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Abstract. The predictability of the monthly North Atlantic Figure la depicts the time evolution of the monthly NAO
Oscillation, NAO, index is analysed from the point of view index along the period 1825-2007 (2196 monthly records).
of different fractal concepts and dynamic system theory suchnstead of monthly NAO indices, running averages of 13-
as lacunarity, rescaled analysis (Hurst exponent) and recormonth window are represented. Basic statistics of the
struction theorem (embedding and correlation dimensionsmonthly series are characterized by a range of variation from
Kolmogorov entropy and Lyapunov exponents). The main—6.05 to 6.66, an expected value of 0.09 and a standard de-
results point out evident signs of randomness and the necesdation of 1.76. The skewness and kurtosis are very close to
sity of stochastic models to represent time evolution of thezero (0.06 and —0.15, respectively). In addition, remember-
NAO index. The results also show that the monthly NAO ing that Muioz-Diaz and Rodrigo (2004) proved that win-
index behaves as a white-noise Gaussian process. The higar NAO indices are normal distributed, it should not be
minimum number of nonlinear equations needed to describeliscarded that monthly NAO indices, without distinguish-
the physical process governing the NAO index fluctuationsing seasons, were also normal distributed or, at least, very
is evidence of its complexity. A notable predictive instabil- symmetrically distributed around zero. This hypothesis of
ity is indicated by the positive Lyapunov exponents. Besidesnormal distribution is verified by the Kolmogorov-Smirnov
corroborating the complex time behaviour of the NAO index, and D’Agostino K-squared and Jarque-Bera tests (Bera and
present results suggest that random Cantor sets would be alarque, 1981; D’'Agostino et al., 1990). The Kolmogorov-
interesting tool to model lacunarity and time evolution of the Smirnov statistic for the empirical standardised data is 0.014.
NAO index. Considering that the width of the Kolmogorov-Smirnov 95%
confidence bands is very approximately given 5361+/N,

with N the number of samples, a critical value of 0.029 is
obtained. Thus, given that the statistic for the empirical stan-
dardised data does not exceed this critical value, monthly

1 Introduction

The North Atlantic Oscillation, NAO, index can be defined NAQ is assumed to be normal distributed. The. other two
tests, based on samples of skewness and kurtosis and the as-

as the difference between the normalized sea level atmo tion that both statistics followe? distribu th tw
spheric pressures at Gibraltar and South-West Iceland. Morgtmption that both statstics foflo IStribution wi 0

specifically, pressures at every location are normalised b);jegrees of freedom, also suggest that monthly NAQ indices

subtracting the mean and dividing by the standard devia-fO_HOW a Gaussian distribution. Figure 1b compares the em-

tion. A standard period (1951-1980). instead of the WhOleplrical and theN (0, 1) complementary cumulative distribu-

recording period, is considered for estimating the mean andions. It is observed that the empirical distribution is within

the standard deviation (Jones et al., 1997). Monthly anothe Kolmogorov-Smirnov 95% confidence bands for all the

annual NAO indices since 1823 are available at the CIi—monthly NAQO range.

mate Research Unit of the University of East Ang”a, UK Nowadays, it is well established that fluctuations of the
(http://www.cru.uea.ac.)k NAO index are closely related to changes on the pluviomet-

ric and temperature regimes at regional and local scales for
wide areas of Western Europe, being detected short-term pe-
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Fig. 1a. Running average of monthly NAQ indices for the recording by dashed lines.

period 1825-2007. Dashed line depicts the mean monthly NAO
index for the whole recording period.

The concept of lacunarity (Turcotte, 1997) of monthly
NAO indices is analysed and modelled by means of ran-

Trigo et al., 2002; Marh et al., 2004; Krichak and Alpert, dom Cantor sets (Korvin, 1992; Turcotte, 1997). The de-

2005). See Marshall et al. (2001) for a complete review Of_gree of randomness of NAO index series is quantified by the

the NAO variability. including ohenomenoloay. impacts and interpretation of the Hurst exponent of the rescaled analysis
. Y gp ology, Imp (Lomnitz, 1994; Turcotte 1997; Diks, 1999). A deeper in-

mechanisms due to ocean-atmosphere interactions. o : L . .

The quantification of monthlv or annual NAO predictabil- sight into the complexity of monthly NAO indices is achieved
i shogld be verv interestin Zs it would ermi? the uncer- in terms of the reconstruction theorem (Grassberger and Pro-
tayinties on Winte)r/ forecastsgat monthl oF: seasonal scalecaCCia' 19833; Diks, 1999), leading to derive the correlation
. y imension, interpreted as the minimum number of nonlinear
in Western Europe to be reduced. Many efforts have also

been devoted to search for stochastic models representinequatlons governing the physical process of monthly NAQ

NAO fluctuations. A few examples can be found in Feld- fdex evolution. The Kolmogorov entropy (Grassberger and

stein (2000), who analysed time scale, power spectra aniIjDrocacma, 1983b; Cohen and Procaccia, 1983) describes the

. L ; oss of memory of the physical process, and the Lyapunov
hoise prop.ertles, Stephenson et al. (.2000) and Mills (2004)6xponents (Turcotte, 1997) quantify the predictive instability
who questioned random walk behaviour and proposed aIter(—)f consecutive monthly NAO indices
native models; and Collette and Ausloos (2004), who ap- '
plied rescaled and detrended fluctuation analyses and pro-
posed fluid dynamics analogies.

The proposed analysis of NAO predictability is based on2 Lacunarity
several aspects of fractal theory, which application usually
requires long data series. Although it is well known the par-The lacunarity,L(r), with r a segment length of the series
ticular relevance of NAO index fluctuations in the winter pe- analysed, can be interpreted as a measure of the distribution
riod, in the present work it would not be appropriate to dis- of clusters of consecutive monthly NAO indices exceeding a
tinguish winter season from every recording year. First, thethreshold levelVy. Consequently, the concept lofr) would
length of the analysed series would be notably reduced. Sedse complementary to that of the cluster dimension (Theiler,
ond, it is to be expected that the interpretation of predictive1988). From a quantitative point of view, following Tur-
mechanisms and predictive instability could be affected bycotte (1997)n(s, r)is introduced as the number of moving
computational artefacts generated by forced discontinuitiesvindows of lengthr (in months) containing segments with
in NAO indices at the beginning and the end of every wintera numbers of consecutive monthly NAO indices above the

period. thresholdVy. After that, the probabilityp(s, r) is evaluated
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Window Lenath

Details about the computation bfr) as well as comparisons Fig. 2a. Evolution of the empirical lacunarity of monthly NAO in-

among !.(r)—curyes of.synthetic series generated from ranyex and lacunarity derived from a random Cantor model for three
dom uniform distributions and pure, random and clumpedy; values. Window lengths are given in months.

Cantor sets can be found in Turcotte (1997). Figure 2a shows
some examples of L(r)-curves of the NAO index, which are

well reproduced by the lacunarity of random Cantor sets. O Monthly NAO Index
These L(r)-curves are computed for three threshold le¥gls oo | " Gaussian white noise
equal to —1.0, 0.0, and 1.0 and related to gap sized the T

Cantor sets equal to 0.04, 0.08, and 0.15, respectively. | 5 ]

should be remembered that the fractal dimension of the Can: o]

tor set is equal to log2og[(1—-G) /2] (Korvin, 1992), given

that, for any new iteration of the Cantor set generation, all
elements are fragmented into two new pieces and a gap. Fo=
the rest of threshold leveld)y, at intervals of 0.25, the fit =

of the empiricalL(r) to the synthetic lacunarity is also quite 5 ]

good and, as expected; increases systematically withy C

and all curves tend asymptotically to 1.0 fotending toco. o]

It is worth mentioning that L(r)-curves are not well fitted to .

pure or clumped Cantor sets, whatever the lemgihd level o
Vo.

A complementary analysis of the lacunarity is achieved
by representing the evolution @f(1) with Vg in Fig. 2b. Itis 40 30 20 40 o8 10 20 30 40 50
also remarkable that ferequal to 1, a picture of the monthly Threshold Index

behaviour of NAO index is obtained. Similarly to the pluvio-
metric series analysed by Maréz et al. (2007)L(1) can be
described by the exponential laws

1.0 — |||||||||||||||||||||||||||||

Fig. 2b. Evolution of L(1) for a wide range of threshold valu&s.
Dashed and solid straight lines depict the lacunarity corresponding
to Gaussian white-noise and real NAO indices, respectively.

L(1,Vg) =1.766-¢%226V0 . _225< V< —0.25

L(1,Vp) =1.863-¢9627V0 . _025< Vg < 2.25 (5) o , ,
L(1,Vp) = 0.404-¢1393V0 . 225< Vy <50 to 6.5, which is the highest monthly NAO index observed.

In agreement with Mandelbrot (1982), lacunarity measures
with square regression coefficients 0.98, 0.99, and 0.99, rethe distribution of gap sizes in the series analysed. Large la-
spectively. As expected, for threshold values/fgfiess than  cunarity implies large gaps, whereas small lacunarity means
—2.25,L(1) tends asymptotically to 1.0. For threshold levels a more uniform distribution of smaller gaps. According to
exceeding 5.0L(1) depicts a sharp increase upWe close Eq. (5) and Fig. 2b, for equal to 1, monthly NAO indices
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evolve from small gaps quite homogeneously distributed totected only in the third decimal digit. In addition, the em-
large gaps, especially for threshold valués exceeding a  pirical monthly NAO indices are compared with a Gaus-
critical value of —0.25. It is also worth mentioning that this sian white noise series with the same length and the same
evolution towards large gaps is not monotonous, but it ismean and standard deviation as the empirical series. The
characterised by a fast increase gy above 2.25. Addi- results obtained are shown in Fig. 3a. Both Hurst expo-
tionally, the symmetrical distribution of NAO indices around nents are very similar and R/S series are well fitted to the
zero is strongly enhanced by the fact that a threskgt®.05  corresponding power laws. R/S analyses of monthly NAO
generates a lacunarity of 1.99, very close to the theoreticaindices by Collette and Ausloos (2004) yields very similar
value of 2.0, which would correspond to a threshold of 0.0 for H values. In agreement with the usual interpretation of the
a perfect symmetrical distribution. This distribution around Hurst exponent (Turcotte, 1997), persistence €FH5<1.0)
zero of monthly NAO indices would be in agreement with a or anti-persistence @H <0.5) have to be discarded in front
Gaussian distribution with mean equal to 0.09 and standara@f randomness {~0.5) for annual and monthly NAO in-
deviation of 1.75. dices. From this point of view, prediction of NAO indices
Another fact highlights the similarity of the monthly would be questionable and time trends would not be of great
NAO indices and the Gaussian distribution. The behaviourhelp due to lack of persistence and evident signs of white
of Gaussian white noise series, with the same number ofioise behaviour. Figure 3b depicts the evolution of the auto-
monthly values, is also represented in Fig. 2b. TH&) correlation of the monthly NAO indices and Gaussian white
curves for monthly NAO indices and the Gaussian noise senoise for lags up to 100 months. The coefficients are very
ries, generated with the same expected value and standasinall, varying within the (—0.05, 0.10) range, and are slightly
deviation that NAO indices, are very similar. lower for the Gaussian series, in agreement with the lack of
correlation detected by the rescaled analysis.

3 Rescaled analysis

. , _4 Reconstruction theorem
The rescaled analysis can be interpreted as an alternative

measure of long-range correlation in time series (Turcotte;The goals of the reconstruction theorem are to determine the
1997). This procedure consists of the computation of meaminimum number of nonlinear equations governing a phys-
values, cumulative differences, and after that, maximumical process, the loss of memory of this process from its be-
range of the integrated signai(r), and standard deviations, ginning up to some present state and its predictive instability.
S(7), for subsets of series with different numbeof con-  The first two scopes are achieved from the correlation inte-
secutive elements. If there exists fractal behaviour, the Hursgral, C(r), and the third from the Lyapunov exponents.
exponent,H, defined as positive, is introduced through the | et's {Xj}(j =1,...,N) be the series of monthly NAO
expression indices and

R(t)/S(t)=at’ (6) Zi=Xkt1-or Xirm—1, Xicm) (7)

It should be remembered that a valuetbtlearly exceeding @ m-dimensional vector representing a reconstruction of the
0.5 is a sign of time persistence in the dynamic system. Thenphysical process in a m-dimensional space. The correlation

time trends deduced for the analysed segment of lengtili ~ integralC(r) can be computed then as

remain and the best prediction should be that based on the 1N

extrapolation of thesc_—:‘ time trend_s. On the contrary, valuesc ;) = |im _ZZH{ r—|zi-z;|) ®)
of H well below 0.5 indicate antipersistence. Time trends N—oo N©4=

will reverse and the best prediction should be an average over o ) . )
the segment of length. Finally, values offf very close to ~ With H{-} the Heaviside function. Equation (8) should be in-

0.5 indicate randomness. Successive steps of the dynami€rPreted as the number of points in the m-dimensional space
system are then uncorrelated and the best prediction shouldithin an m-sphere of radius C(r) behaves as (Diks, 1999)
be .the Iqst measure. A typical example could be a Gaussia@(r) = A, rlom g=mi (9a)
white noise series.

A log-log regression of Eq. (6) applied to annual NAO wn(m) being the correlation dimension andhe Kolmogorov
indices yields forH a value of 0.53 §2~0.99). Then, the entropy. The stationary value afim), u*, for a high enough
rescaled analysis shows the random character of the NAQIimensionn (embedding dimensiafg) establishes the min-
indices at annual scale. The robustnesdHofs tested re- imum number of nonlinear equations governing the physical
peating the rescaled analysis removing a 5% of annual NACprocess and quantifies its loss of memory.
indices, first at the beginning of the record, and after at the Although the evolution ofC(r) departs from Eq. (9a) at
end. Hurst exponents derived for both tests are very closéow values ofr due to the effects of lacunarity, ar@(r)
to that obtained for the whole series and differences are desaturates at 1.0 for high values of a linear regression of
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loge{C(r)} with respect to log(r) for the appropriate range
of r permits a good estimation @f(m) when increasing di-
mensionm. Additionally, by taking logarithms in Eq. (9a)

100e{C (1)} =100e{A/} —mx + p(m)loge{r} = o (m)+
+u(m)loge{r} (9b)

and o (m) = 10g.(A,,) — mk permits to obtain the Kol-
mogorov entropy, provided that, .1 ~ A, for m tending to
oo. The log-log evolution ofZ(r) with m for monthly NAO

(dashed lines) for several reconstruction dimensionanging from

2to 17, compared with a Gaussian white-noise series (open circles)
for m equal to 2, 3, 4, 5, 10, and 15. Solid straight lines represent
the log-log evolution ofZ(r).

11.0 1 .

10.0 3

9.0 3

8.0 7

7.0

6.0 3

5.0 3

4.0 o

3.0

KU, Correlation Dimension

2.0+

1
1
I
I
I
I
I
1
1
1
1
1
1
I
I
I
I
I
1
1
1
1
1
1
I
I
I
I
I
1
1
1
T

1.0

llllllllllllllllll

0 5 10 15
m

Illll

E20 25

Fig. 4b. Evolution of the correlation dimension with.

end ofC(r), respectively. The evolution @(r) with r for the
monthly NAO indices and the Gaussian white noise series at
several reconstruction dimensioms(2, 3, 4, 5, 10, and 15)

is also compared in Fig. 4a. Both series present a very simi-
lar behaviour. Then, their respective correlation dimensions
for every dimensionn have to be almost coincident. Fig-
ure 4b depicts the evolution @f(m), which reaches a sta-
tionary value u*, slightly exceeding 10.0, for an embedding

indices is depicted in Fig. 4a. It is observed that the range oflimensiordg equal to 19. This higkle value is another sign

r decreases when increasimg and the effects of lacunarity

of randomness. According to the meaning«f a minimum

and saturation are always observed at the beginning and theumber of 10 nonlinear equations is required to describe the
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Fig. 5a. Linear evolution attributable tax and its extrapolation up  Fig. 5b. Evolution of the first three positive Lyapunov exponents
tom equal to 2 (solid line). Open squares represent the relationshipith the reconstruction dimensiam.
a(m) =10ge(Am) —mk.

physical process, this high value enhancing its complexity.matrix. If mayx is positive, the trajectory of the physical sys-
After the estimation ofu*, the Ruelle’s condition (Ruelle, tem diverges exponentially in the m-dimensional space, be-
1990) ing then characterised this dynamic system by a chaotic be-
" haviour. Classic examples of these chaotic behaviours can be
n* < 2logy? (20) f . . .
ound analysing the van der Pol equation for spring-mass os-
with ¢ equal to 2196, the number of monthly NAO indices, Cillation systems (Turcotte, 1997) or solutions of the Lorenz
suggests thaE(r) permits a reliable estimation pf*, dg and ~ €quations (Diks, 1999). Then, there is a strong dependence
«. Additional aspects regarding the confidence level of thesedf perturbations on starting conditions and a long-term pre-
estimations, especially fqu*, are discussed after the com- diction is useless. The computation of the largest Lyapunov
putation of Lyapunov exponents. exponent can be generalised to the m Lyapunov exponents
Figure 5a shows the evolution @fm) with reconstruction ~ according to an iterative algorithm proposed by Eckmann
dimensionn. The Kolmogorov entropy is estimated by con- €t al. (1986) and Stoop and Meier (1988). In faGhax is
sidering that the constraint,, .1 ~ A,, is accomplished for  the highest positive Lyapunov exponent computed by the it-
m>18, being obtained a value of 1.37. The linear regressiorﬁl’ative algorithm. The evolution of the first three positive
depicted in Fig. 5a corroborates this estimation, as the lineakyapunov exponents when increasing dimensiofFig. 5b)
decrease fom equal to 18, 19, and 20 differs from the gen- leads to stationary positive values of 0.13, 0.10, and 0.06 for
eral evolution ofa(m). According to Eq. (9b)x would be A1, A2 andis, respectively, and reconstruction dimension m
underestimated by a 5-6% if the linear regression was conclose todg, certifying the predictive instability of monthly
sidered fom ranging from 2 to 20. NAO indices. It has to be underlined that a single positive
The last step of the reconstruction theorem is devoted texponent is sufficient to generate predictive instability. Fig-
compute Lyapunov exponents, which quantify the sensitivityure 6 illustrates the required number of iterations of the com-
of the physical system to small perturbations on the startingoutational algorithm to reach a stationary value of the first
conditions, thus being related to the predictive instability of three positive Lyapunov exponents for a reconstruction di-
monthly NAO indices. IfSZ(m)q is a small perturbation on mensionn equal to 15. The first three Lyapunov exponents
the first reconstructed m-dimensional vector, after the generfor the Gaussian white noise series are also determined. Ta-
ation of infinite vectorsZ(m);, the largest Lyapunov expo- ble 1 lists and compares Lyapunov exponents derived for the
nentimaxis defined as monthly NAO indices and the Gaussian series. It is seen that
1 5Z(m); differences are almost null. Consequently, the predictive in-
Amax= lim Zlog || ——L (11)  stability and the chaotic behaviour of the NAO indices and
J=oo) 8Z(m)o the Gaussian series are very similar.
the argument of the logarithm being the norm of the Jacobian

Nonlin. Processes Geophys., 17, 28% 2010 www.nonlin-processes-geophys.net/17/93/2010/
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4 Table 1. Values of the first three Lyapunov exponents for monthly

] W A 1 NAQO index and for Gaussian noise.
010 M et A

J MY = 2 A1 Ao A3
= ] N Monthly NAO index 0.130 0.096 0.057
S o005— 3 Gaussian noise 0.153 0.099 0.066
o -
i) i
8 -
g -
g 000
S ]
- Table 2. Values of parameter#l, dg, u*, « and i1 for monthly
NAO index compared with a daily rainfall regim®@nd a dry spell
005 distribution ) (Martinez et al., 2007).
] H e ur o« A1
-0.10 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII MOntthNAOIndeX %05 >19a 101 137 013
0 100 200 300 400 500 600 700 800 900 1000 ) A -
teration Daily Rainfalf* 05-08 18 - - 0.15-0.35
Dry Spell€ 03-08 18 - - 0.15-0.40

Fig. 6. Evolution of the first three positive Lyapunov exponents
towards stationary values after 1000 iterations of the computationak Estimated by searching for the stationary valug.of

algorithm. b Estimated by searching for the stationary value pf

After the computation of the Lyapunov exponents, someKolmogorov entropy computation suggests, should not be
aspects about a reliable estimation.of, de and« can be  discarded. As a summary, 10.0 could be a reasonable lower
discussed. To assure convergence of the correlation dimerbound for the correlation dimension, and a Kolmogorov en-
sion to a stationary valug*, it should be also necessary the tropy of 1.37 a quite good estimation of the “loss of memory”
fulfilment of the relationshipig > 2u* + 1, which implies  of the dynamic system governing the monthly NAO indices.
exploring reconstruction dimensionsabove 20. Bearing in  The embedding dimension should be at least equal to 15, and
mind the evolution ofC(r) with the reconstruction dimension possibly higher according to the evolution®fr) in Fig. 4a
m in Fig. 4a, itis difficult to reach so high dimensions m and and the computation af.
to obtain confident estimations gf(m). The increase in the
effects of lacunarity and saturation ©{r) to 1.0 notably re- 5 Discussion
duce the range of for which (m) can be estimated. This
range would be finally reduced to an inflection point. Conse-Some comparisons can be made between the present results
quently, after a revision of Fig. 4b, it could be assumed thatand those derived for the daily rainfall and dry spell regimes
a correlation dimension slightly exceeding 10.0 would be aof the Iberian Peninsula (Manez et al., 2007). With respect
lower (conservative) limit for the real value pf*. Concep-  to lacunarity, pairs of exponential laws fax(1), similar to
tually, the complexity of the nonlinear system of equationsthose of Eq. (5) for monthly NAO indices, were also obtained
governing monthly NAO evolution is confirmed in spite of for the rainfall and dry spell regimes. A relevant novelty is
the uncertainty om*. that the empirical lacunarity of monthly NAO indices is well

After a revision of Fig. 5a, it could be assumed that, al- modelled by a random Cantor process, whereas it was not
though the evolution of(m) with m is only explored up possible to fit the empirical lacunarities of the rainfall and dry
to a reconstruction dimension equal to 20, the Kolmogorovspell regimes to theoretical curves derived from pure, random
entropyx should not be submitted to relevant uncertaintiesor clumped Cantor sets.
given that the linear evolution ef(m) for m equalling to or The results of the application of the rescaled analysis
exceeding 18 is quite clear. The embedding dimengiore- and the reconstruction theorem to the NAO indices, and
mains in some way undetermined (possibly underestimatedjo the daily rainfall and dry spell regimes of the Iberian
because a reliable stationary valuewdfis not guaranteed. Peninsula are summarised in Table 2. The rescaled analy-
Nevertheless, the evolution of the first three Lyapunov ex-sis of the annual and monthly NAO indices is characterised
ponents with the reconstruction dimension m (Fig. 5b) man-by a strong randomnes#/¢&0.5). On the contrary, time-
ifests that stationary values are reacheds#oclose to 15.  persistence is very likely for rainfall and dry spell regimes.
Consequently, the randomness of the monthly NAO indices isThen, time trends should be a useful tool to predict drought
strongly suggested by the high value estimated/fdia min- episodes. However, using time trends for predicting future
imum of 15), although higher embedding dimensions, as theNAO indices would be questionable. The strong randomness
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of monthly NAO is also confirmed by several additional thors detect slight red-noise behaviour of the NAO index, in
factors. First, the standardised monthly NAO indices follow agreement with detrended fluctuation analysis by Caldeira et
a N(0, 1) distribution. Second,(1) behaves very similarly al. (2007), attributable to the fact that NAO would be driven
for monthly NAO and a Gaussian white noise series. Third,by meteorological noise. Johansson (2007) establishes that
autocorrelation coefficients in Fig. 3b (almost null) and Hurst forecasting at monthly and seasonal scales is not very effi-
exponents (very close to 0.5) are very similar for both seriescient, excepting for winter season at short lead times. A sim-
The notable complexity and randomness of NAO index serieslar conclusion is derived by Mler et al. (2005). Moreover,
is reflected by its embedding dimensidp, which exceeds Ferrandez et al. (2003) and Caldeira et al. (2007) put the
that obtained for rainfall and dry spell regimes. Neverthe-stress on the little predictive performance of the NAO index
less, it should be taken into account that, in these last casesnd the necessity for a deeper understanding of the underly-
de was deduced searching for stationary values of Lyapunovng atmospheric dynamics. Conclusions of all these authors
exponents. Possiblyle would be underestimated with re- about NAO predictability would be in agreement with our
spect to embedding dimensions deduced from stationary valmain results: strong random behaviour (Hurst exponent very
ues of the correlation dimension. Predictive complexity of close to 0.5), predictive instability (positive Lyapunov expo-
monthly NAO, and dry spell and rainfall regimes would be nents) and a complex physical mechanism (a high minimum
quite similar, as all these processes are governed by the sanmeimber of nonlinear equations, at least 10, according o
complex physical mechanism: the atmospheric dynamics. Irmanifesting a relevant loss of memory, in agreement with the
spite of some shortcomings regarding estimatiogk and  concept of Kolmogorov entropy.
wn*, the Kolmogorov entropy underlines the notable loss of The relatively simple definition of the NAO index con-
memory of NAO indices, which is in agreement with the ab- trasts with the complex patterns of the atmospheric dynam-
sence of persistence and anti-persistence manifested by thes and fractal properties of NAO itself. According to Wal-
Hurst exponent. lace (2000), NAO would be integrated on a larger scale atmo-

Although monthly NAO manifests notable random be- spheric fluctuation, the Northern Annular mode or Artic Os-
haviour and loss of memory, the maximum Lyapunov ex- cillation (Stephenson et al., 2000; Ambaum et al., 2001) and
ponent,A1, which is the main cause of predictive instabil- the NAO index should be assumed as a partial insight into a
ity, does not differ considerably from those obtained for the complex atmospheric dynamics. Randomness and predictive
daily rainfall and dry spell regimes. Nevertheless, it shouldinstability could be then partially attributable to the complex-
be mentioned that for some threshold levels used to definéty of the physical process governing NAO, but could be also
dry spells, predictive instability is higher than for monthly the consequence of a not very appropriate characterisation of
NAO. An additional fact confirming NAO randomness is de- the atmospheric dynamics by the NAO index. Some authors
duced by checking in Table 1 that the three first Lyapunovhave even suggested sea level pressure measurements in new
exponents derived for the monthly NAO indices and a Gausdocations and/or time scales modifying nowadays monthly
sian white noise series are very similar. NAO definition (Collette and Ausloos, 2004).

Several authors have proposed different predictive
stochastic models for NAO index. Deterministic options
(nonlinear systems of equations) should be discarded due t6 Conclusions
the high number of equations required, given/by and the
different signs suggestingM(0, 1) distribution of standard-  The physical process governing monthly NAO indices can be
ised monthly NAO indices. A white noise uniform distribu- qualified as a dissipative chaotic dynamic system describing
tion might be an excessively simple way for describing the @symptotic stable aperiodic trajectories around some points,
time evolution of the NAO index. Brownian and Markovian known as strange attractors, in the m-dimensional recon-
red-noise processes have been proposed by Collette and Austructed space and with predictions very sensitive to initial
loos (2004). NAO index prediction has also been attemptedconditions. The most relevant signs of complex predictabil-
from other points of view (Mills, 2004), based on n-order au- ity would be:
toregressive processes, but the same author recognizes thatd) An evident random behaviour, suggested by random
accurate predictions are difficult because cyclical and slowlyCantor sets reproducing empirical lacunarities, Hurst expo-
changing components explain a low ratio of data variance innents close to 0.5 (at annual and monthly scales) and high
comparison with other irregular components. A long-rangeembedding dimensions.
fractional integrated noise model instead of a random walk b) Several signs suggesting behaviour of the monthly NAO
model has also been attempted by Stephenson et al. (2000ndex quite similar to a Gaussian white-noise distribution.
who assumed that natural climate variability could be a con- ¢) A high minimum number of nonlinear equations re-
sequence of the aggregation of many stochastic weather prajuired to quantify the physical process (the atmospheric dy-
cesses. A similar deduction is obtained by Femiez et namics) governing monthly NAO.
al. (2003) who propose that NAO series could be a realisa- d) Positive Lyapunov exponents generating predictive in-
tion of many different stochastic processes. The same austability and chaotic behaviour.
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In summary, our results indicate that NAO prediction JohanssonA.: Prediction skill of the NAO and PNA from daily to

would require high dimensional stochastic models, and that seasonal time scales, J. Climate, 20, 1957-1975, 2007.
the prediction would be Significanﬂy limited by errors in Jones, P. D., Jonsson, T., and Wheeler, D.: Extension to the North
initial conditions. As random Cantor models reproduce sa- Atlantic Oscillation using early instrumental pressure observa-
tisfactorily monthly NAO lacunarities for a wide range of tions from Gibraltar and South-West Iceland, Int. J. Climatol.,
threshold values, these random models, together with th% 17, 143.3_1450’ 1997 . .

. R . . orvin, G.: Fractals Models in the Earth Sciences, Elsevier, Ams-
Gaussian distribution, should be considered for predictive terdam. 396 pp., 1992
strategies of monthly NAO indices. In addition, it should not i -ov s o and Alperi P.: Signatures of the NAO in the atmo-
be discarded that shortcomings affecting predictability could  spheric circulation during wet winter months over the Mediter-

partially be artefacts of the quite simple definition of NAO  ranean region, Theor. Appl. Climatol., 82, 27—39, 2005.

index. Lomnitz, C.: Fundamentals of Earthquake prediction, Wiley, New
York, 1994.
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