phys-
ical process, the loss of memory of this process from its be-
ginning up to some present state and its predictive instability.
The first two scopes are achieved from the correlation inte-
gral,C(r), and the third from the Lyapunov exponents.

Let’s
{
Xj

}
(j = 1,...,N) be the series of monthly NAO

indices and

Zk = (Xk+1,...,Xk+m−1,Xk+m) (7)

a m-dimensional vector representing a reconstruction of the
physical process in a m-dimensional space. The correlation
integralC(r) can be computed then as

C(r) = lim
N→∞

1

N2

N∑
i,j

H
{
r −

∣∣Zi −Zj

∣∣ } (8)

with H {·} the Heaviside function. Equation (8) should be in-
terpreted as the number of points in the m-dimensional space
within an m-sphere of radiusr. C(r) behaves as (Diks, 1999)

C(r) = Amrµ(m)e−mκ (9a)

µ(m) being the correlation dimension andκ the Kolmogorov
entropy. The stationary value ofµ(m), µ∗, for a high enough
dimensionm (embedding dimensiondE) establishes the min-
imum number of nonlinear equations governing the physical
process andκ quantifies its loss of memory.

Although the evolution ofC(r) departs from Eq. (9a) at
low values ofr due to the effects of lacunarity, andC(r)
saturates at 1.0 for high values ofr, a linear regression of

Nonlin. Processes Geophys., 17, 93–101, 2010 www.nonlin-processes-geophys.net/17/93/2010/



M. D. Mart́ınez et al.: NAO predictability based on fractal analysis and dynamic system theory 97

28 
 

 652 

 653 

 654 

2 3 4 5 6789 2 3 4 5 6789 2 3 4 5 6789
1.0 10.0 100.0 1000.0

Segment Length, 

2

3

4
5
6
7
8
9

2

3

4
5
6
7
8
9

1.0

10.0

100.0
R/

S

τ

monthly NAO 
H = 0.537   0.001
    = 0.9922

Gaussian noise 
H = 0.556    0.002
    = 0.999

 655 
 656 

 657 

 658 

 659 

 660 

 661 

 662 

Figure 3a. Rescaled analysis for the monthly NAO and Gaussian white-noise series. 663 
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Fig. 3a. Rescaled analysis for the monthly NAO and Gaussian
white-noise series.
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Figure 3b. Autocorrelation coefficients for lags up to 100 months. 676 

 677 

Fig. 3b. Autocorrelation coefficients for lags up to 100 months.

loge{C(r)} with respect to loge(r) for the appropriate range
of r permits a good estimation ofµ(m) when increasing di-
mensionm. Additionally, by taking logarithms in Eq. (9a)

loge{C(r)} = loge{Am}−mκ +µ(m)loge{r} = α(m)+

+µ(m)loge{r} (9b)

and α(m) = loge(Am) − mκ permits to obtain the Kol-
mogorov entropy, provided thatAm+1 ≈ Am for m tending to
∞. The log-log evolution ofC(r) with m for monthly NAO
indices is depicted in Fig. 4a. It is observed that the range of
r decreases when increasingm, and the effects of lacunarity
and saturation are always observed at the beginning and the
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Figure 4a. Correlation integral, C(r), of the monthly NAO indices (dashed lines) for 685 

several reconstruction dimensions m ranging from 2 to 17, compared with a Gaussian 686 

white-noise series (open circles) for m equal to 2, 3, 4, 5, 10 and 15. Solid straight lines 687 

represent the log-log evolution of C(r). 688 
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Figure 4b. Evolution of the correlation dimension with m. 716 
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Fig. 4b. Evolution of the correlation dimension withm.

end ofC(r), respectively. The evolution ofC(r) with r for the
monthly NAO indices and the Gaussian white noise series at
several reconstruction dimensionsm (2, 3, 4, 5, 10, and 15)
is also compared in Fig. 4a. Both series present a very simi-
lar behaviour. Then, their respective correlation dimensions
for every dimensionm have to be almost coincident. Fig-
ure 4b depicts the evolution ofµ(m), which reaches a sta-
tionary value,µ∗, slightly exceeding 10.0, for an embedding
dimensiondE equal to 19. This highdE value is another sign
of randomness. According to the meaning ofµ∗, a minimum
number of 10 nonlinear equations is required to describe the
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Figure 5a. Linear evolution attributable to mκ and its extrapolation up to m equal to 2 728 

(solid line). Open squares represent the relationship α(m) = loge(Am) –mκ.  729 
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physical process, this high value enhancing its complexity.
After the estimation ofµ∗, the Ruelle’s condition (Ruelle,
1990)

µ∗ < 2loge` (10)

with ` equal to 2196, the number of monthly NAO indices,
suggests thatC(r) permits a reliable estimation ofµ∗, dE and
κ. Additional aspects regarding the confidence level of these
estimations, especially forµ∗, are discussed after the com-
putation of Lyapunov exponents.

Figure 5a shows the evolution ofα(m) with reconstruction
dimensionm. The Kolmogorov entropy is estimated by con-
sidering that the constraintAm+1 ≈ Am is accomplished for
m≥18, being obtained a value of 1.37. The linear regression
depicted in Fig. 5a corroborates this estimation, as the linear
decrease form equal to 18, 19, and 20 differs from the gen-
eral evolution ofα(m). According to Eq. (9b),κ would be
underestimated by a 5–6% if the linear regression was con-
sidered form ranging from 2 to 20.

The last step of the reconstruction theorem is devoted to
compute Lyapunov exponents, which quantify the sensitivity
of the physical system to small perturbations on the starting
conditions, thus being related to the predictive instability of
monthly NAO indices. IfδZ(m)0 is a small perturbation on
the first reconstructed m-dimensional vector, after the gener-
ation of infinite vectorsZ(m)j , the largest Lyapunov expo-
nentλmax is defined as

λmax= lim
j→∞

1

j
loge

∥∥∥∥δZ(m)j

δZ(m)0

∥∥∥∥ (11)

the argument of the logarithm being the norm of the Jacobian
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Figure 5b. Evolution of the first three positive Lyapunov exponents with the 739 

reconstruction dimension m. 740 
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Fig. 5b. Evolution of the first three positive Lyapunov exponents
with the reconstruction dimensionm.

matrix. If λmax is positive, the trajectory of the physical sys-
tem diverges exponentially in the m-dimensional space, be-
ing then characterised this dynamic system by a chaotic be-
haviour. Classic examples of these chaotic behaviours can be
found analysing the van der Pol equation for spring-mass os-
cillation systems (Turcotte, 1997) or solutions of the Lorenz
equations (Diks, 1999). Then, there is a strong dependence
of perturbations on starting conditions and a long-term pre-
diction is useless. The computation of the largest Lyapunov
exponent can be generalised to the m Lyapunov exponents
according to an iterative algorithm proposed by Eckmann
et al. (1986) and Stoop and Meier (1988). In fact,λmax is
the highest positive Lyapunov exponent computed by the it-
erative algorithm. The evolution of the first three positive
Lyapunov exponents when increasing dimensionm (Fig. 5b)
leads to stationary positive values of 0.13, 0.10, and 0.06 for
λ1, λ2 andλ3, respectively, and reconstruction dimension m
close todE, certifying the predictive instability of monthly
NAO indices. It has to be underlined that a single positive
exponent is sufficient to generate predictive instability. Fig-
ure 6 illustrates the required number of iterations of the com-
putational algorithm to reach a stationary value of the first
three positive Lyapunov exponents for a reconstruction di-
mensionm equal to 15. The first three Lyapunov exponents
for the Gaussian white noise series are also determined. Ta-
ble 1 lists and compares Lyapunov exponents derived for the
monthly NAO indices and the Gaussian series. It is seen that
differences are almost null. Consequently, the predictive in-
stability and the chaotic behaviour of the NAO indices and
the Gaussian series are very similar.
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Figure 6.  Evolution of the first three positive Lyapunov exponents towards stationary 753 

values after 1000 iterations of the computational algorithm.  754 

Fig. 6. Evolution of the first three positive Lyapunov exponents
towards stationary values after 1000 iterations of the computational
algorithm.

After the computation of the Lyapunov exponents, some
aspects about a reliable estimation ofµ∗, dE andκ can be
discussed. To assure convergence of the correlation dimen-
sion to a stationary valueµ∗, it should be also necessary the
fulfilment of the relationshipdE > 2µ∗

+ 1, which implies
exploring reconstruction dimensionsm above 20. Bearing in
mind the evolution ofC(r) with the reconstruction dimension
m in Fig. 4a, it is difficult to reach so high dimensions m and
to obtain confident estimations ofµ(m). The increase in the
effects of lacunarity and saturation ofC(r) to 1.0 notably re-
duce the range ofr for which µ(m) can be estimated. This
range would be finally reduced to an inflection point. Conse-
quently, after a revision of Fig. 4b, it could be assumed that
a correlation dimension slightly exceeding 10.0 would be a
lower (conservative) limit for the real value ofµ∗. Concep-
tually, the complexity of the nonlinear system of equations
governing monthly NAO evolution is confirmed in spite of
the uncertainty onµ∗.

After a revision of Fig. 5a, it could be assumed that, al-
though the evolution ofα(m) with m is only explored up
to a reconstruction dimension equal to 20, the Kolmogorov
entropyκ should not be submitted to relevant uncertainties
given that the linear evolution ofα(m) for m equalling to or
exceeding 18 is quite clear. The embedding dimensiondE re-
mains in some way undetermined (possibly underestimated)
because a reliable stationary value ofµ∗ is not guaranteed.
Nevertheless, the evolution of the first three Lyapunov ex-
ponents with the reconstruction dimension m (Fig. 5b) man-
ifests that stationary values are reached form close to 15.
Consequently, the randomness of the monthly NAO indices is
strongly suggested by the high value estimated fordE (a min-
imum of 15), although higher embedding dimensions, as the

Table 1. Values of the first three Lyapunov exponents for monthly
NAO index and for Gaussian noise.

λ1 λ2 λ3

Monthly NAO index 0.130 0.096 0.057

Gaussian noise 0.153 0.099 0.066

Table 2. Values of parametersH , dE, µ∗, κ andλ1 for monthly
NAO index compared with a daily rainfall regime (1) and a dry spell
distribution (2) (Mart́ınez et al., 2007).

H dE µ∗ κ λ1

Monthly NAO Index ≈0.5 ≥19a 10.1 1.37 0.13

Daily Rainfall1 0.5–0.8 15b – – 0.15–0.35

Dry Spells2 0.3–0.8 15b – – 0.15–0.40

a Estimated by searching for the stationary value ofµ.
b Estimated by searching for the stationary value ofλ1.

Kolmogorov entropy computation suggests, should not be
discarded. As a summary, 10.0 could be a reasonable lower
bound for the correlation dimension, and a Kolmogorov en-
tropy of 1.37 a quite good estimation of the “loss of memory”
of the dynamic system governing the monthly NAO indices.
The embedding dimension should be at least equal to 15, and
possibly higher according to the evolution ofC(r) in Fig. 4a
and the computation ofκ.

5 Discussion

Some comparisons can be made between the present results
and those derived for the daily rainfall and dry spell regimes
of the Iberian Peninsula (Martı́nez et al., 2007). With respect
to lacunarity, pairs of exponential laws forL(1), similar to
those of Eq. (5) for monthly NAO indices, were also obtained
for the rainfall and dry spell regimes. A relevant novelty is
that the empirical lacunarity of monthly NAO indices is well
modelled by a random Cantor process, whereas it was not
possible to fit the empirical lacunarities of the rainfall and dry
spell regimes to theoretical curves derived from pure, random
or clumped Cantor sets.

The results of the application of the rescaled analysis
and the reconstruction theorem to the NAO indices, and
to the daily rainfall and dry spell regimes of the Iberian
Peninsula are summarised in Table 2. The rescaled analy-
sis of the annual and monthly NAO indices is characterised
by a strong randomness (H≈0.5). On the contrary, time-
persistence is very likely for rainfall and dry spell regimes.
Then, time trends should be a useful tool to predict drought
episodes. However, using time trends for predicting future
NAO indices would be questionable. The strong randomness
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of monthly NAO is also confirmed by several additional
factors. First, the standardised monthly NAO indices follow
a N (0, 1) distribution. Second,L(1) behaves very similarly
for monthly NAO and a Gaussian white noise series. Third,
autocorrelation coefficients in Fig. 3b (almost null) and Hurst
exponents (very close to 0.5) are very similar for both series.
The notable complexity and randomness of NAO index series
is reflected by its embedding dimensiondE, which exceeds
that obtained for rainfall and dry spell regimes. Neverthe-
less, it should be taken into account that, in these last cases,
dE was deduced searching for stationary values of Lyapunov
exponents. Possibly,dE would be underestimated with re-
spect to embedding dimensions deduced from stationary val-
ues of the correlation dimension. Predictive complexity of
monthly NAO, and dry spell and rainfall regimes would be
quite similar, as all these processes are governed by the same
complex physical mechanism: the atmospheric dynamics. In
spite of some shortcomings regarding estimation ofdE, κ and
µ∗, the Kolmogorov entropy underlines the notable loss of
memory of NAO indices, which is in agreement with the ab-
sence of persistence and anti-persistence manifested by the
Hurst exponent.

Although monthly NAO manifests notable random be-
haviour and loss of memory, the maximum Lyapunov ex-
ponent,λ1, which is the main cause of predictive instabil-
ity, does not differ considerably from those obtained for the
daily rainfall and dry spell regimes. Nevertheless, it should
be mentioned that for some threshold levels used to define
dry spells, predictive instability is higher than for monthly
NAO. An additional fact confirming NAO randomness is de-
duced by checking in Table 1 that the three first Lyapunov
exponents derived for the monthly NAO indices and a Gaus-
sian white noise series are very similar.

Several authors have proposed different predictive
stochastic models for NAO index. Deterministic options
(nonlinear systems of equations) should be discarded due to
the high number of equations required, given byµ∗, and the
different signs suggesting aN (0, 1) distribution of standard-
ised monthly NAO indices. A white noise uniform distribu-
tion might be an excessively simple way for describing the
time evolution of the NAO index. Brownian and Markovian
red-noise processes have been proposed by Collette and Aus-
loos (2004). NAO index prediction has also been attempted
from other points of view (Mills, 2004), based on n-order au-
toregressive processes, but the same author recognizes that
accurate predictions are difficult because cyclical and slowly
changing components explain a low ratio of data variance in
comparison with other irregular components. A long-range
fractional integrated noise model instead of a random walk
model has also been attempted by Stephenson et al. (2000),
who assumed that natural climate variability could be a con-
sequence of the aggregation of many stochastic weather pro-
cesses. A similar deduction is obtained by Fernández et
al. (2003) who propose that NAO series could be a realisa-
tion of many different stochastic processes. The same au-

thors detect slight red-noise behaviour of the NAO index, in
agreement with detrended fluctuation analysis by Caldeira et
al. (2007), attributable to the fact that NAO would be driven
by meteorological noise. Johansson (2007) establishes that
forecasting at monthly and seasonal scales is not very effi-
cient, excepting for winter season at short lead times. A sim-
ilar conclusion is derived by M̈uller et al. (2005). Moreover,
Ferńandez et al. (2003) and Caldeira et al. (2007) put the
stress on the little predictive performance of the NAO index
and the necessity for a deeper understanding of the underly-
ing atmospheric dynamics. Conclusions of all these authors
about NAO predictability would be in agreement with our
main results: strong random behaviour (Hurst exponent very
close to 0.5), predictive instability (positive Lyapunov expo-
nents) and a complex physical mechanism (a high minimum
number of nonlinear equations, at least 10, according toµ∗)
manifesting a relevant loss of memory, in agreement with the
concept of Kolmogorov entropy.

The relatively simple definition of the NAO index con-
trasts with the complex patterns of the atmospheric dynam-
ics and fractal properties of NAO itself. According to Wal-
lace (2000), NAO would be integrated on a larger scale atmo-
spheric fluctuation, the Northern Annular mode or Artic Os-
cillation (Stephenson et al., 2000; Ambaum et al., 2001) and
the NAO index should be assumed as a partial insight into a
complex atmospheric dynamics. Randomness and predictive
instability could be then partially attributable to the complex-
ity of the physical process governing NAO, but could be also
the consequence of a not very appropriate characterisation of
the atmospheric dynamics by the NAO index. Some authors
have even suggested sea level pressure measurements in new
locations and/or time scales modifying nowadays monthly
NAO definition (Collette and Ausloos, 2004).

6 Conclusions

The physical process governing monthly NAO indices can be
qualified as a dissipative chaotic dynamic system describing
asymptotic stable aperiodic trajectories around some points,
known as strange attractors, in the m-dimensional recon-
structed space and with predictions very sensitive to initial
conditions. The most relevant signs of complex predictabil-
ity would be:

a) An evident random behaviour, suggested by random
Cantor sets reproducing empirical lacunarities, Hurst expo-
nents close to 0.5 (at annual and monthly scales) and high
embedding dimensions.

b) Several signs suggesting behaviour of the monthly NAO
index quite similar to a Gaussian white-noise distribution.

c) A high minimum number of nonlinear equations re-
quired to quantify the physical process (the atmospheric dy-
namics) governing monthly NAO.

d) Positive Lyapunov exponents generating predictive in-
stability and chaotic behaviour.
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In summary, our results indicate that NAO prediction
would require high dimensional stochastic models, and that
the prediction would be significantly limited by errors in
initial conditions. As random Cantor models reproduce sa-
tisfactorily monthly NAO lacunarities for a wide range of
threshold values, these random models, together with the
Gaussian distribution, should be considered for predictive
strategies of monthly NAO indices. In addition, it should not
be discarded that shortcomings affecting predictability could
partially be artefacts of the quite simple definition of NAO
index.
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