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Abstract. Soil organic carbon plays a major role in the
global carbon budget, and can act as a source or a sink of at-
mospheric carbon, thereby possibly influencing the course of
climate change. Changes in soil organic carbon (SOC) stocks
are now taken into account in international negotiations re-
garding climate change. Consequently, developing sampling
schemes and models for estimating the spatial distribution of
SOC stocks is a priority. The French soil monitoring network
has been established on a 16 km× 16 km grid and the first
sampling campaign has recently been completed, providing
around 2200 measurements of stocks of soil organic carbon,
obtained through an in situ composite sampling, uniformly
distributed over the French territory.

We calibrated a boosted regression tree model on the ob-
served stocks, modelling SOC stocks as a function of other
variables such as climatic parameters, vegetation net primary
productivity, soil properties and land use. The calibrated
model was evaluated through cross-validation and eventually
used for estimating SOC stocks for mainland France. Two
other models were calibrated on forest and agricultural soils
separately, in order to assess more precisely the influence of
pedo-climatic variables on SOC for such soils.

The boosted regression tree model showed good predictive
ability, and enabled quantification of relationships between
SOC stocks and pedo-climatic variables (plus their interac-
tions) over the French territory. These relationships strongly
depended on the land use, and more specifically, differed be-
tween forest soils and cultivated soil. The total estimate of
SOC stocks in France was 3.260± 0.872 PgC for the first
30 cm. It was compared to another estimate, based on the
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previously published European soil organic carbon and bulk
density maps, of 5.303 PgC. We demonstrate that the present
estimate might better represent the actual SOC stock distri-
butions of France, and consequently that the previously pub-
lished approach at the European level greatly overestimates
SOC stocks.

1 Introduction

The increasing concentration of greenhouse gases in the at-
mosphere has led to the need for reliable estimates of the
amounts of organic carbon that might be sequestered by
soils (Batjes, 1996; Eswaran et al., 1993; Lal, 2004; Paustian
et al., 1997; Post et al., 1982; Saby et al., 2008a; Schlesinger,
1991).

Indeed, the organic matter contained in the earth’s soils is a
large reservoir of carbon (C) that can act as a sink or source of
atmospheric CO2. The world’s soils represent a large reser-
voir of C of about 1500 PgC (Batjes, 1996; Eswaran et al.,
1993; Post et al., 1982). Accurate estimates of this pool
are needed. However their reliability depends upon suitable
data in terms of organic carbon content and soil bulk den-
sity and on the methods used to upscale point data to com-
prehensive spatial estimates. There are, therefore, few pre-
cise assessments of soil organic carbon (SOC) stocks based
on measurements over large areas since systematic sampling
schemes including SOC, bulk density and rock fragment con-
tent are quite rare (Morvan et al., 2008), and because high
spatial variability of SOC requires a very high sampling den-
sity to get accurate estimates (Bellamy et al., 2005; Saby
et al., 2008b). Several approaches involving empirical mod-
els to upscale SOC point measurements to the national level
are found in the literature. These approaches range from
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simple statistics or pedotransfer rules, relating SOC contents
or stocks to soil type (Yu et al., 2007) or soil type and land
use (Tomlinson and Milne, 2006; Arrouays et al., 2001), to
multivariate statistical models (Meersmans et al., 2008, with
multiple linear models andYang et al., 2008, with gener-
alized linear models). Recent studies have used techniques
adapted from the data mining and machine learning litera-
ture, with piecewise linear tree models (Bui et al., 2009) or
multiple regression trees for regional studies (Grimm et al.,
2008; Lo Seen et al., 2010). Despite the spatial dimension
of such studies, few geostatistical approaches have been pro-
posed for use at the national scale (but seeChaplot et al.,
2009), mainly because of the difficulty of including the ef-
fect of the different drivers of SOC dynamics in geostatistical
models.

Jones et al.(2005) developed a methodology for esti-
mating organic carbon concentrations (%) in topsoils (oc-
top) across Europe and recently published a map of SOC
stocks by country. The information is available as a database
which can be downloaded from the EU-soils web site (http:
//eusoils.jrc.it). This methodology, based on pedotransfer
functions, gave results which were validated using data from
England and Wales and Italy (Jones et al., 2005). However,
the match between country level estimates of SOC stocks us-
ing this method and estimates based on national databases
depends on the country and may sometimes be poor. For
instance, SOC stocks for the first 1 m in Denmark was esti-
mated to vary from 0.563 to 0.598 PgC, among which 60%
is found in the 0–28 cm layer (Krogh et al., 2003). Thus, the
amount can be rescaled to 0.338 to 0.359 PgC, for the first
28 cm layer, compared to the Joint Research Center (JRC)’s
estimate of 0.6 PgC for only the first 30 cm (Hiederer, 2010).
The issue of accurately assessing SOC stocks at the coun-
try level is critical, because SOC stocks are used as input for
studies on the impact of future land use change or climate
change on SOC stocks dynamics, and on potential green-
house gases (GHG) emissions (Chaplot et al., 2009). For
instance, they may be used for defining the baseline state
for SOC change simulations (van Wesemael et al., 2010),
or setting some of the models’ parameters (Tornquist et al.,
2009). In this paper, we apply a new methodology: boosted
regression trees (BRT), already successfully applied in India
(Lo Seen et al., 2010), to predict the geographical distribu-
tion of SOC stocks in metropolitan France from a set of 1974
paired observations of SOC and bulk densities. We examine
the effects of the main controlling factors of SOC stocks dis-
tribution. We estimate the uncertainty of our national esti-
mate and compare the results with those previously obtained
by Arrouays et al.(2001) andHiederer(2010) on the same
territory.

Fig. 1. Distribution of the 1974 sites within the French monitoring
network which were used in the present study.

2 Materials and methods

2.1 Data

2.1.1 Site specific soil and agricultural data

Soil Organic Carbon Stocks were computed for a subset of
1974 sites from the French soil survey network (RMQS), for
which analytical data was available (Fig.1). This dataset
covered a broad spectrum of climatic, soil and agricultural
conditions. In the near future, the RMQS will cover the
entire metropolitan France. The network is based on a
16 km× 16 km square grid and the sites are selected at the
centre of each grid cell resulting in about 2200 soil sampling
sites. In the case of soil being inaccessible at the centre of the
cell (i.e. urban area, road, river, etc.), an alternative location
with a natural (undisturbed or cultivated) soil is selected as
close as possible, but within 1 km from the centre of the cell
(for more information, seeArrouays et al., 2002).

At each site, 25 individual core samples were taken from
the topsoil (0–30 cm) using a hand auger according to a strat-
ified random sampling design within a 20 m× 20 m area. In-
dividual samples were mixed to obtain a composite sample
for each soil layer. Apart from composite sampling, at 5 m
from the south border of the 20 m× 20 m area, a soil pit was
dug, from which main soil characteristics were described and
6 bulk density measurements were done, as described previ-
ously (Martin et al., 2009). From these data, SOC stocks
were computed for the 0–30 cm soil layer.
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SOCstocks30 cm=

n∑
i=1

piBDiSOCi(1−rf i) (1)

wheren is the number of soil horizon present in the 0–30 cm
layer, BDi , rf i and SOCi the bulk density, percentage of rock
fragments (relative to the mass of soil) and the SOC concen-
tration (percent) in these horizons, andpi the fraction of the
horizons to take into account to reach the 30 cm.

Field observations were used to assign land use category
values to the RMQS sites. Land cover was described us-
ing a 3 level classification, similar to the procedure used
for the Corine Land Cover maps (Feranec et al., 2010).
Level 1 (L1) land covers include various crops (1), perma-
nent grasslands (2), woodlands (3) orchards and vineyards,
shrubby perennial crops (4), wasteland (5), specific natural
systems (6) and parks and gardens (7). Levels 2 and 3 refine
level 1. For instance, for specific woody surfaces, one could
find the following description: woody surface (L1), forest
(L2) and coniferous forest (L3). The number of classes were
7, 22 and 41 for the L1, L2 and L3 levels, respectively.

Soil moisture regime was also described using two vari-
ableswloggingandwregime, which were used as predictors
for SOC stocks.wregimeindicates soil moisture regime re-
sulting from field observations (by soil scientists). It is de-
scribed according to 6 classes, depending on the degree of
saturation and its timing: “permanently saturated”, “satu-
rated every day”, “saturated for some part of the year”, “con-
tinuously moist”, “dry for some part of the year”, “contin-
uously dry”. wloggingdescribes the origin of waterlogging
(perched water table, groundwater, springs and resurgences,
submersion), according to field observations.

2.1.2 Net Primary Productivity data

The Moderate Resolution Imaging Spectroradiometer Net
Primary Productivity (http://modis.gsfc.nasa.gov/MODIS
NPP, gC m−2 yr−1) was used to get NPP estimates at each
of the RMQS sites. MODIS NPP data are made of
926× 926 m2 resolution raster images. The MODIS algo-
rithm uses the near-infrared wavelength to estimate the nor-
malized difference vegetation index (NDVI), used in turn to
estimate the daily gross primary production, the daily net
photosynthesis and finally the annual net primary produc-
tivity. The estimation involves constants depending on the
vegetation type, such as the active radiation conversion effi-
ciency coefficient (Running et al., 2004). Thus the MODIS
NPP data are to be used with corresponding MODIS land
cover raster images, since the NPP estimate depends on the
vegetation type. The method for estimating an NPP value at
the RMQS sites consisted of a three step procedure. For each
RMQS site, first, pixels from the MODIS layer not match-
ing the land use of the RMQS site where excluded. Second,
mean and standard deviation of NPP values of pixels with
matching land cover (i.e. not hidden in the previous step) and
not further than a limit distance (d lim) were computed. Four

d lim were tested, in{5, 10, 20, 30} km. Third,d lim resulting
in the highest mean/standard deviation of NPP values was se-
lected. The estimate of NPP at the RMQS site was the mean
of MODIS NPP values for the selectedd lim . Prior to apply-
ing this procedure, MODIS land covers were reclassified to
match the RMQS land cover classification (L1).

2.1.3 Climatic data

Available climatic data were monthly precipitation
(mm month−1), potential evapotranspiration (PET,
mm month−1), and temperature (◦C) at each node of a
12× 12 km² grid, averaged for the 1992–2004 period.
These climatic data were obtained by interpolating obser-
vational data using the SAFRAN model (Quintana-Segui
et al., 2008), which was initially designed for providing
an analysis of the atmospheric forcing in mountainous
areas for avalanche forecasting. The RMQS site specific
data were linked to the climatic data by finding for each
RMQS site the closest node within the 12× 12 km² climatic
grid. This grid was also used in turn as climatic data
input when applying the BRT model to the whole territory.
Elaborated agro-pedo-climatic variables were also derived
from the rough data: we used temperature and soil moisture
mineralization modifiers, as modelled in the RothC model
(Coleman et al., 1997). The mineralization modifier related
to temperature (a) was estimated directly from temperature
data from the 12× 12 km² climatic grid. The mineralization
modifier related to soil moisture (b, function of clay, land use
and climatic data) was estimated differently for point data
(observations at the RMQS site) and the continuous spatial
layers used for interpolation. For point data, we combined
rainfall and PET data obtained from the climatic grid, with
site observation of land use and clay content. Continuous
spatial layers ofb were obtained by combining the climatic
grid, the spatial layers for land use and clay content (see
Sect.2.2). b was then calculated within each homogeneous
spatial unit regarding climate, land use and clay content. The
RothC modelling of the influence of water content,b, onto
the mineralization of SOC is applicable for soils that are
both non-waterlogged soils (Coleman et al., 1997) and not
organic organic (Yokozawa et al., 2010). We did not check
for the first criteria since the use of other predictors such as
wloggingandwregimegave the possibility to the statistical
model to minimize the influence ofb for specific values of
wloggingor wregimewhere the RothC modeling would not
have been relevant. Regarding the second criteria, following
the World Reference Base system, organic soils (histosols)
are characterized by organic matter contents above 30%
for the first 30 cm (ISSS-ISRIC-FAO, 1998). Our dataset
contained only 1 such soil. Hence we did not make specific
treatment for this single individual, taking into account the
robustness to the presence of outliers in the dataset, in the
statistical models used in this study.
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Fig. 2. SOC stocks for the first 30 cm as a function of land cover
type according to the adapted IPCC land use classification (various
crops (1,n = 817), permanent grasslands (2,n = 463), woodlands
(3, n = 468) orchards and shrubby perennial crops (4,n = 18), wet-
lands (5,n = 2), others (6,n = 5), vineyards (7,n = 32)).

2.2 Spatial layers used for interpolation

Soil spatial coverage was obtained from the 1/1 000 000 Eu-
ropean soil map. Land use data was taken from the TERUTI
(Utilisation du Territoire) survey (Chakir and Parent, 2009)
provided by the statistical center of the ministry of agricul-
ture (SCEES). This survey comprises 150 000 observational
locations where the land use is recorded. The same locations
were surveyed yearly between 1992–2004 to determine the
land cover and the land use. The survey provides with instant
distribution of the land uses as well as temporal transitional
data from one land use to another. The 2004 recordings of
land use distribution were used for estimating the SOC stocks
distribution. Prior to this, TERUTI data have been reclassi-
fied to match a classification adapted from the Intergovern-
mental Panel on Climate Change (IPCC) reporting guidelines
(see legend of Fig.2).

2.3 Boosted Regression Trees (BRT) Modelling

Boosted regression trees belong to the Gradient Boosting
Modelling (GBM) family. GBM is one among many meth-
ods to solve the predictive learning problem where the ob-
jective is to estimate the functionF that maps the values of
a set of predictor variablesx = {x1,..,xp} into the values of
the output variabley, by minimizing a specified loss function
L. It uses one particular approach to prediction, i.e. classi-
fication and regression trees (Breiman et al., 1984), that is
extended using a powerful learning technique called boost-

ing (Freund and Schapire, 1996). Boosting methods are gen-
erally applied to significantly improve the performance of
a given estimation method, by generating instances of the
method iteratively from a training data set and additively
combining them in a forward “stagewise” procedure. BRT
uses a specialized form (for regression trees) of the Stochas-
tic Gradient Boosting (Friedman, 2001). A thorough descrip-
tion of the method is given inFriedman(2001) and a practical
guide for using it inElith et al.(2008).

BRT is known to have improved accuracy compared with
simple regression trees, thanks to its stochastic gradient
boosting procedure aiming at minimizing the risk of over-
fitting and improving its predictive power (Lawrence et al.,
2004). The algorithm enabling fitting the model to the data is
an iterative process. At each iteration, individual regression
trees, which will compose the final BRT model, are fitted on
a fraction (namely the bag fraction) of the dataset sampled
without replacement. The main parameters for fitting BRT
(boosted regression trees) are the learning rate and the tree
size, also known as interaction depth. The learning rate (lr ),
sometimes called shrinkage parameter, is the constant coeffi-
cient determining the influence of the individual trees combi-
nation that forms the final BRT model. The second important
parameter is the tree size (ts). It gives the size of individ-
ual regression trees. Whents is one, each individual tree is
made of a single node, thus modeling the effect of only one
predictor variable. Then, the final additive model separately
includes the effects of the predictor variables and the interac-
tions between variables are not explicitly taken into account.
When ts= i and is strictly greater than one, each individual
tree models the interaction of at least two predictor variables.
This enables the use of models taking into accounti-th order
interactions between predictor variables. The ability to repre-
sent interactions between predictor variables without a priori
knowledge is one of the advantages of BRT and more gener-
ally of regression trees. Two other important parameters are
the minimum number of observations in the terminal leaves
of the trees (min.obs) and the bag fraction (bf).

The contribution of predictor variables are assessed using
a variable importance index (VIM), based on the number of
times a given variable is selected for splitting individual trees
weighted by the square improvement to the model as a result
of these trees, summed over all the individual trees (Fried-
man and Meulman, 2003).

The nature of the dependence between the predictors and
the response variable can be assessed by using average or
partial dependence plots (Hastie et al., 2001). Put it briefly,
they represent the effect of a set of selected predictors (usu-
ally 1 to 3) on the modelled response variable after account-
ing for the effects or the remaining (not selected) predictors.

Biogeosciences, 8, 1053–1065, 2011 www.biogeosciences.net/8/1053/2011/
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The BRT models were fitted and used for prediction us-
ing the “gbm” R package (Ridgeway, 2006). The stopping
criterion for choosing the best iteration when fitting a BRT
model was the cross validation method under “gbm” (with
cross-validation folds set to 5), since this method was shown
to be the most efficient one (Ridgeway, 2006) amongst the
ones available in the “gbm” package. In this study, whatever
the BRT parameters’ value, the maximum number of allowed
iterations was set so that the choice of the model’s best iter-
ation did not depend on it. We undertook a tuning procedure
for identifying the best combination of these parameters as
in Martin et al.(2009).

2.3.1 Models of SOC stocks

Three models of SOC stocks were tested, for prediction on
the 0–30 cm layer. Two models using all available predictors,
among which one aimed at explaining SOC values on forest
lands (F model), and the other one in cultivated areas (Cult
model). The third model used only predictors available at
the national scale and was applied to prediction at this scale.
This model was fitted on the 0–30 cm stocks making up one
additional model used for interpolation (Extra model).

The F model was fitted on sites under forest (421 sites)
and the Cult model on cultivated sites (1398 sites) only. This
was done in order to facilitate models results interpretation
and also because SOC stocks variability is known for being
much more important in forest lands compared to cultivated
land (Saby et al., 2008b).

The predictors used for each model were:

– the Cult model: lu1, lu2 and lu3 (land use coded ac-
cording to, respectively, the L1, L2 and L3 RMQS
land cover classifications),clay (%), silt (%), rf (rock
fragments, mass percentage), potential evapotranspira-
tion (pet, mm month−1), monthly precipitation (rain,
mm month−1), temperature (temp, ◦C), ph, wregime
(water regime), wlogging (water-logging), the two
RothC mineralization modifiers,a andb and the net pri-
mary productivitynpp(gC m−2 yr−1).

– the F model shared the same set of predictors except for
lu1 which was excluded since it exhibited only one level
for forests.

– the Extra model:lu ipcc(land use classification adapted
from the IPCC guidelines, 2006),clay, pet, rain, temp,
a, b andnpp.

2.3.2 Validation procedure

The BRT models were validated in two ways. The first pro-
cedure involved fitting the models to the full dataset (with a
restriction regarding the land use for the Cult and F models)
and validating model predictions on this dataset. The second
involved using cross-validation. The first procedure enabled

to estimate the quality of the fit of the models of C predic-
tion. Only the second validation procedure, which involved
validation against independent data, enables to estimate the
predictive power of the proposed models.

In both procedures, comparison between observed and
predicted values of SOC stocks was carried out using sev-
eral complementary indices, as is commonly suggested
(Schnebelen et al., 2004): the mean prediction error (MPE),
the standard deviation of the prediction error (SDPE), the
root mean square prediction error (RMSPE) and the predic-
tion coefficient of determination (R2) measuring the strength
of the linear relationship between predicted and observed
values.

The second validation procedure was done following prin-
ciples similar to K-fold cross-validation, enabling us to per-
form what will be referred to in the following as external val-
idation. 90% of the individuals was drawn randomly with-
out replacement from the dataset and used as the training
dataset. Validation was done on the remaining 10% of in-
dividuals (external validation). This procedure was repeated
1000 times, which provided robust results. External valida-
tion was used as a way to explore the predictive power of
the resulting model for previously unseen data. In the fol-
lowing, the MPE, SDPE, RMSPE andR2 indices, computed
through this external validation, are adjoined the ext suffices
(i.e. MPEext, RMSPEext and so forth). Enclosing indices with
the < and> signs indicates that the median value over the
1000 trials is given (for instance<MPEext>). RMSPEext re-
sulting from cross validation were also estimated as a func-
tion of SOC stocks values. This enabled us to refine the esti-
mation of uncertainty related to the estimation of the spatial
SOC stocks. The error on the SOC stock estimates for the
whole territory was obtained by summing the errors on each
elementary spatial unit:

1SOCstocks=
m∑

j=1

Sj RMSPE(SOCstocksj ) (2)

where1SOC stocks is the global error, Sj is the surface of
the elementary spatial unitj , SOC stocksj its estimated SOC
stocks and RMSPE() the function relating the predicted SOC
stocks to the model error (Eq.2).

2.3.3 Parameter settings for BRT models

Although some general recommendations exist for setting
the values for tree size, learning rate, minimum number of
observations in the terminal nodes values and bag fraction, a
tuning procedure was run, because, in practice, as for single
regression trees, optimum values may depend on the dataset
(Lilly et al., 2008). Thebf parameter was set to 0.75 and we
tested differentts, lr , min.obs values, chosen according to
recommendations found in the literature (Lilly et al., 2008;
Ridgeway, 2006). This tuning procedure was carried out as
in (Martin et al., 2009). The resulting parameter values are
given in Table1.
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Table 1. Tested and optimal values for thets, lr , min.obs parameters
of the three boosted regression trees models. The optimal values
were selected as resulting in the best<R2

ext>, obtained through
the cross validation procedure

Parameters Tested values Selected parameter value

F Cult Extra
model model model

ts 4, 8, 12 8 8 12
lr 0.001, 0.005, 0.01, 0.1 0.005 0.01 0.01
min.obs 4, 6, 8 4 4 8

Selecting these parameter settings for each of the models
was a preliminary step in the study. We then assumed that
these settings could be applied to all subsequent fits. They
were thus used in turn for producing all the results displayed
in the paper, i.e. regarding (i) the BRT models’ performance
on the full dataset and (ii) the predictive performance tested
against independent data.

3 Results

3.1 Observed SOC stocks

The SOC stocks depended greatly on the land cover type
(Fig. 2). Highest values were observed for the forest, grass-
lands and wetlands (though only two wetland observations).
In the first 30 cm, the stock in forest (median SOC stocks
of 7.00 kg m−2) was less than under permanent grassland
(median SOC stocks of 7.57 kg m−2) with comparable stan-
dard deviation (3.42 and 3.51 kg m−2, respectively). Dis-
persion of values on cultivated areas, excluding permanent
grasslands was low (1.85 kg m−2) compared to permanent
grasslands and forest lands. Lowest SOC stocks values were
observed for vineyards (median SOC stocks of 3.2 kg m−2)
and some uncultivated coastal areas (median SOC stocks of
2.42 kg m−2).

3.2 Goodness of fit and predictive performance

General indices of agreement of the models prediction and
the observed data (MPE, SDPE, RMSPE,R2), are given in
Table 2. BRT models yielded good results when fitted on
and validated against the full dataset (internal validation).
The fit was best for the Cult model, withR2 value of 0.91
and RMSPE value of 0.934 kg m−2. The prediction was
poorer on forest soils, where the F model yielded 0.74 and
1.910 kg m−2 values forR2 and RMSPE, respectively. For
the three models, MPE was negligible indicating models with
low precision and high accuracy. Ranking of model perfor-
mance using cross-validation was the same as according to
validation on the dataset used for learning. The Extra model,

developed for prediction on soils under any kind of land use
yielded<R2

ext> value of 0.5 (with 95% confidence interval
of [0.386, 0.613]) and<RMSPEext> of 2.271 kg m−2 (CI95%
of [1.862, 2.68] kg m−2). <MPEext> values, representing
the bias, were on average low, if not negligible and reached
−0.002 kg m−2 for the Extra model. For this model, the
CI95% for <MPEext> was large ([−0.348, 0.344] kg m−2)
indicating that some models, depending on the sub-dataset
used for fitting produced significantly biased predictions on
the sub-dataset used for validation. This model underesti-
mated SOC stocks for low observed SOC stocks and over-
estimated SOC stocks for high observed values (Fig.3).
The best of the three models, when validated using cross-
validation was the Cult model, with a<R2

ext> value of 0.58
([0.445, 0.723]) and<RMSPEext> of 1.94 kg m−2 ([1.486,
2.395] kg m−2).

The analysis of the Extra model’s error (Fig.4) indicates
a positive correlation between the observed C stock value
and the<RMSPEext>, estimated within C stock classes. Ex-
pected<RMSPEext> lies between 1 and 3 kg m−2 for SOC
stocks belonging to the [2, 14] kg m−2 range. Uncertainty on
the error estimate itself can be computed (Fig.4), indicating
<RMSPEext> values under 8 kg m−2 for SOC stocks below
15 kg m−2. Above this threshold, mean<RMSPEext>, as
well as the upper limit of the confidence interval rises indi-
cating a very high uncertainty of the results in the model’s
prediction. CI95% could not be computed above 18 kg m−2

because of the scarcity of such high observed values.

3.3 Variable relative influence

The computation of the VIM values associated with the pre-
dictors for the three models (Table3) indicates a strong in-
fluence of clay content. This predictor ranks second for the
Cult model and first for the F and Extra models. Rain is con-
sistently ranked in the four most important predictors. For
the Cult and Extra models, the land use appears to be impor-
tant for predicting the SOC stocks. The fit of the Cult model
showed that it is worth using a detailed description of the land
use, since thelu2 andlu1 predictors had a negligible impor-
tance, whereas thelu3 predictor had the most important VIM
index. However, for the F model, thelu3 variable, which in
this case represents the kind of forest considered, had a very
low variable importance index. The VIM index value for
rock fragments was more important for the F model than for
the Cult model, and was ranked fourth. On the F model, the
NPP values computed on each RMQS site ranked fifth. On
the Cult and Extra models, the temperature, best represented
by the transformeda variable ranked 3 and 4, respectively.
Temperature exhibited a limited importance for the F model,
as did PET, whatever the model.

Biogeosciences, 8, 1053–1065, 2011 www.biogeosciences.net/8/1053/2011/
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Table 2. Fit and cross validation results for a ratio of 0.9/0.1 training vs. validation datasets. Quality of the fit on the full data set is
expressed usingR2, mean prediction error (MPE, kg m−2), standard deviation of the prediction error (SDPE, kg m−2), and root mean square
prediction error (RMSPE, kg m−2). The cross-validation results are expressed using<R2

ext>, <MPEext> (kg m−2), <SDPEext> (kg m−2)
and<RMSPEext> (kg m−2) estimated using the validation datasets. The 95% confidence intervals obtained for the corresponding normal
distributions using the standard percentile method are given in brackets.

Model R2 MPE SDPE RMSPE <R2
ext> <MPEext> <SDPEext> <RMSPEext>

Cult 0.91 −0.001 0.935 0.934 0.58 [0.445, 0.723] −0.041 [−0.379, 0.297] 1.94 [1.481, 2.397] 1.94 [1.486, 2.395]
F 0.74 2e-04 1.912 1.910 0.36 [0.141, 0.57] −0.009 [−0.845, 0.827] 2.75 [2.036, 3.467] 2.76 [2.053, 3.459]
Extra 0.73 −0.001 1.727 1.727 0.5 [0.386, 0.613] −0.002 [−0.348, 0.344] 2.27 [1.86, 2.68] 2.27 [1.862, 2.68]

Fig. 3. Empirical cumulative distribution functions (ecdf) for the
two spatial estimates presented in this paper (using the Extra model
and the JRC estimate) as well as for the observed (curve RMQS) and
predicted (curve Extrapoint) SOC stocks at RMQS sites. Comput-
ing ecdf on spatial estimates is done as follows: first the statistical
population is made of each spatial unit where the prediction model
has been applied (the Extra model for instance). Second, a weight is
computed for each unit as the ratio between its area and the sum of
spatial units area (here, the area of France). Third, the ecdf is esti-
mated on models predictions within the spatial units (kg m−2) using
weights previously calculated. Ecdfs of site observed or predicted
values are calculated using equal weights between individuals.

3.4 Map of soil organic carbon stocks

The total stock for France (0–30 cm) computed on the
12× 12 km² grid was 3.242 PgC for a surface of 541 060 km².
The total surface represented by the grid is slightly smaller
than the actual mainland French territory (543 965 km²).
The total stock for the French mainland territory could
thus be rescaled to 3.260 PgC. Estimated uncertainty was

Fig. 4. Uncertainty of the Extra model, as a function of the organic
carbon stock (30 cm). Uncertainty values (i.e.<RMSPEext>, re-
sulting from cross-validations trials) are calculated as a function of
predicted SOC stocks, grouped within intervals of 1 kg m−2 width,
from 0 to 30 kg m−2. The solid line represents the mean of uncer-
tainty within each interval of SOC stocks values, and the upper and
lower dashed lines represent the bounds of the CI95% assuming a
normal distribution within each interval. Tick marks at the lower
border of the diagram give the 1% quantiles for the RMQS dataset.

0.872 PgC (Eq.2). Predicted SOC stocks ranged from 2.0
to 15.8 kg m−2 over the French territory. The highest stocks
were observed in mountaineous areas (Alps, Jura, Massif
Central and Pyŕeńees), in Brittany and in parts of Lorraine
regions (Fig.5).

The comparison of empirical cumulative distribution func-
tion (ecdf) between the observed SOC stocks on RMQS sites,
and the surface estimate from the Extra model reveals several
aspects of the spatial prediction quality (Fig.3). It shows
that although the Extra model managed to reproduce the dis-
tribution of the observed values, when applied to the whole
territory, the resulting distribution exhibits a narrow range of
predicted values. The variability on the predicted map was
smaller than on observed or predicted SOC stocks values on
RMQS sites, but the distributions were centered close to me-
dian values.

www.biogeosciences.net/8/1053/2011/ Biogeosciences, 8, 1053–1065, 2011



1060 M. P. Martin et al.: Spatial distribution of soil organic carbon stocks in France

Table 3. Relative influences of the predictors for each model, ex-
pressed as variable importance indexes (VIM), and rank according
to the VIM values. The predictors are grouped, starting with the
variables related to land use, then related to the climatic or pedo-
climatic factors, then to plant productivity and finally related to the
soil properties only. Variables names and definitions are detailed in
Sects.2.1.1and2.3.1.

Cult model F model Extra model

Predictor VIM rank VIM rank VIM rank

lu3 33.66 1 0.77 11 − −

lu2 1.26 13 0.00 14 − −

lu1 0.11 15 − − − −

lu ipcc 0 16 − − 26.83 2
a 7.1 3 1.47 10 8.76 4
b 3.72 7 4.83 7 6.53 6
rain 6.6 4 13.27 3 10.66 3
pet 3.3 8 4.4 8 5.73 7
temp 3.03 9 1.83 9 6.77 5
npp 2.89 10 6.54 5 5.33 8
wlogging 1.34 12 0.06 12 − −

wregime 1.14 14 0.03 13 − −

rf 6.08 5 8 4 − −

clay 22.55 2 29.55 1 29.4 1
silt 1.96 11 5.91 6 − −

ph 5.26 6 23.35 2 − −

4 Discussion

4.1 Validity of the estimate

The total SOC stocks estimate was in good agreement with
a previous estimate (3.1 PgC on a soil mass equivalent to
30 cm under forest,Arrouays et al., 2001). However, it dif-
fers from the estimate based on the organic carbon content
layer available at the European level (Jones et al., 2005) of
5.0 PgC for the first 30 cm (Hiederer, 2010). We recalculated
this estimate by combining JRC’s octop layer (1 km× 1 km
resolution,Jones et al., 2005) and a spatial layer of bulk
density (10′ × 10′ grid, Smith et al., 2005) in topsoils (0–
30 cm). Adjusting the resolution of the octop and bulk den-
sity layers to the resolution of our 12 km× 12 km grid was
done using the ArcGIS zonal statistics algorithm for the
SOC content and a weighted mean procedure for the bulk
density layer. Our global estimate using these data layers
was 5.303 PgC. This value lies outside the interval defined
by taking into account the uncertainty associated with the
BRT model (±0.872 PgC). The magnitude of the overesti-
mation related to the JRC’s European SOC content layer
matched the one found byDendoncker et al.(2008) at a
much smaller scale for a small area of southern Belgium.
Assuming that because of its systematic sampling scheme,
the RMQS dataset is representative of the French territory,

Fig. 5. Map of the soil organic carbon for the first 30 cm (kg m−2).

its cumulative distribution of SOC stocks can be used as a
reference of SOC stocks in France. Figure3 shows that the
distribution resulting from the processing of JRC data consis-
tently overestimated the SOC stocks. On the other hand, the
Extra model spatial estimate was unbiased but the occurrence
of high SOC values (above 8 kg m−2) was much lower than
for the distribution on RMQS sites. This discrepancy was
not observed for values below the SOC median value (circa
5 kg m−2). Thus the total estimated SOC stocks might un-
derestimate the real SOC stocks for France but according to
Fig. 3 the absolute error of the estimate provided here cannot
explain the difference compared to the JRC data. The com-
parison between the empirical cumulative distribution func-
tion of observed RMQS SOC stocks, and the one provided
by the Extra model, suggests that the distribution tails are
poorly represented, i.e. that the extreme SOC stocks values
where not predicted correctly by the model. This is likely to
result from the spatial distribution of the predictors, since the
model managed to predict extreme values when applied to
the RMQS sites. The fact that there was a similar difference
for clay (not shown here), the most important predictor in the
Extra model, between the ecdf of the spatial layer and that of
RMQS sites, supports this statement.

It can be argued that the resolution of the native
datasets (especially for the SOC content layer of the JRC,
1 km× 1 km) is very different from the one presented in this
paper. The aggregation of the data up to the 12 km× 12 km²
may explain locally some of the differences with the esti-
mate provided by the BRT model. However, at the national
scale, i.e. when summing the SOC stocks over the whole
map, the aggregation itself is not expected to explain much of
the difference observed here. More likely, the difference be-
tween estimates comes from SOC and bulk density estimates

Biogeosciences, 8, 1053–1065, 2011 www.biogeosciences.net/8/1053/2011/



M. P. Martin et al.: Spatial distribution of soil organic carbon stocks in France 1061

themselves. The JRC SOC content estimate results from pe-
dotransfer rules fitted on the European soil database (at a
scale of 1:1 000 000) and validated on England, Wales and
Italy only. Bulk densities have been estimated using pedo-
transfer rules as well. The estimation presented here, on the
other hand, relies on a model fitted and validated against
a systematic sampling scheme (16 km× 16 km resolution)
with both SOC content and bulk density measurements.

CO2 emissions from soils are often modelled as a function
of the product between the current SOC stocks and mineral-
ization rates (as in the RothC model). As a result, simulat-
ing CO2 emissions for France under diverse scenarios can
potentially result in very different estimates of emissions,
depending upon whether the baseline SOC stock is consid-
ered to be 3.260 PgC or 5.303 PgC. Consequently, studies
estimating SOC changes at the national scale, such as in
Smith et al.(2005) or Zaehle et al.(2007), could benefit from
improvements of SOC distribution estimates, through the use
of data from soil monitoring networks (SMNs).

SMNs can help refine estimates of SOC dynamics too
by providing better starting soil C values for model initial-
isation, and for testing models against measured change in
SOC. Conversely, the performance of SMNs themselves, for
detecting long term SOC change trend has recently been
demonstrated (Saby et al., 2008b), using estimates of SOC
spatial distributions (in that case the JRC’s SOC content map,
Hiederer et al., 2004). Thus, more accurate estimates of SOC
distributions could in turn improve the assessment of the per-
formance of SMNs.

The uncertainty estimated for the BRT model arises from
the application of the uncertainty function depending on SOC
stock values provided by the cross validation trials (Fig.4).
The fitted model is characterized by very high uncertain-
ties for SOC stocks values above 15 kg m−2. Uncertainty on
this estimate itself starts to increase notably from 11 kg m−2,
making it difficult to draw any conclusion about the validity
of the model for such SOC stocks values. On the other hand,
for values under 11 kg m−2, the value of the uncertainty of
predicted SOC stocks values is accurately known. The model
error (<RMSPEext>) is comparable to results of other study
studies based on different statistical techniques, but is among
the few providing an assessment of model predictions based
on cross-validation. Different geostatistical models yielded
a estimate of 4.54 ± 0.74 PgC for Laos (Phachomphon et al.,
2010) and a RMSE of 2.89 kg m−2 when mapping 0–50 cm
SOC stocks for the Indiana state (Mishra et al., 2009). The
quality of the fit was better than for recent studies applying
generalized linear models to the prediction of SOC stocks
in Tibetan grasslands and explaining 73% of the variation of
SOC densities (Yang et al., 2008), to be compared to theR2

of 73, 74 and 91% of the Extra, F and Cult models presented
here. On the RMQS dataset, the SOC stock values above
15 kg m−2, which could be considered outside the validity
domain of the BRT model are rare (2% of the RMQS sites
display SOC stocks values above 15 kg m−2, Fig. 3). The

predicted distribution of SOC stocks includes a negligible
fraction of SOC stocks above 15 kg m−2 (below 0.01%), and
consequently such spatial units, where estimated uncertainty
is high, have a negligible impact on the global uncertainty
related to the national SOC stocks prediction (0.14%).

4.2 Relative importance of the predictors

4.2.1 Effect of the land use

Discrepancies between the Cult and the F models might give
an estimate on how agricultural practices, both in grassland
and arable lands, determine the relationships between pedo-
climatic variables and SOC stocks, compared to forest sys-
tems. For instance, the lesser importance of soil pH for the
Cult model might have resulted from the influence of some
agricultural practices onto this chemical parameter. Simi-
larly, it was possible to demonstrate that the effect of clay
depended on the land use and was attenuated for croplands
(not shown here). This might be explained by the fact that
farmers have, for crop cultivation for instance, the chance
of mitigating the influence of an unfavourable water budget,
related to low clay contents, by tuning the cultivation cal-
endar or the irrigation timing. More generally, the F model
performed much worse than the Cult model (R2

ext are 0.36
and 0.58, respectively). This means that the SOC stocks un-
der forest have high variability, that remained unexplained
by the set of variables that were included in the model. The
VIMs of predictors related to the land use showed that if, in
some case, a detailed land use description is relevant (predic-
tor lu3 in model Cult), a coarser description (i.e.lu ipcc in
model Extra) is still valuable for predicting SOC stocks, and
of the same importance as information about the clay content
(Table3).

4.2.2 Effect of the soil properties

The modelled effect of clay on SOC stocks increased mono-
tonically (Fig.6a). This expected effect may result from sev-
eral processes. The most commonly cited is the physical in-
teraction, mediated by various soil elements and biological
activity, between the clay materials and organic compounds
(Arrouays et al., 2006; Chaplot et al., 2009). It tends to pro-
tect soil organic matter (SOM) from decomposition (Liao
et al., 2009). The modelled SOC response to clay content
may include other processes such as the influence of clay
on the soil’s moisture regimes via its influence on the water
holding capacity (Wosten et al., 1999).

The soil moisture has been reported, both in field exper-
iments and on large scale statistical surveys (Bauer et al.,
2008; Meersmans et al., 2008), to influence the SOM de-
composition and consequently the observed SOC stocks. The
modelling of soil moisture regimes, as it is done within the
RothC model (predictorb), was not, on average, relevant for
our dataset, and was of much less importance than variables
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(a) (b) (c)

Fig. 6. Effect of the three most important variables in the Extra model (i.e.(a) clay, (b) rain and (c) lu ipcc). The lu ipcc variable is
coded using the adapted IPCC classification: croplands (1), permanent grasslands (2), woodlands (3) orchards, shrubby perennial crops (4),
wetlands (5), others (6), vineyards (7).

such asrain or clay alone (Table3). Surprisingly, the inclu-
sion of water content variables (wloggingandwregime) re-
sulting from field observations, did not have much influence
on SOC stocks. There may be several reasons for this, mainly
arising from the available dataset. In many cases (25%) this
information was missing, which decreases the final VIM of
this variable in the fitted models. Secondly, the water regime
was available at the whole profile level only, and might not
have been representative of the first 30 cm. Thirdly, this wa-
ter regime was based on the observation at the sampling time,
and, again, might not have been representative of the water
regime across the year.

4.2.3 Effect of the climatic variables

The relationship between climatic variables and amount of
organic carbon in soil is also well known, and again, is linked
to the effect of these variables on plant productivity on one
side, and soil carbon decomposition on the other. The ef-
fect of these variables, as they are measured here (rain, PET,
above ground temperature), is mediated by soil properties
and the vegetation cover. As such, therain predictor was
consistently one of the most important. The effect of tem-
perature (predictorstempanda), which may be dependent
upon other variables such as physical protection, chemical
protection, drought, flooding and freezing (Davidson et al.,
2000), was important too, but less than the effect of the rain-
fall. Temperature increase enhance NPP and mineralization
at the same time (Heimann and Reichstein, 2008), assuming
that temperature remains below a given threshold. The trade-
off between mineralization and NPP increase determines the
sign of relationship between SOC stocks and temperature.
Here, the relationship between SOC stocks anda decreased
monotonically (not shown here), which could indicate that
the effect of temperature on mineralisation is, in France,
more important than the effect onto NPP.

4.3 Possible improvements of the models

From the current models of SOC dynamics, the influence of
decomposition modifiers (herea, b) is expected to be of same
magnitude as the estimated soil carbon inputs (Martin et al.,
2009). However, our estimate of carbon inputs, thenppvari-
able, had a low VIM value. This demonstrated that our esti-
mate was inaccurate. Both the resolution of the MODIS data
and algorithms used for providing NPP, and our procedure
for retrieving values at our sampling locations might have re-
sulted in an irrelevant NPP predictor. Additional work would
be necessary for estimating more accurately SOC inputs on
the RMQS sites.

Topography was not taken into account in this study. In-
deed it has been shown that it is relevant for predicting SOC
stocks. Importance of variables derived from Digital Eleva-
tion Models has been demonstrated at the national (Chap-
lot et al., 2009) and small region scale (Grimm et al., 2008).
This might be related to redistribution processes related to
soil erosion, for instance. In our case this information was
not readily available, either at the RMQS sites locations, or
at the national scale, and thus was not included in the models.

Fe and Al oxides and CEC are also known for being corre-
lated to SOC stocks (Chaplot et al., 2009). Although this
information was available alongside SOC stocks measure-
ments at RMQS sites, this information cannot be used as an
external variable determining SOC stocks, because these soil
properties, and mainly CEC, are not as well known, as are
SOC stocks. Consequently their use for predicting the spa-
tial distribution of SOC stocks is limited.

The best candidate among soil properties would be the soil
pH. The spatial distribution at a national scale of this pre-
dictor, relevant for forest soils, will be accessible in a near
future. Its omission in the Extra model led to some discrep-
ancies between known SOC stocks distribution and the mod-
elled one. For instance, the model predicted low SOC stocks
in the Landes region (south west of France), most probably
because of low clay contents, whereas acid forest soils in this
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region are known for exhibiting higher SOC stocks values,
between 8 and 14 kg m−2 (Jolivet et al., 2003).

The influence of land management and agricultural prac-
tices on SOC stocks has been, and still is widely studied,
and its role might in some cases be underestimated (Bell
and Worrall, 2009). It is well established that some spe-
cific practices, such as organic matter addition (Lashermes
et al., 2009), reduced tillage practices (Metay et al., 2009) or
crop residues management and permanent cover crops (Rice,
2006), can influence SOC input and its fate in agricultural
soils. Without considering specific agricultural practices, the
inclusion of information about detailed land use proved to
be valuable for explaining observed SOC stocks: the VIM
value of thelu3 variable greatly outperformed those of the
lu2 and lu1 variables, which are less informative about the
land use. The inclusion of thelu3 variable in the model used
for estimating SOC stocks at the national scale was not possi-
ble since spatial information with this level of detail was not
available. Obtaining such information is needed in order to
refine our estimate of the spatial distribution of SOC stocks
in French soils. Similarly, it could support detailed imple-
mentation of future land use changes and the consequences
of these for SOC dynamics.

5 Conclusions

In this paper we provide a new estimate for the spatial dis-
tribution of SOC stocks in the top 30 cm of soils in France,
based on the French monitoring network (RMQS). The to-
tal estimate is 3.260 ± 0.872 PgC. It was compared to another
estimate based on the previously published European octop
maps. This second estimate was 5.303 PgC, consistent with
the SOC stocks published by the JRC for European countries,
and much higher than the estimate provided here, based on
RMQS data. Two elements advocate the preferential use of
the estimate presented here. First, it relies on a dataset pro-
vided by a sampling scheme ensuring an efficient treatment
of the spatial variability of SOC, both locally (through com-
posite sampling) and of over a larger extent (through the use
of a regular 16× 16 km² grid). The RMQS sampling pro-
tocol is also one of the few, at the European level, provid-
ing bulk densities. This avoids the need to use pedo-transfer
functions for estimating bulk density, and the uncertainties
associated with such estimates. Second, the proposed model
relied on the use of BRT which has been confirmed here as
being a robust tools for predicting SOC stocks. While of-
fering a good predictive performance, it enabled quantifica-
tion of relationships between SOC stocks and pedo-climatic
variables (plus their interactions) over the French territory.
These relationships strongly depended on the land use, and
more specifically differed between forest soils and cultivated
soil. Along with land use, the clay content of soils was the
most important driving variable of SOC stocks. In addition
to improvement of the model by including more predictors,

the refinement of spatial data layers of soil and land use will
be a critical step for improving SOC stocks assessments at
the country level.
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