
Hydrol. Earth Syst. Sci., 18, 353–365, 2014
www.hydrol-earth-syst-sci.net/18/353/2014/
doi:10.5194/hess-18-353-2014
© Author(s) 2014. CC Attribution 3.0 License.

Hydrology and 
Earth System

Sciences
O

pen A
ccess

Hydrological model calibration for derived flood frequency analysis
using stochastic rainfall and probability distributions of peak flows

U. Haberlandt and I. Radtke

Institute of Water Resources Management, Hydrology and Agricultural Hydraulic Engineering,
Leibniz University of Hannover, Hannover, Germany

Correspondence to:U. Haberlandt (haberlandt@iww.uni-hannover.de)

Received: 21 July 2013 – Published in Hydrol. Earth Syst. Sci. Discuss.: 14 August 2013
Revised: 20 December 2013 – Accepted: 23 December 2013 – Published: 30 January 2014

Abstract. Derived flood frequency analysis allows the es-
timation of design floods with hydrological modeling for
poorly observed basins considering change and taking into
account flood protection measures. There are several possi-
ble choices regarding precipitation input, discharge output
and consequently the calibration of the model. The objec-
tive of this study is to compare different calibration strate-
gies for a hydrological model considering various types of
rainfall input and runoff output data sets and to propose the
most suitable approach. Event based and continuous, ob-
served hourly rainfall data as well as disaggregated daily
rainfall and stochastically generated hourly rainfall data are
used as input for the model. As output, short hourly and
longer daily continuous flow time series as well as proba-
bility distributions of annual maximum peak flow series are
employed. The performance of the strategies is evaluated us-
ing the obtained different model parameter sets for continu-
ous simulation of discharge in an independent validation pe-
riod and by comparing the model derived flood frequency
distributions with the observed one. The investigations are
carried out for three mesoscale catchments in northern Ger-
many with the hydrological model HEC-HMS (Hydrologic
Engineering Center’s Hydrologic Modeling System). The re-
sults show that (I) the same type of precipitation input data
should be used for calibration and application of the hydro-
logical model, (II) a model calibrated using a small sample
of extreme values works quite well for the simulation of con-
tinuous time series with moderate length but not vice versa,
and (III) the best performance with small uncertainty is ob-
tained when stochastic precipitation data and the observed
probability distribution of peak flows are used for model cal-
ibration. This outcome suggests to calibrate a hydrological

model directly on probability distributions of observed peak
flows using stochastic rainfall as input if its purpose is the
application for derived flood frequency analysis.

1 Introduction

For reliable flood risk assessment and the development of ef-
fective flood protection measures a good knowledge of flood
frequencies at different points in a catchment is required. The
classical approach to obtain design flows is to carry out local
or regional flood frequency analysis using long records of ob-
served peak discharge data (e.g., Hosking and Wallis, 1997).
An alternative is to apply derived flood frequency analysis,
where design floods are estimated based on simulation re-
sults from a hydrological model, which is driven by observed
or synthetic rainfall data. This approach is indispensable if no
historical flood peak records are available for statistical anal-
ysis or regionalization. Nevertheless, even if historical flood
observations exist, derived flood frequency analysis provides
several advantages:

– first, when using hydrological modeling for design it
is possible to consider planned alterations in land use
and management, future changes in climate or the in-
troduction of new flood protection measures, whose
effect is not contained in observed historical flood
records;

– second, hydrological modeling allows one to obtain
the full hydrograph for design, which is usually not
available from peak flow records. This is most impor-
tant for the design of reservoirs or for flood mapping
where the flood volume is essential; and
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– third, the estimation of design flows can be carried out
for completely ungauged basins if the parameters of
the hydrological model are regionalized and the rain-
fall model can be applied for unobserved regions.

Both event based or continuous hydrological modeling is
possible. A disadvantage of the event based simulation is the
required assumption about equal return periods for the de-
sign storm and the resulting design flood. This is usually not
given, considering the required simplifying assumption about
initial soil moisture conditions in the catchment, the shape
and the critical duration of the design storm (Viglione and
Blöschl, 2009; Verhoest et al., 2010; Grimaldi et al., 2012a).
Using continuous rainfall–runoff simulation this problem can
be avoided and the design flood is derived by flood frequency
analysis of long series of simulated flows. However, such
kinds of hydrological modeling require long continuous rain-
fall series with high temporal and sufficient spatial resolu-
tion. Especially for flood modeling in smaller catchments,
subdaily time steps are required for simulation. Given the
restricted availability of those observed data, synthetic pre-
cipitation has recently been used more often for this purpose
(Cameron et al., 1999; Blazkova and Beven, 2004; Aronica
and Candela, 2007; Moretti and Montanari, 2008; Haberlandt
et al., 2008; Boughton and Droop, 2003; Grimaldi et al.,
2012b; Viglione et al., 2012).

One challenge using this approach is the optimal calibra-
tion of the hydrological model considering the different na-
ture of observed and synthetic precipitation data. Often, the
former is used for calibration and the latter for application
and design flood estimation. This procedure neglects the de-
pendence of the model parameterization on the input data.
For instance, Bárdossy and Das (2008) show that using dif-
ferent rain gauge networks for calibration and validation of
a conceptual hydrologic model leads to significantly poorer
performance compared to the case when unique networks are
employed. Similar problems will occur if precipitation data
from different sources are used for calibration and valida-
tion, such as rainfall information from point observations and
weather radar (Heistermann and Kneis, 2011). In addition, if
a hydrological model is calibrated using observed precipita-
tion and runoff time series of high temporal resolution, e.g.,
hourly data, which are often available only for very short
time periods, the outcome might not be optimal for the sim-
ulation of floods with large return periods of 50, 100 or more
years.

Alternatives to using only continuous hydrographs for
model calibration are the utilization of statistical flow data
such as flow duration curves (Westerberg et al., 2011) or flow
information in the spectral domain (Schaefli and Zehe, 2009).
When flood frequency estimation is the main goal, special
consideration should be given to the annual or partial peak
flow series in addition to the hydrographs in the calibration
process (Cameron et al., 1999; Lamb, 1999). The direct use
of probability distributions of peak flow for model calibration

is apparent. However, this idea has hardly been explored in
research so far.

The first objective of the paper is to compare different
calibration strategies for a hydrological model operated on
an hourly time step that is to be applied for derived flood
frequency analysis. Event based and continuous, observed
hourly rainfall data as well as disaggregated daily rainfall and
stochastically generated hourly rainfall data are used as input
for the model. As output, short hourly and longer daily con-
tinuous flow time series as well as probability distributions
of annual maximum peak flow series are employed. Second,
it is hypothesized that calibrating the hydrological model di-
rectly on the observed flood frequency distributions would
provide the best results. This approach would have two ad-
vantages: statistical peak flow data have usually much longer
records of registration than continuous high resolution flow
data and they permit the direct use of stochastic rainfall data
for calibration of the hydrological model.

The paper is organized as follows. In Sect. 2 the methodol-
ogy is presented including the precipitation models, the hy-
drological model and the calibration strategies. The data and
study region are described in Sect. 3. In Sect. 4 the results of
the different calibration strategies for the hydrological model
are discussed. Finally, Sect. 5 gives a summary of the find-
ings and conclusions.

2 Methods

2.1 Precipitation modeling

A stochastic space–time precipitation model, a statistic rain-
fall disaggregation model and a classical statistical design
storm approach are employed here to provide precipita-
tion data as input for rainfall–runoff modeling. These three
rainfall generating methods are briefly introduced in the
following.

2.1.1 Stochastic precipitation model

A hybrid stochastic space–time precipitation model, consist-
ing of two components is used for the generation of continu-
ous hourly rainfall (Haberlandt et al., 2008). The first compo-
nent represents a classical alternating renewal approach for
the simulation of independent precipitation event series for
several locations in the domain (Fig. 1). Wet spell duration
(W) and dry spell duration (D) are modeled by general ex-
treme value and Weibull distributions, respectively. The wet
spell intensity (I ) is modeled using a Kappa distribution. The
dependence between wet spell intensity and duration is de-
scribed by a 2-D Frank copula (De Michele and Salvadori,
2003). For disaggregation of the wet spells into hourly inten-
sities a double exponential function with random peak time
is used.

The second component of the precipitation model uses
simulated annealing for a resampling of the univariate event
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Fig. 1. Scheme of precipitation event time series (after Haberlandt
et al., 2008).

time series (Bárdossy, 1998) with the objective to reproduce
the spatial dependence structure. The objective function in-
cludes three bivariate criteria: (a) the probability of rainfall
occurrence, (b) Pearson’s correlation coefficient, and (c) the
expected rainfall amount conditioned on rainfall occurrence
at a neighboring station. The hybrid precipitation model
has 11 parameters in total, which are estimated for summer
(May–October) and winter seasons (November–April) sepa-
rately (Haberlandt et al., 2008).

2.1.2 Rainfall disaggregation model

Often the network density and record length of daily pre-
cipitation data is much better than for hourly data. So, one
interesting alternative to stochastic synthesis of rainfall is
the disaggregation of observed daily data into smaller time
steps. For the disaggregation of daily rainfall a multiplica-
tive random cascade model with exact mass conservation is
used here (Güntner et al., 2001), which is a refinement of the
model proposed by Olsson (1998).

The model divides the observed 24 h precipitation subse-
quently into two equal sized non-overlapping boxes, having
one of the three possible states with certain transition prob-
abilitiesP : wet/wet withP(x/1–x), wet/dry withP (1/0) or
dry/wet with P (0/1). Figure 2 shows a scheme of this ap-
proach. Here, the divisions are carried out from level zero
(24 h) up to level five (45 min). Hourly rainfall is finally es-
timated by dividing the 45 min rainfall boxes into three uni-
form 15 min blocks and reaggregating four blocks each from
the time series back to 60 min. The parameters for the model
are each estimated from the nearest hourly neighbor station
and running the model backwards. This model does not dis-
tinguish between seasons, so only one set of parameters is
estimated for each station, which is then assumed valid for
the whole year.
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Fig. 2.Scheme of a multiplicative random cascade model (modified
after Olsson, 1998).

The main problem with this disaggregation approach is the
conservation of the space–time structure of precipitation. In
the presented study a simple method is used to create spatial
dependence. First, daily precipitation time series were disag-
gregated using the random cascade. In the next step for every
day the station with the highest daily precipitation amount is
selected. Their diurnal variation, obtained from disaggrega-
tion, is then applied on all other stations in the catchment. It
is accepted here that this results in spatially more homoge-
neous than natural precipitation, which may lead to an over-
estimation of the observed floods.

2.1.3 Statistical design storm approach

The classical approach for the estimation of design floods
based on rainfall–runoff modeling uses statistical storms
derived from rainfall intensity-duration-frequency (IDF)
curves. In Germany a regionalized version of IDF curves
called KOSTRA is available (Bartels et al., 2005). KOSTRA
provides statistical design storms on a raster for the whole of
Germany with cell sizes of 8.45 km× 8.45 km for durations
between 5 min and 72 h and for return periods from 0.5 yr up
to 100 yr.

For rainfall–runoff modeling areal precipitation data in-
stead of point values are necessary. Areal reduction factors
are a common method to adjust point extreme rainfall to
rainfall for larger areas. Here an areal reduction method es-
pecially derived for German conditions depending on catch-
ment size and rainfall duration is applied (Verworn, 2008).

Design storms with given duration, mean intensity and
recurrence interval need a temporal rainfall distribution. In
this study for short rainfall durations from 1 to 3 h constant
rainfall intensity is assumed. For longer rainfall durations a
simple synthetic storm profile has been employed (Verworn,
1999), dividing the storm into three sections. The first sec-
tion takes 20 % of the total rainfall depth in 25 % of the total
storm duration. The second one takes 50 % of the total rain-
fall in the next 25 % of the duration, representing the max-
imum rainfall intensity. The last interval takes 30 % of the
storm depth in the residual 50 % of the time.
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Figure 3. HEC-HMS model (adapted from Feldmann, 2000) 
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Fig. 3.HEC-HMS model (adapted from Feldmann, 2000).

2.2 Rainfall–runoff modeling

In this section, first the applied rainfall–runoff model is
briefly presented and then the different strategies for model
calibration and application based on the diverse input and
output data sets are discussed.

2.2.1 Rainfall–runoff model

For rainfall–runoff modeling the conceptual semidistributed
model HEC-HMS (Hydrologic Engineering Center’s Hydro-
logic Modeling System; Feldmann, 2000) has been chosen,
which comprises typical concepts used for flood simulations
and allows sufficient fast computations with larger data sets.
HEC-HMS offers different methods for the simulation of the
processes of runoff formation, runoff concentration and flood
routing. Additionally, several possibilities exist for the calcu-
lation of areal precipitation and potential evaporation. Here,
the model is operated continuously at an hourly time step
with the structure depicted in Fig. 3.

The soil moisture accounting (SMA) algorithm is used for
runoff generation, the Clark unit hydrograph for the trans-
formation of direct runoff, two linear reservoirs to consider
interflow and base flow transformation, and simple river
routing is employed where the flows are only lagged in
time. Snowmelt is calculated externally using the tempera-
ture index method. Potential evaporation is also computed
externally using the method proposed by Turc–Wendling
(Wendling et al., 1991), based on observed temperature and
global radiation data; and is corrected according to the dif-
ferent vegetation types in the subcatchments. Then the mean
monthly values over the simulation period are used as input
for HEC-HMS scaled according to the simulation time step.
This simple approach can be justified here by the compari-
son character of the model application. Actual evapotranspi-
ration is simulated in HEC-HMS depending on the potential
evapotranspiration and the water availability from canopy,
surface and soil storages. To account for spatial heterogene-
ity of climate data and basin characteristics the catchments
are spatially divided into several subcatchments and river

 31

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Calibration strategies leading to the parameter sets A to E; the temporal resolution of 
the data is given in brackets 
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Fig. 4.Calibration strategies leading to the parameter sets A–E; the
temporal resolution of the data is given in brackets.

reaches. The input data precipitation and potential evapora-
tion are estimated as areal averages for the subcatchments
using Thiessen interpolation from station data.

2.2.2 Strategies for model calibration

The calibration of HEC-HMS is done automatically in
lumped mode for the catchment under investigation using
the PEST (Parameter Estimation) algorithm (Doherty, 2005).
Five parameters are selected for calibration comprising the
storage coefficients for the upper and lower groundwater
reservoirs in the runoff formation module, the storage coef-
ficients for the two linear reservoirs describing runoff con-
centration for interflow and baseflow, respectively, and the
storage coefficient for the Clark unit hydrograph referring
to surface runoff concentration (see Fig. 3). These are all
conceptual parameters, which are difficult to estimate from
physical catchment properties, and they have been tested to
be sensitive for calibration.

As objective functions, the squared sum of deviations be-
tween observed and simulated flows is used. For performance
assessment the Nash–Sutcliffe criterion and the bias are em-
ployed. Figure 4 gives an overview of the calibration strate-
gies used in this investigation. Five calibration strategies are
shown, which can be distinguished by their different input
and output data. Each calibration strategy leads to a unique
parameter set, indicated by the letters A through E.

Parameter set A is obtained with event based calibration
using a number of observed rainfall–runoff events simulta-
neously. Since the initial conditions are unknown, storage
contents for each event are also included in the calibration.
Validation for this parameter set is done using continuous
modeling based on data sets from strategy B.

Parameter set B is estimated by calibration of the model
using continuous hourly observed precipitation and dis-
charge data for the short observation period of some years.
Validation of the resulting parameter set is done by split sam-
pling for another couple of years.

The calibration of the model to obtain parameter set C is
carried out using continuous hourly simulations with disag-
gregated precipitation from daily data and observed mean
daily discharge. The disaggregated precipitation data have
statistical intraday variations but conserve the daily totals.
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So, for direct comparison of simulated and observed flows
only daily data can be used. Since hourly precipitation results
from a statistical disaggregation model, 10 realizations are
generated and the median of the 10 simulated flow time se-
ries aggregated to daily values is used for calibration against
observations. This is a compromise to consider the stochastic
character of the precipitation input using one unique param-
eter set, which however may lead to a certain loss of variance
in flow simulations. Validation of parameter set C is done us-
ing split sampling on the longer daily flow time series and
using the shorter hourly hydrographs from strategy B. An
advantage of this calibration strategy using daily data is the
availability of longer observation records comprising often
more than 30 yr and denser precipitation networks.

For the calibration of the model to estimate parameter set
D, disaggregated precipitation and the observed flood fre-
quency distributions of the same time period are utilized.
Again, 10 realizations of disaggregated precipitation data are
used for hydrological simulations. Independent flood events
are selected from the continuously simulated flows using a
minimum of 10 d intraevent time considering the catchment
sizes in this study (see section 3). Annual series (January–
December), summer series (May–October) and winter series
(November–April) of peak flows are compiled from observed
and simulated data. To mitigate sampling errors, a theoretic
probability distribution is fitted to the series of observed and
simulated peak flows. Here the generalized extreme value
distribution (GEV) with parameter estimation based on L
moments is chosen (Hosking and Wallis, 1997). For calibra-
tion a number of recurrence intervals are selected for which
flow quantiles are estimated from the GEV distributions.
Theoretical quantiles obtained from the distributions fitted to
observed peak flow series are considered as “observations”.
The medians of the theoretical quantiles from the distribu-
tions fitted to the 10 simulated series are considered as “simu-
lations”. The pairs of recurrence intervals and quantiles build
the supporting points in the objective function. For calibra-
tion the distributions of annual, winter and summer seasons
are considered simultaneously and the supporting points are
weighted proportionally to their return periods. Validation of
parameter set D is done using 10 different precipitation real-
izations and by evaluations of continuous simulation consid-
ering the observed periods from strategy B. The advantage of
this strategy is the direct use of hourly disaggregated rainfall
and of observed flood quantiles in the calibration process.

The last calibration strategy to estimate parameter set E
uses continuous stochastic rainfall and observed flood fre-
quency distributions. The procedure of parameter estimation
is basically the same as for parameter set D. The main dif-
ference is the missing time reference of the stochastic rain-
fall and the possibility to generate time series of any length.
Therefore all observed annual and seasonal maximum floods
can be used for fitting the “observed” GEV. Using very long
time series may reduce the sampling error but would re-
quire more computation time. So, considering that the full
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Figure 5. Strategies for the estimation of design floods; the temporal resolution of the data is 
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time series are employed for the automatic calibration pro-
cess with many iterations the length has been restricted here
to 100 yr. Again, 10 realizations are generated for model cal-
ibration in order to consider the uncertainty of the precipita-
tion process. The validation of parameter set E is done us-
ing another 10 precipitation realizations and the continuous
hourly data from strategy B.

2.2.3 Strategies for estimation of design floods

Considering the five estimated parameter sets A–E and the
different precipitation forcings, several alternatives for the
application of the hydrological model to estimate design
flows are possible. Figure 5 shows the strategies that are
used and compared here regarding estimation performance
and uncertainty.

For the event based rainfall–runoff modeling the statisti-
cal KOSTRA precipitation data are applied (see Sect. 2.1.3)
assuming equal return periods for rainfall and resulting peak
flow. Considering catchment size, the model is run for differ-
ent storm durations around the time of concentration, while
only that hydrograph is kept, which produces the largest
peak. Regarding initial conditions the model starts up with
mean storage contents for soil and groundwater reservoirs
obtained from the calibration over all events and a base flow
that is equal to the long-term mean discharge. Taking aver-
age antecedent conditions as initial values for design is of-
ten the usual choice and works well in practice (Pilgrim and
Cordery, 1993; Viglione et al., 2009). Uncertainty in initial
conditions is considered by varying the storage contents by
plus/minus 10 and 20 % around the mean. Uncertainty in pre-
cipitation is considered here taking into account an error of
up to plus/minus 20 % according to Bartels et al. (2005) for
the KOSTRA data. So, all together 15 model runs are used
for the estimation of the design flow and its uncertainty at
each return period. The whole procedure is applied for the
two parameter sets A and B.

For continuous rainfall–runoff modeling disaggregated
and stochastic precipitation data are used. The estimation of
the design flood is done based on fitted GEV distributions
to simulated peak flow series, similar as for parameter es-
timation. Here the 20 rainfall realizations from calibration
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Fig. 6. Study area with the three selected catchments, precipitation
stations, climate stations and stream flow gauges.

and validation together are used to consider uncertainty.
Rainfall–runoff modeling with disaggregated precipitation
data is done using the parameter sets B, C and D. If the
stochastic precipitation data are used as model input, param-
eter sets B and E are employed.

3 Study area and data

The investigations are carried out for three mesoscale catch-
ments within the Bode River basin in northern Germany: the
Silberhütte catchment with a drainage area of 105 km2, the
Mahndorf catchment with an area of 168 km2 and the Traut-
enstein catchment with an area of 39.1 km2 (see Fig. 6).

The Bode region has elevations between 1140 m a.s.l. at
the top of the Brocken Mountain and about 80 m a.s.l. at the
lowest point where the Bode River flows into the Saale River.
Mean annual rainfall varies between 1700 and 500 mm yr−1.
Floods are generated either by frontal rainfall, frontal rainfall
on snow smelt or convective storms.

Observed precipitation data at an hourly time step are
available for about 14 yr of the time period from 1993 to
2006 and at a daily time step in the period between 1968 and
2005. Most of the hourly stations are only available for the
summer season. The climate data temperature and radiation
are available for the same two temporal resolutions and time
periods at three and two locations, respectively. Observed
discharge is available as daily flows and monthly peak flow
series within the period from 1948 to 2005 with lengths be-
tween 33 and 56 yr for the three streamflow gauges. In addi-
tion, hourly flow time series are available for the period from
1998 to 2004. Table 1 lists the volume of the data, which can
be utilized for calibration, validation and application for each
calibration strategy.

The strategies A and B, which use hourly data, have to
rely on only seven years of observations for both calibra-
tion and validation. The network density is increased here
by employing daily rainfall from the non-recording network

disaggregated by rescaling the hourly rainfall profile from the
nearest recording station. An observation period of 33–35 yr
in total is available when daily flow and precipitation data are
employed (strategies C and D). If stochastic rainfall is used
in strategy E the maximum observed record length of about
50 yr for peak flow series can be utilized. Also in this case the
network density is increased to the same degree as in strat-
egy A and B by using rescaled hourly stochastic rainfall at
the locations of daily stations from the nearest recording sta-
tion. Hydrologic modeling is done in strategy E with 100 yr
of stochastic rainfall even if the reference time series for cal-
ibration and application are shorter. This requires providing
climate data for 100 yr at an hourly time step. For calculation
of potential evapotranspiration the observed mean monthly
values are used (see Sect. 2.2.1); for snowmelt simulations
observed time series of temperature over 25 yr are simply re-
sampled four times to provide the input. Strategies D and
E use for calibration and validation the same observed peak
flows but 10 different realizations of stochastic rainfall. In ad-
dition, validation is carried out for all strategies on observed
hourly flow time series.

For the application and uncertainty assessment of strate-
gies D and E all 20 realizations are used. This is not a very
large sample size, but the number of realizations had to be
restricted considering hourly simulations and the demanding
recalibration requirements for each strategy. Since this study
focusses on relative comparisons and not on absolute design
values this is regarded here as acceptable.

4 Analyses and results

In this section first the performances of the stochastic rainfall
model and the statistic disaggregation approach are briefly
presented. Then the results of calibration and validation of
the hydrological model using the different data and param-
eter sets are discussed. The hydrological model is applied
for the estimation of flood frequency distributions and de-
sign floods to compare the performance and uncertainty of
the different alternatives.

4.1 Performance of precipitation modeling

For validation of the stochastic precipitation model 10 real-
izations of hourly rainfall, each 100 yr in length are generated
for all hourly stations. For validation of the disaggregation
model also 10 realizations of hourly rainfall are disaggre-
gated using aggregated daily rainfall from the same hourly
stations.

Tables 2 and 3 show comparisons between observed and
simulated event characteristics exemplarily for three rainfall
stations for the stochastic rainfall model and the disaggrega-
tion model, respectively. Note that only those rainfall char-
acteristics are selected here for validations, which are not
used for the estimation of the parameters of the precipitation
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Table 1. Average data volume available for calibration, validation and application for hydrological modeling depending on calibration
strategy (see Fig. 4).

Calibration strategy Data for calibration Data for validation Application

A 13 events No separate events Statistical rainfall
B 4 yr 3 yr see A, D or E
C 15 yr 20 yr see A, D, or E
D 35 yr (10 realizations) 35 yr (10 realizations) 35 yr (20 realizations)
E 50/100 yr∗ (10 realizations) 50/100 yr∗ (10 realizations) 100 yr (20 realizations)

* About 50 yr of discharge data and 10 realizations of 100 yr of precipitation data

Table 2. Event characteristics for three selected rainfall stations (see Fig. 6) from 14 yr observed rainfall (OBS) and 10× 100 yr stochastic
generated rainfall (STOCH); OBS statistics estimated from data with missing values as gaps.

Station No. of events per year [–] Average event volume [mm] Std. Dev. of event volume [mm] Skewness of event volume [–]

OBS∗ STOCH OBS STOCH OBS STOCH OBS STOCH
Wernigerode 212 181 3.55 3.64 5.33 5.31 4.85 7.05
Harzgerode 169 164 3.37 3.43 5.02 5.00 6.19 7.92
Braunlage 272 240 5.59 6.06 8.86 9.47 4.77 5.11

* Adjusted according to relative gap contribution to observation period.

models. For stochastic rainfall good agreement between sim-
ulated and observed statistics is reached. Some underestima-
tion of the number of events and a small overestimation of
the event volume occurs. While the standard deviation is also
reproduced quite well, the skewness is reproduced poorly.

For disaggregated rainfall sufficient agreement between
observed and simulated statistics is found. The number of
events is overestimated and the event volume is underesti-
mated. Higher order moments are only roughly reproduced.
Comparing the results between both models shows that the
pure stochastic rainfall model has a better performance as
the statistics disaggregation approach except for the simula-
tion of the skewness. Note that the observed statistics dif-
fer between stochastic modeling and the disaggregation ap-
proach because for disaggregation the gaps in the data had to
be filled prior to the application.

In addition, a frequency analysis is carried out on the an-
nual maximum precipitation series for observed and simu-
lated rainfall using different durations. Selected results are
presented in Fig. 7. For the disaggregation approach rainfall
can only be provided for the observed period, which is very
short here for precipitation validation. For the stochastic pre-
cipitation model rainfall can be generated for longer periods
but can only be compared to the short observation statistic.
It can be seen that the observed values are plotted mostly
within the range of the simulated realizations. For disaggre-
gated rainfall the range among the 10 realizations is some-
what larger as for the pure synthetic rainfall realizations. For
the stochastic model a slight overestimation of the observed
extreme values occurs for larger return periods and durations.
Considering the short observation periods it is difficult to val-
idate the models regarding the synthesis of more extreme

rainfall intensities. This will be further addressed with hy-
drological modeling.

More information about application and validation of the
precipitation models, especially regarding the conservation
of spatial consistence of rainfall, is provided in Haberlandt
et al. (2008) and about the disaggregation approach in Ebner
von Eschenbach et al. (2008).

4.2 Performance of the hydrological model and
estimation of design floods

For hydrological modeling the data are employed as ex-
plained in Sects. 2 and 3. For each catchment parameter esti-
mation is done automatically using the different data sets ac-
cording to Fig. 4. Calibration succeeds for all strategies and
catchments quite well. Validation of the hydrological model
is done on the one hand using split sampling (parameter sets
B and C) or using additionally precipitation realizations (pa-
rameter sets D and E). On the other hand all parameter sets
are validated using continuous, observed precipitation and
discharge time series as used for calibration and validation
of parameter set B. The results are shown in Table 4. It can
be seen that in general for all catchments and with all pa-
rameter sets the performance is quite well considering the
Nash–Sutcliffe criterion. Only for the Mahndorf catchment
are the NSC values lower than for the other two catchments.
However, there is a significant bias, which is probably due to
the calibration focusing on floods. This is not seen as a very
critical issue here considering the purpose of the simulation
for derived flood frequency analysis. It is important to notice
that the parameter sets D and E, obtained from calibration
on extreme value distributions, perform equally well for the
reproduction of the continuous hydrographs as the parameter
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Table 3.Event characteristics for three selected rainfall stations (see Fig. 6) from 14 yr OBS and 10× 14 yr DISAG rainfall; OBS statistics
estimated from data with missing values replaced by data from neighbor stations.

Station No. of events per year [–] Average event volume [mm] Std. Dev. of event volume [mm] Skewness of event volume [–]

OBS DISAG OBS DISAG OBS DISAG OBS DISAG
Wernigerode 165 206 3.77 3.07 6.04 4.44 7.29 7.51
Harzgerode 163 202 3.37 2.72 5.04 3.79 6.14 7.07
Braunlage 252 297 5.63 4.77 8.92 6.85 4.79 4.29
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Figure 7. Empirical probability distributions of annual maximum precipitation from observed 
(OBS), disaggregated (DISAG, top row) and stochastically generated rainfall (STOCH, 
bottom row) for the station Harzgerode for 1 hour and 4 hour durations  
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Fig. 7.Empirical probability distributions of annual maximum precipitation from OBS, DISAG (top row) and STOCH rainfall (bottom row)
for the station Harzgerode for 1 and 4 h durations.

set B obtained directly using those data. Parameter sets A
and C obtained from calibration on single events and daily
discharge are also suitable to reproduce the hourly flow hy-
drographs. Figure 8 shows the simulated hydrographs using
observed precipitation for the validation period for four of
the five different parameter sets. The visual assessment con-
firms the findings in Table 4. The simulated hydrographs for
all parameter sets are quite similar. Higher peak flows were
simulated when the model is calibrated on the extreme value
distributions (parameter sets D and E). This is especially true
for parameter set D, which results from disaggregated rain-
fall, considering the three highest peaks in the simulation pe-
riod. The reason for this might be the forced, spatially con-
sistent timing of rainfall peaks for all stations involved in
the disaggregation approach (see Sect. 2.1.1). Based on the
above validation all parameter sets are considered generally
suitable for hydrological modeling.

After this initial validation of the hydrological model, de-
sign floods are estimated using all parameter sets succes-
sively for the three catchments. First, the results are dis-
cussed more in detail for the Silberhütte catchment. Then, a
comparison of the 50 yr design flood estimation for all catch-
ments and parameter sets is presented.

For single event rainfall–runoff modeling the parameter
sets A and B based on the KOSTRA precipitation statistics
are used. In Fig. 9 the results for the Silberhütte catchment
are shown. A GEV distribution is fitted to the observed an-
nual maximum peak flows for a 56 yr period and extrapo-
lated up to a return period of 100 yr. Note that the highest
observed peak flow belongs to the exceptional flood of 1994
with a larger return period than that associated according to
the sample size (LAU, 1995). Also, the second highest ob-
served peak flow probably belongs to a flood with a higher
recurrence interval. The hydrological model is run for de-
sign storms from KOSTRA for the return periods of 2, 5, 10,
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Table 4.Validation of the calibrated parameter sets using the Nash–Sutcliffe criterion (NSC) and the bias.

Calibration period: Nov 1997–Oct 2001 Validation period: Nov 2001–Oct 2004

Parameter set Parameter set
A B C D E A B C D E

Silberhütte
NSC [-] 0.86 0.87 0.86 0.85 0.83 0.82 0.83 0.82 0.86 0.81
Bias [%] 13.4 13.5 13.4 13.8 13.5 20.4 20.2 20.4 20.0 20.2

Trautenstein
NSC [-] 0.84 0.86 0.84 0.85 0.81 0.82 0.82 0.78 0.82 0.79
Bias [%] −1.99 −2.28 −1.71 −2.26 −2.39 −22.7 −22.3 −23.0 −22.4 −22.1

Mahndorf
NSC [-] 0.52 0.72 0.77 0.46 0.44 0.63 0.78 0.67 0.53 0.52
Bias [%] −14.6 −16.6 −18.5 −16.1 −14.7 −7.04 −6.90 −5.45 −7.19 −7.20
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Figure 8: Simulated hydrographs using four different parameter sets A, B, D and E based on 
observed hourly precipitation for the validation period from November 2001 to October 2004 
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Fig. 8. Simulated hydrographs using four different parameter sets A, B, D and E based on observed hourly precipitation for the validation
period from November 2001 to October 2004.

25 and 100 yr. The bars enclose the 90 %-confidence inter-
val, which represents the 5 and 95 % empirical quantiles es-
timated from the 15 model runs each (i.e., the single highest
and lowest value is excluded; see also Sect. 2). From com-
paring observations, i.e., the fitted GEV to observed peak
flows, with the simulated range of design flows, a good agree-
ment can be seen. However the extent of the bars is wide,
indicating quite a bit of uncertainty. The range of simula-
tions from parameter set A covers better the observations
but is larger than for parameter set B. Also, with parameter
set B smaller design floods are estimated. A possible reason

for that might be the calibration of parameter set B for con-
tinuous flow series trying to simulate the total hydrograph
reasonably well, not only the flood events as for parameter
set A. The main results are consistent also for the other two
catchments.

The results from design flood estimation with continuous
rainfall–runoff modeling and disaggregated precipitation for
the Silberhütte catchment are shown in Fig. 10. The hydro-
logical model is run continuously over a period of 36 yr,
where daily precipitation for disaggregation was available.
GEV distributions are fitted to the observed and simulated
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Figure 9. Range and median of simulated design flows based on 15 model runs using KOSTRA 
rainfall data representing the 90%-confidence interval against observed peak flows for the 
Silberhütte catchment; left: parameter set A, right: parameter set B 
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Fig. 9. Range and median of simulated design flows based on 15 model runs using KOSTRA rainfall data representing the 90 %-confidence
interval against observed peak flows for the Silberhütte catchment; left: parameter set A, right: parameter set B.

annual maximum peak flows for this period and extrapolated
here only up to the 50 yr recurrence interval considering the
restricted data period. The simulated range of peak flows en-
closes the 90 %-confidence limits, which represents the 5 and
95 % empirical quantiles estimated for selected return peri-
ods from the 20 realizations (i.e., the single highest and low-
est value is excluded). Similar ranges of simulated flows can
be seen for parameter sets B and C. However, smaller peak
flows are obtained for parameter set C, where the model has
been calibrated on daily hydrographs, which is a reasonable
outcome. The uncertainty band that results from using pa-
rameter set D is the smallest, but the range does not cover the
observations completely and the slope is somewhat different
from the observed distribution. This outcome might be an ar-
tifact of the calibration. Again, similar results were obtained
for the other two catchments.

The results from using stochastic precipitation to estimate
the design floods are shown in Fig. 11 for the Silberhütte
catchment. The hydrological model is run continuously over
a period of 100 yr for 20 realizations of stochastic rainfall.
GEV distributions are fitted to observed peak flows for the
total observation period of 56 yr and to simulated peak flows
for each realization of 100 yr length. The 90 %-confidence
limits are set up again using 5 and 95 % empirical quantiles
for selected return periods from the total number of 20 real-
izations (i.e., the single highest and lowest value is excluded).
Applying the precalibrated model based on observed precip-
itation with parameter set B leads to an overestimation of
peak flows with a wide uncertainty range. If instead calibra-
tion on the extreme value distribution of observed flows is
carried out and parameter set E is applied the uncertainty is
reduced, as seen by the smaller confidence band. In addition,
the simulated peak flow distributions cover the observed one
very well in this case, showing a better model performance
compared to the application of parameter set B. Again, simi-
lar results were obtained for the other two catchments.

Finally, to sum up the results, a comparison for the es-
timation of the 50 yr flood including uncertainty bands for
the different calibration strategies and all three catchments
is presented in Fig. 12. In order to consider the error from

the restricted length of the observed flow records a paramet-
ric bootstrap is applied to estimate the confidence intervals
for the estimated 50 yr flood from observations (Davison and
Hinkley, 2005). Note that the uncertainty bands of the ob-
served floods differ slightly according to the different sam-
ple sizes used in calibration and application as reference
for the three cases: statistic design rainfall (KOSTRA) with
about 50 yr, disaggregated rainfall (DISAG) with about 35 yr
and stochastic rainfall (STOCH) again with about 50 yr. The
classical calibration using single events with design storms
(KOSTRA and parameter set A) provides good estimations
for the Silberhütte and Mahndorf catchments, but an overes-
timation for the Trautenstein catchment. However, the confi-
dence intervals are widest for this parameter set. Using pa-
rameter set B obtained from calibration with short hourly
hydrographs for KOSTRA rainfall leads to less accurate esti-
mations but with somewhat smaller error bands. If parameter
set B is applied with disaggregated rainfall or with stochastic
rainfall the estimation performance is generally poor. Param-
eter set C, which was obtained by calibration on daily flow
data performs not much better than parameter set B for dis-
aggregated rainfall but with smaller uncertainty. The most
suitable calibration strategies for the estimation of the design
flood seem to be the ones that use the observed flood peak
distributions together with the synthetic rainfall data for cal-
ibration. These are the cases based on parameter set D with
disaggregated precipitation and parameter set E with stochas-
tic rainfall. It is remarkable that for all catchments the uncer-
tainty bands can be reduced considerably if parameter sets D
and E are applied.

5 Summary and conclusions

Several calibration strategies of a hydrological model have
been compared regarding its suitability for derived flood
frequency analyses. Event based and continuous, observed
hourly rainfall data as well as disaggregated daily rainfall
and stochastically generated rainfall data are used as input for
the model. As output short hourly and longer daily flow time
series as well as probability distributions fitted to observed
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Figure 10. Range of simulated design flows based on 20 model runs using 35 years of 
disaggregated precipitation data representing the 90%-confidence interval against observed 
peak flows for the Silberhütte catchment for different parameter sets  
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Fig. 10. Range of simulated design flows based on 20 model runs
using 35 yr of disaggregated precipitation data representing the
90 %-confidence interval against observed peak flows for the Sil-
berhütte catchment for different parameter sets.

peak flow series are employed. The main results can be sum-
marized as follows:

– using a different type of rainfall data for model cali-
bration and application usually leads to less accurate
results for the application than compared to when the
same type of data are used. These results are in line
with findings of Bárdossy and Das (2008) regarding
network density or of Heistermann and Kneis (2011)
with respect to different rainfall data sets and spatial
interpolation methods;

– the hydrological model works quite well for general
conditions, i.e., reproducing the hydrograph on the
whole, when it is calibrated on extreme conditions,
i.e., using the extreme value distribution of peak flows,
than vice versa. This confirms that unusual events or
small data sets might be sufficient for model calibra-
tion (Singh and Bárdossy, 2012; Seibert and Beven,
2009);

– the best performance and a small uncertainty for de-
sign flood estimation over all catchments is obtained
if stochastic precipitation data are used for calibra-
tion on the observed probability distribution of peak
flows. Similar good results can be obtained with disag-
gregated daily rainfall data. However, this latter strat-
egy has some limitations for the estimation of design
floods with larger return periods because of the re-
stricted length of the observation period;

– the classical event based design flood estimation works
surprisingly well here for two of the three catch-
ments but comes along with a quite high uncertainty.
Nonetheless, also in this case it is better to use the same
type of precipitation data for calibration and applica-
tion, i.e., the single events, compared to using continu-
ous rainfall and discharge for calibration but the design
storms for application.

The applicability of the calibration strategy based on prob-
ability distributions of peak flow depends of course on the
quality of the observed peak flow series. If these are too
short larger floods may have the wrong plotting position and
the calibration will overestimate the floods. Special problems
could also arise from different flood generating mechanisms
in a catchment, which may lead to step changes in the flood
frequency curves (Rogger et al., 2012), which then needs to
be considered in distribution fitting and model calibration.
The uncertainty of the precipitation model parameters are not
considered here and may increase the total error bands. Also,
the uncertainty resulting from the hydrological model param-
eter sets is not discussed here. Further analyses have shown
that this error is larger than the variability that comes from
the different rainfall realizations (Radtke, 2012).

One main purpose of this paper was to introduce the
idea of calibrating a hydrological model based on flood
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Figure 11. Range of simulated design flows based on 20 model runs using 100 years of 
stochastic precipitation data representing the 90%-confidence interval against observed peak 
flows for the Silberhütte catchment for different parameter sets  
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Fig. 11. Range of simulated design flows based on 20 model runs using 100 yr of stochastic precipitation data representing the 90 %-
confidence interval against observed peak flows for the Silberhütte catchment for different parameter sets.
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Fig. 12.Estimated 50 yr floods with 90 %-confidence bands for the
three catchments and the five data sets (A–E) obtained from the dif-
ferent calibration strategies using KOSTRA, DISAG and STOCH
precipitation in comparison to flood estimation based on observed
annual maximum flows (OBS).

frequency distributions using stochastic rainfall and to eval-
uate it against classical strategies in an empirical case study.
The results have shown the suitability of this approach. How-
ever, more research is required to further test this model cali-
bration strategy on stochastic input and output data involv-
ing diverse catchments and different hydrological models.
Generally, this approach may also be suitable in climate im-
pact studies where hydrological models could be calibrated
directly using the simulated precipitation from regional cli-
mate models against observed flow statistics. Such an appli-
cation of the model calibration strategy is currently under
investigation.

Acknowledgements.Research leading to this paper was partly
supported by the German Federal Ministry of Education and
Research (BMBF) in the framework of the RIMAX program
(FKZ: 0330684). The authors thank the water authorities from
Saxony-Anhalt (LHW) and the German Weather Service (DWD)
for providing the hydrological and meteorological data, respec-
tively. We also thank the two anonymous reviewers and the editor
for their valuable comments, which helped to improve the paper.

Edited by: J. Freer

References

Aronica, G. T. and Candela, A.: Derivation of flood frequency
curves in poorly gauged Mediterranean catchments using a sim-
ple stochastic hydrological rainfall-runoff model, J. Hydrol., 347,
132–142, 2007.

Bárdossy, A.: Generating precipitation time series using simulated
annealing, Wat. Resour. Res., 34, 1737–1744, 1998.

Bárdossy, A. and Das, T.: Influence of rainfall observation network
on model calibration and application, HESS, 12, 77–89, 2008.

Bartels, H., Dietzer, B., Malitz, G., Albrecht, F. M., and Gut-
tenberger, J.: Fortschreibungsbericht KOSTRA-DWD-2000
– Starkniederschlagshöhen für Deutschland (1951–2000),
Deutscher Wetterdienst – Abteilung Hydrometeorologie,
Offenbach am Main, 2005.

Hydrol. Earth Syst. Sci., 18, 353–365, 2014 www.hydrol-earth-syst-sci.net/18/353/2014/



U. Haberlandt and I. Radtke: Hydrological model calibration for derived flood frequency analysis 365

Blazkova, S. and Beven, K.: Flood frequency estimation by continu-
ous simulation of subcatchment rainfalls and discharges with the
aim of improving dam safety assessment in a large basin in the
Czech Republic, J. Hydrol., 292, 153–172, 2004.

Boughton, W. and Droop, O.: Continuous simulation for design
flood estimation–a review, Environ. Modell. Softw., 18, 309–318,
doi:10.1016/S1364-8152(03)00004-5, 2003.

Cameron, D. S., Beven, K. J., Tawn, J., Blazkova, S., and Naden,
P.: Flood frequency estimation by continuous simulation for a
gauged upland catchment (with uncertainty), J. Hydrol., 219,
169–187, 1999.

Davison, A. C. and Hinkley, D. V.: Bootstrap methods and their
applications, 7 Edn., Cambridge University Press, New York,
582 pp., 2005.

De Michele, C. and Salvadori, G.: A Generalized Pareto intensity-
duration model of storm rainfall exploiting 2-Copulas, J. Geo-
phys. Res., 108, 4067, doi:4010.1029/2002JD002534, 2003.

Doherty, J.: PEST: Model Independent Parameter Estimation, 5th
Edn. of user manual, Watermark Numerical Computing, Bris-
bane, Australia, 2005.

Ebner von Eschenbach, A.-D., Haberlandt, U., Buchwald, I.,
and Belli, A.: Ermittlung von Bemessungsabflüssen mit
N-A-Modellierung und synthetischem Niederschlag, Wasser-
wirtschaft, 11, 19–23, 2008.

Feldmann, A. D.: Hydrologic Modeling System HEC-HMS, Tech-
nical Reference Manual, US Army Corps of Engineers, Hydro-
logic Engineering Center, Davis, CA, 2000.

Grimaldi, S., Petroselli, A., and Serinaldi, F.: Design hydrograph
estimation in small and ungauged watersheds: continuous sim-
ulation method versus event-based approach, Hydrol. Process.,
26, 3124–3134, doi:10.1002/hyp.8384, 2012a.

Grimaldi, S., Petroselli, A., and Serinaldi, F.: A continuous
simulation model for design-hydrograph estimation in small
and ungauged watersheds, Hydrol. Sci. J., 57, 1035–1051,
doi:10.1080/02626667.2012.702214, 2012b.

Güntner, A., Olsson, J., Calver, A., and Gannon, B.: Cascade-based
disaggregation of continuous rainfall time series: the influence of
climate, Hydrol. Earth Syst. Sci., 5, 145–164, doi:10.5194/hess-
5-145-2001, 2001.

Haberlandt, U., Ebner von Eschenbach, A.-D., and Buchwald, I.:
A space-time hybrid hourly rainfall model for derived flood
frequency analysis, Hydrol. Earth Syst. Sci., 12, 1353–1367,
doi:10.5194/hess-12-1353-2008, 2008.

Heistermann, M. and Kneis, D.: Benchmarking quantitative precip-
itation estimation by conceptual rainfall-runoff modeling, Water
Resour. Res., 47, W06514, doi:10.1029/2010wr009153, 2011.

Hosking, J. R. M. and Wallis, J. R.: Regional frequency analysis:
an approach based on L-moments, Cambridge University Press,
New York, 1997.

Lamb, R.: Calibration of a conceptual rainfall-runoff model for
flood frequency estimation by continuous simulation, Water Re-
sour. Res., 35, 3103–3114, doi:10.1029/1999wr900119, 1999.

LAU: Das Frühjahrshochwasser vom April 1994 in den Flus-
seinzugsgebieten der Saale und Bode in Sachsen-Anhalt,
Berichte des Landesamtes für Umweltschutz Sachsen-Anhalt,
1995.

Moretti, G. and Montanari, A.: Inferring the flood frequency dis-
tribution for an ungauged basin using a spatially distributed
rainfall-runoff model, Hydrol. Earth Syst. Sci., 12, 1141–1152,
doi:10.5194/hess-12-1141-2008, 2008.

Olsson, J.: Evaluation of a scaling cascade model for temporal
rain- fall disaggregation, Hydrol. Earth Syst. Sci., 2, 19–30,
doi:10.5194/hess-2-19-1998, 1998.

Pilgrim, D. H. and Cordery, I.: Flood Runoff, in: Handbook of Hy-
drology, edited by: Maidment, D. R., McGraw-Hill Companies,
New-York, Chapter 10, 1993.

Radtke, I.: Methoden zur abgeleiteten Hochwasserstatistik unter
Angabe von Unsicherheiten, Faculty of Civil Engineering and
Geodetic Sciences, Leibniz University Hannover, 2012.

Rogger, M., Kohl, B., Pirkl, H., Viglione, A., Komma, J., Kirn-
bauer, R., Merz, R., and Blöschl, G.: Runoff models and flood
frequency statistics for design flood estimation in Austria –
Do they tell a consistent story?, J. Hydrol., 456–457, 30–43,
doi:10.1016/j.jhydrol.2012.05.068, 2012.

Schaefli, B. and Zehe, E.: Hydrological model performance and pa-
rameter estimation in the wavelet-domain, Hydrol. Earth Syst.
Sci., 13, 1921–1936, doi:10.5194/hess-13-1921-2009, 2009.

Seibert, J. and Beven, K. J.: Gauging the ungauged basin: how many
discharge measurements are needed?, Hydrol. Earth Syst. Sci.,
13, 883–892, doi:10.5194/hess-13-883-2009, 2009.

Singh, S. K. and Bárdossy, A.: Calibration of hydrological models
on hydrologically unusual events, Adv. Water Resour., 38, 81–
91, doi:10.1016/j.advwatres.2011.12.006, 2012.

Verhoest, N. E. C., Vandenberghe, S., Cabus, P., Onof, C., Meca-
Figueras, T., and Jameleddine, S.: Are stochastic point rainfall
models able to preserve extreme flood statistics?, Hydrol. Pro-
cess., 24, 3439–3445, doi:10.1002/hyp.7867, 2010.

Verworn, H.-R.: Die Anwendung von Kanalnetzmodellen in der
Stadtentwässerung, Schriftenreihe für Stadtentwässerung und
Gewässerschutz, Vol. 18, SuG-Verlagsgesellschaft, Hannover,
1999.

Verworn, H.-R.: Flächenabhängige Abminderung statistischer Re-
genwerte, Korrespondenz Wasserwirtschaft, 1, 493–498, 2008.

Viglione, A. and Blöschl, G.: On the role of storm duration in the
mapping of rainfall to flood return periods, Hydrol. Earth Syst.
Sci., 13, 205–216, doi:10.5194/hess-13-205-2009, 2009.

Viglione, A., Merz, R., and Blöschl, G.: On the role of the runoff
coefficient in the mapping of rainfall to flood return periods,
Hydrol. Earth Syst. Sci., 13, 577–593, doi:10.5194/hess-13-577-
2009, 2009.

Viglione, A., Castellarin, A., Rogger, M., Merz, R., and Blöschl,
G.: Extreme rainstorms: Comparing regional envelope curves to
stochastically generated events, Water Resour. Res., 48, W01509,
doi:10.1029/2011wr010515, 2012.

Wendling, U., Schellin, H.-G., and Thomä, M.: Bereitstellung von
täglichen Informationen zum Wasserhaushalt des Bodens für die
Zwecke der agrarmeteorologischen Beratung, Z. Meteorologie,
41, 468–474, 1991.

Westerberg, I. K., Guerrero, J. L., Younger, P. M., Beven, K. J.,
Seibert, J., Halldin, S., Freer, J. E., and Xu, C. Y.: Calibra-
tion of hydrological models using flow-duration curves, Hy-
drol. Earth Syst. Sci., 15, 2205–2227, doi:10.5194/hess-15-2205-
2011, 2011.

www.hydrol-earth-syst-sci.net/18/353/2014/ Hydrol. Earth Syst. Sci., 18, 353–365, 2014

http://dx.doi.org/10.1016/S1364-8152(03)00004-5
http://dx.doi.org/10.1002/hyp.8384
http://dx.doi.org/10.1080/02626667.2012.702214
http://dx.doi.org/10.5194/hess-5-145-2001
http://dx.doi.org/10.5194/hess-5-145-2001
http://dx.doi.org/10.5194/hess-12-1353-2008
http://dx.doi.org/10.1029/2010wr009153
http://dx.doi.org/10.1029/1999wr900119
http://dx.doi.org/10.5194/hess-12-1141-2008
http://dx.doi.org/10.5194/hess-2-19-1998
http://dx.doi.org/10.1016/j.jhydrol.2012.05.068
http://dx.doi.org/10.5194/hess-13-1921-2009
http://dx.doi.org/10.5194/hess-13-883-2009
http://dx.doi.org/10.1016/j.advwatres.2011.12.006
http://dx.doi.org/10.1002/hyp.7867
http://dx.doi.org/10.5194/hess-13-205-2009
http://dx.doi.org/10.5194/hess-13-577-2009
http://dx.doi.org/10.5194/hess-13-577-2009
http://dx.doi.org/10.1029/2011wr010515
http://dx.doi.org/10.5194/hess-15-2205-2011
http://dx.doi.org/10.5194/hess-15-2205-2011

