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Abstract. Characterising the development of evapotranspi-
ration through time is a difficult task, particularly when util-
ising remote sensing data, because retrieved information is
often spatially dense, but temporally sparse. Techniques to
expand these essentially instantaneous measures are not only
limited, they are restricted by the general paucity of infor-
mation describing the spatial distribution and temporal evo-
lution of evaporative patterns. In a novel approach, tem-
poral changes in land surface temperatures, derived from
NOAA-AVHRR imagery and a generalised split-window al-
gorithm, are used as a calibration variable in a simple land
surface scheme (TOPUP) and combined within the Gener-
alised Likelihood Uncertainty Estimation (GLUE) method-
ology to provide estimates of areal evapotranspiration at the
pixel scale. Such an approach offers an innovative means
of transcending the patch or landscape scale of SVAT type
models, to spatially distributed estimates of model output.
The resulting spatial and temporal patterns of land surface
fluxes and surface resistance are used to more fully under-
stand the hydro-ecological trends observed across a study
catchment in eastern Australia. The modelling approach is
assessed by comparing predicted cumulative evapotranspira-
tion values with surface fluxes determined from Bowen ratio
systems and using auxiliary information such as in-situ soil
moisture measurements and depth to groundwater to corrob-
orate observed responses.
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(mmccabe@hydrology.princeton.edu)

1 Introduction

Early attempts at determining spatial distributions of evapo-
transpiration at regional scales were often based on geostatis-
tical and interpolation procedures (e.g. kriging and splines),
using data from sparsely distributed meteorological stations
to produce large scale maps of evapotranspiration and other
hydrological variables. Alternatively, when regional water
balance closure was attempted, estimates of evapotranspi-
ration were generally determined as the difference between
long-term rainfall and runoff. In more recent times, a vari-
ety of modelling approaches have been developed to estimate
evapotranspiration at both field and regional scales (Zhang
et al., 1995; Li and Lyons, 1999; Braun et al., 2001), with
these types of approaches generally relying on the broad ap-
plication of effective parameter values to large homogeneous
units of the land surface. Parameter uncertainty or sensitivity
(Beven and Binley, 1992; Franks and Beven, 1997; Gupta et
al., 1999) is rarely considered, thus the accuracy of predicted
values cannot be assessed.

There is a general belief that remote sensing offers the
most amenable means towards obtaining spatial evapotran-
spiration patterns, although there exists little agreement on
how best to realise this. While numerous schemes and
methodologies have been proposed to provide estimates of
land surface fluxes using surface temperatures obtained from
remote sensors (Diak and Whipple, 1995; Anderson et al.,
1997; Norman et al., 2000), estimation of evapotranspiration
in this way has achieved varied levels of success. Whether
this is due to the disparity between the aerodynamic and ra-
diometric temperatures, to conceptual misrepresentations or
to the inevitable scale issues that plague hydrological mod-
elling, heat fluxes estimated in this way are often subject
to significant uncertainty. Undoubtedly, successful measure-
ment of surface fluxes with remote sensing techniques would
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provide a valuable information source, and much progress is
being made towards achieving this (e.g. Norman et al., 2003;
Su et al., 2005). The ability to calibrate land surface mod-
els and hence refine model predictions at larger spatial scales
using such measurements would see an immediate improve-
ment over existing techniques.

Humes et al. (2000) investigated a technique to provide
maps of surface energy fluxes for two small watersheds lo-
cated in different climatic conditions. A novel aspect of their
approach was the use of spatial maps to identify the dominant
factors controlling the energy fluxes for time periods shortly
after precipitation events. The authors found that in the semi-
arid environment studied, the patterns of sensible heat across
the watershed were similar to that of the spatially variable
cumulative precipitation. In contrast, sensible heat flux pat-
terns in the sub-humid watershed tended to be more uniform
and were influenced by a combination of precipitation and
land cover type. The use of data in a qualitative way can of-
ten be as informative as techniques designed to quantitatively
examine spatial patterns, particularly given the uncertainties
evident in model structure and input data and inconsisten-
cies between observed and modeled variables. McCabe et
al. (2005c) presented an intuitive example of the qualitative
use of hydrological data sets by evaluating satellite soil mois-
ture estimates using distributed precipitation patterns. The
pattern rich information present in remote sensing data of-
fers much potential for such application, but relatively little
effort has been directed towards examining this. Qualitative
evaluation of models is one aspect of a move towards ap-
proaches that incorporate remote sensing as an alternative or
proxy source of calibration information. The attraction of
such a temporally consistent and spatially dense source of
data is evident, given the paucity of ground based evaluation
data available over much of the Earth.

Franks and Beven (1997) presented a methodology for the
representation of spatial variability in land surface fluxes us-
ing LANDSAT data and a simple SVAT model. Using mul-
tiple realisations of the TOPUP model (Beven and Quinn,
1994), they classified the numerous model outputs into a
number of functional types with different surface behaviour.
Pixel scale flux estimates calculated from the satellite plat-
form were then used to map surface fluxes across the land-
scape using a fuzzy-disaggregation scheme – in effect map-
ping the landscape space of the satellite estimates into the
model space of the TOPUP functional types. Such an ap-
proach represents a novel way in which a patch based model
can be used to spatially disaggregate the modelled distribu-
tion of surface fluxes across a landscape, whilst incorporat-
ing both model and image uncertainty. The TOPUP model
was particularly well suited to this style of spatial disaggre-
gation, as it accounts for a range of possible landscape re-
sponses by producing multiple model realisations. Informa-
tion from satellite platforms or other ground based sources
can then be used to identify the likely landscape responses
from the many possible model outputs using traditional cali-

bration techniques.
The information content that is present in a temporal

record of surface temperature has been largely ignored in cal-
ibration and modelling studies, with most techniques prefer-
ring instantaneous remotely sensed temperatures in energy
balance equations to determine surface flux predictions. Re-
cent work (McCabe et al., 2005a), illustrated that the tempo-
ral change in surface temperature can provide a useful tool
for the calibration of a simple land surface model. The au-
thors showed that by using observed infrared temperature
differences to calibrate against modelled aerodynamic tem-
perature, a significant reduction in the a priori uncertainty
bounds of the latent heat resulted, facilitating improved pre-
diction of surface fluxes. The work presented in this paper
extends this concept using spatially distributed surface tem-
perature differences derived from the NOAA-AVHRR plat-
form as a means to identify land surface behaviour through-
out a study catchment.

Many practically based models of evaporation rely on
estimates of the potential evaporation, from which the ac-
tual evaporation can be derived using a variety of correc-
tion factors. Wallace (1995) commented that evapotranspi-
ration studies should employ techniques that calculate the
evaporation using the surface resistance directly – such as
the physiological resistance to water vapour transport used in
the Penman-Monteith equation. Surface resistance describes
the physiological controls that plants have on water vapour
transport on its route from inside the leaf, through the stom-
atal openings and ultimately into the bulk atmosphere. The
complexity in modelling such controls is obvious, as stom-
atal response is a function of the moisture demand of the
plant, the moisture conditions of the soil and atmosphere,
as well as the time of day and season. Given the difficulty
in measuring this variable and the important role it plays in
evaporation studies, empirical relationships have been sought
between the surface resistance and leaf cover, soil water sta-
tus and a number of other environmental variables (Nemani
and Running, 1989; Shuttleworth and Gurney, 1990; Jiang
and Islam, 1999). Through the close relationship between
the surface resistance and evapotranspiration, it is expected
that the temporal and spatial patterns of this variable should
corroborate the calibrated latent heat flux results, and also al-
low insight into its dynamic nature during periods of varied
hydrometeorology.

This paper addresses the use of remotely sensed sur-
face temperature differences within an uncertainty modelling
framework to predict spatial patterns of evapotranspiration.
Further, through undertaking a calibration of the land sur-
face model with observations of the surface temperature, an
assessment of the spatial distribution and temporal response
of the surface resistance to variable hydro-climatic forcing is
achieved. The results obtained from this calibration exercise
are compared using flux data obtained from Bowen ratio de-
rived in situ measurements located in a 275 km2 catchment
in eastern Australia.
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Table 1. TOPUP model parameterisation for the Drop Zone field investigation.

Parameter Parameter Description Range

FA Fractional upslope area 0.1–1
TTANB Product of transmissivity and hydraulic gradient, m2/h 0.005–0.04
m Transmissivity profile and recession curve parameter 0.005–0.05
RSMIN Minimum surface resistance, s/m 50–150
RSMAX Maximum surface resistance, s/m 300–1000
SRMAX Root zone storage, m 0.02–0.2
INSR Initial fractional root zone store 0.01–1.0
MAXINT Interception store, m 0.005–0.01
VTD Vertical time delay through unsaturated zone, h m−1 0.05–20
DTH1 Gravity drainage effective storage coefficient 0.05–0.15
DTH2 Root zone effective storage coefficient 0.05–0.40
ln(z0/zh) log roughness length ratio for momentum and heat flux 1–10
z0 Roughness length for momentum flux, m 0.01–0.25
d Zero displacement height, m 0.05–0.35
GHFP (ω) Ground heat flux parameter 0.05–0.20

2 Methodology

2.1 The TOPUP land surface model

The TOPUP model (Beven and Quinn, 1994; Franks et al.,
1999) was developed to counter a trend towards more com-
plex Soil Vegetation Atmosphere Transfer (SVAT) descrip-
tions. The underlying rationale behind models of increased
complexity is that improved process representation will yield
parameters that are easier to measure or estimate and provide
predictions that are more accurate. However, this is not nec-
essarily the case for a number of reasons including (a) model
parameters may not be equivalent to observed variables; (b)
parameters that are physically represented may be difficult or
impossible to measure (SVAT models aim to produce effec-
tive values for the various parameters at patch, regional or
larger scales and these cannot be easily estimated); and (c)
issues of parameter inequality when moving between spatial
and temporal scales remain unresolved.

The philosophy behind TOPUP details a move towards
striking a balance between representing the key physical pro-
cesses affecting land surface interactions while doing so in a
parametrically parsimonious manner. The rationale for de-
veloping a simplified model structure is that simplicity is
necessary to validate the use of SVAT models in the field.
Limited calibration data is available for such purposes, again
highlighting the significant parametric and predictive un-
certainty which exists in the general calibration, or more
precisely, in the evaluation of SVAT models. This prob-
lem is compounded for more complex model structures that
are grossly over-parameterised with respect to the available
calibration-evaluation data sets (Jakeman and Hornberger,
1993).

The dominant hydrological processes affecting evapotran-
spiration have been incorporated into TOPUP in the simplest
representation possible, whilst retaining a physically realistic
conceptual foundation. Similar to many SVAT models, the
water availability is controlled by a single bucket type storage
function. TOPUP also includes a representation of the lateral
redistribution of water flow across the model ‘patch’, an im-
portant contribution of water supply in many landscapes, al-
though not a significant consideration within the study area.
TOPUP consists of three main moisture stores representing a
vegetation interception, root zone storage and a variable, or
dynamic, water table. These provide four main pathways for
evaporation to proceed including; (1) evaporation from the
interception store; (2) evapotranspiration from the root zone
store; (3) evapotranspiration supplied by capillary rise from
the water table; and (4) evapotranspiration from the water
table when it is in the root zone (see Fig. 1a).

Water is routed through the system in a simple linear pro-
gression, modelling as closely as possible the physical pro-
cess of water redistribution within the vertical profile. For
example, given a sample rain event, the incident rainfall will
initially be routed into the interception store until its capac-
ity (MAXINT) is reached. At this point, moisture is then di-
rected into the root zone storage until exceedence of the con-
trolling parameter SRMAX is reached. Finally excess water
from the root zone is routed to the water table, with a ver-
tical time delay parameter (VTD), controlling the flow time.
Given that the land surface at the research field site was con-
sistently flat, the assumption of a minimal hydraulic gradient
was employed. Thus, the lateral subsurface flow components
within the model were not utilised for this study. Figure 1
presents a schematic of many of the processes described here
and Table 1 an outline of the major parameters employed in
TOPUP operation.
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Fig. 1. Schematic of(a) the four pathways available to evapotran-
spiration within TOPUP;(b) a description of the sub-surface param-
eterisations for root zone storage (SRMAX), maximum water table
depth (REFLEV) and maximum interception storage (MAXINT);
(c) a representation of the linear decrease in surface resistance as
determined by the decrease in moisture availability in the root zone
storage.

Within TOPUP, the surface resistance is a dynamic vari-
able that is calculated at each time step according to the mois-
ture content of the model’s three water stores. The surface
resistance is assigned a value of 0 s/m when the interception
store is at a maximum. As moisture within the interception
store (canopy) is evaporated,rs is increased linearly up to a
value of RSMIN. The parameter RSMIN expresses the sur-
face resistance of an empty interception store (dry canopy)
which is not limited by water supply. Once the interception
store has been depleted, the water available for evapotran-
spiration is then a function of the moisture content of the
root zone, capillary rise through the unsaturated zone from
the water table and from the water table directly if it has in-
tersected the root zone boundaries. In a similar way as de-
scribed for the interception store,rs is increased linearly to a
value of RSMAX (the maximum surface resistance) at which
point the available moisture has reached a minimum and the
vegetation becomes water limited. Figure 1c illustrates the
linear variation in surface resistance with changing moisture
status.

In order to achieve closure of the surface energy balance,
a series of equations have been used that allow determination
of individual components of the energy balance as well as the
aerodynamic surface temperature – of primary interest for
the methodology proposed here. The equations characterise
expressions for the surface energy balance and the latent and
sensible heat flux, and are presented below:

Rn − G = H + LE (1)

LE =
ρcp

γ

(eo − e)

rs
(2)

LE =
ρcp

γ

(es[To] − eo)

rs
(3)

H =
ρcp (To − Ta)

ra
(4)

whereRn is the net radiation,LE, H andG are the latent,
sensible and ground heat fluxes (all in W/m2), To is the aero-
dynamic surface temperature,es[To], eo ande are the vapour
pressures within the leaf stomata, at the leaf surface and of
the bulk atmosphere respectively,rs is the surface resistance
and ra the aerodynamic resistance.ρ is the density of the
air, cp is the specific heat of air, andγ is the psychrometric
constant. The soil, or ground heat flux component of the
energy balance (G), has been represented in TOPUP as a
function of the net radiation following studies by Clothier
et al. (1986) who revealed thatG follows a diurnal pattern
closely matched to variations in the net radiation. The sub-
model describing this process in TOPUP is relatively simple,
demanding the specification of only one additional parame-
ter, which restricts any unnecessary increase in the dimen-
sions of the parameter space.

TOPUP requires standard meteorological forcing includ-
ing net radiation, wind speed, air temperature, specific hu-
midity and rainfall. Further details on the model and a more
comprehensive review of the underlying physics and ratio-
nale can be found in Franks and Beven (1997, 1999). A list
of the required model parameters and the values used in this
study is shown in Table 1.

2.2 Incorporating GLUE into a land surface model

While some land surface model parameters can be mea-
sured directly, many others serve as conceptual represen-
tations of a physical process and are not known precisely.
One approach that has been proposed to address the problem
of ill-defined process knowledge and model parameter un-
certainty is the Generalised Likelihood Uncertainty Estima-
tion (GLUE) methodology (Beven and Binley, 1992), based
on the concept of Generalised Sensitivity Analysis (GSA)
(Spear and Hornberger, 1980). Whilst the aim of determin-
istic modelling approaches is to identify an optimum param-
eter set, GLUE recognises that many competing parameter
combinations can adequately, if not equally well, reproduce
the time series of specific model output – a concept known
as equifinality. Although there are a number of subjective el-
ements incorporated into the GLUE framework (such as the
prior choice of parameter ranges, selection of an appropriate
likelihood measure and in the specification of acceptability
thresholds), GLUE does force these options to be made ex-
plicit.

When parameters cannot be measured directly, which is
the rule rather than the exception, broad ranges encom-
passing expected parameter values can be identified, hence
characterising the relative uncertainty in parameter measure-
ments. The specification of feasible ranges for each model
parameter recognizes the uncertainty inherent in land surface
representations across a variety of scales. Multiple parame-
ter sets can be constructed using Monte-Carlo sampling to
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randomly extract parameter sets from the pre-defined ranges.
Once parameter sets have been constructed (typically tens of
thousands; in this investigation 20 000), the model is run with
each set in turn. Assuming that some confidence in the model
exists, it is reasonable to assume that within these multiple
simulations are a number of model realisations that reflect
the actual land surface observations. The issue then becomes
one of how to distinguish those model outcomes that reflect
what is actually occurring, from those that do not.

GLUE uses a simple likelihood measure to subjectively
discriminate those model predictions and parameter sets that
most closely reproduce observed variables. In essence, the
process describes an evaluation of modelled data against
available observations, employing a simple least squares er-
ror analysis as the likelihood estimator. The choice of the
least squares objective function was based on a number of
studies that have employed it under the assumption of an er-
ror model based on zero bias with normally distributed errors
(e.g. Kuczera, 1983). Using the least squares approach does
not eliminate the risk of introducing bias in model identifi-
cation. After each parameter set is run, a likelihood value is
calculated for each model realisation, by comparing with cal-
ibration/evaluation data. GLUE (like GSA) allows a thresh-
old level on the least square estimator (or any other perfor-
mance measure) to define behavioural/non-behavioural pa-
rameter sets. In this application, the best 200 (or 1%) of
model simulations are identified as the best performing re-
alisations and discriminated for further analysis. More de-
tailed descriptions of the GLUE methodology are provided
in Franks and Beven (1997), Beven and Freer (2001) and
specific to this investigation, in McCabe et al. (2005a).

2.3 Study area, ground based measurements and remote
sensing data

The study area in this investigation is located within the
Tomago sand beds, a series of unconfined groundwater
aquifers located on the mid-north coast of New South
Wales, Australia, and encompassing an area of approxi-
mately 275 km2. Figure 2 details the aquifer extent, and
identifies adjacent water bodies. Vegetation communities
within the Tomago region are varied and range from open
forests and woodlands, to scrub, heath and mangrove com-
munities. There are also a number of wetlands and extensive
areas of grasslands, making this both an ecologically diverse
and water sensitive environment. While many plant species
in the area rely predominantly on the local water table for
moisture supply, the ecology, environmental dynamics and
continued viability of the system demands that the vege-
tation be both resilient and tolerant to periods of drought.
There have been few investigations into the effect that pro-
longed lowering of the water table would have on plant com-
munities, an issue made pertinent by planned commercial
groundwater exploitation. Following the Koeppen classifica-
tion system (Koeppen, 1931), the climate of the region was

Figure 1. Map of the Tomago sandbeds, a series of unconfined aquifers on the mid-north 

coast of New South Wales, Australia. The circled region identifies the location of the in-

situ measurements.  

0km 15km 30km 

South
Pacific Ocean

Fig. 2. Map of the Tomago sandbeds, a series of unconfined aquifers
on the mid-north coast of New South Wales, Australia. The cir-
cled region identifies the location of the in-situ measurements and
the central field site. The field site has approximate dimensions of
2 km by 1.5 km and is located near coordinates 151.5◦ longitude
and 33.5◦ latitude.

characterised as warm-humid-temperate, with rainfall spread
evenly throughout the year and a mean annual precipitation
varying between 1089 mm and 1257 mm. As is typical of
much of Australia, pan evaporation exceeds rainfall for most
of the year.

In order to gather information on the catchment for mod-
elling purposes, an intensive data collection campaign was
undertaken between December 2000 and March 2001. This
collection period was preceded by an extended dry spell, with
the first significant rainfall in a number of months occurring
in late January. Following this, the remainder of the field
campaign was characterised by sporadic rainfall events of
varying intensity, interspersed with clear sky conditions, cre-
ating a hydrologically informative wetting-up/drying-down
dynamic. Additional data required for model forcing such as
wind speed, net radiation, dry and wet-bulb temperature and
rainfall, were obtained from measurements at a field site in
the centre of the study region combined with regional mon-
itoring at a nearby Australian Bureau of Meteorology cli-
mate station. To determine model agreement after calibra-
tion against observed variables, estimates of the latent heat
flux were collected using a Bowen ratio system, located in a
central location within the study region (see Fig. 2). These
data provide an independent means of assessing the level of
consistency between model results.

Remotely sensed surface temperatures were obtained from
NOAA-12 and NOAA-14 AVHRR brightness temperature
data at a resolution of 1 km, supplied by the Commonwealth
Scientific and Industrial Research Organization (CSIRO) Di-
vision of Marine Research. Following techniques docu-
mented by Prata and Cechet (1999), surface temperatures in
the Tomago region were calculated from this imagery using a
simple split-window equation (McMillin and Crosby, 1984)
and coefficients derived from multiple linear regressions of
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the AVHRR data against a ground based infrared thermome-
ter located within the study region. The infrared thermometer
samples radiation in a single window in the region 8–12µm.
Due to the limited field of view of these types of instruments
(0.15 rad), the thermometer was mounted on a tower approx-
imately 10 m above the ground surface, increasing the field
of view to a diameter of 1.5 m at nadir configuration. As the
thermometer was installed to allow comparison with diurnal
trends extracted from a geostationary satellite, the instrument
housing was aligned to a viewing angle of 50◦. Land surface
temperatures calculated in this way were observed to have
root mean square accuracies within 3 K. Further details of
this analysis are offered below in Sect. 2.4.

2.4 Developing a calibration record using surface tempera-
tures

Land surface model predictions are more commonly evalu-
ated against observations of surface heat fluxes. At regional
and larger scales however, such data are rarely available at
the pixel, let alone the regional scale, making model evalu-
ation a difficult process. Calibration (or evaluation) of pre-
dictions with non-commensurate, or non-equivalent data, fa-
cilitates the use of alternative sources of information such as
land surface temperatures into the model assessment frame-
work. Surface temperature measurements have the potential
to yield significant insight into the surface dynamics when in-
cluded within a modelling framework (e.g. Crow et al., 2004;
McCabe et al., 2005a) as they are strongly coupled with a
number of hydro-ecological processes. The use of tempera-
ture differences to gain insight into the surface condition has
its origins in thermal inertia studies, in which the time rate
of change in the surface temperature is used to infer varia-
tions in surface energy storage and to soil moisture status.
The thermal inertia concept has been used in a determinis-
tic manner to derive surface flux predictions (Wetzel et al.,
1984; Diak and Whipple, 1995; Norman et al., 2000) and
also to offer insight into soil moisture dynamics (McVicar
and Jupp, 2002).

In order to implement a temperature difference approach
to examine the spatial patterns of evapotranspiration across
the study region, discrete temperature signatures were re-
quired. McCabe et al. (2005a) used the difference between
temperature observations at 1.5 and 5.5 h after sunrise, as
suggested by Kustas and Humes (1996), who observed that
this combination offers significant predictive insight into flux
behaviour. The present study utilises NOAA-AVHRR data,
limiting the capacity to calculate temperature differences to
the 05:30 a.m. and 03:30 p.m. overpasses. While these are
not the most ideal temperature pairs, it is expected that they
should still offer some insight into flux behaviour. AVHRR
temperature pairs at these times were discriminated for use-
able imagery. Following quality control criteria outlined
in Prata and Cechet (1999) and employed in McCabe et
al. (2005b), which consider surface and atmospheric influ-

ences, low sensor angles and cloud affected imagery, ten
brightness temperature pairs throughout January and Febru-
ary were identified and extracted. Surface temperature esti-
mates were then calculated using regressions to in situ mea-
surements to parameterise the split-window equation. These
techniques use combinations of a number of infrared chan-
nels to determine surface temperatures from space, but re-
quire physically based coefficients in order to transform the
satellite brightness temperature to a surface skin temperature.
Given the level of data availability in the study area, the the-
oretically derived split-window approach represents the most
suitable technique to determine the land surface temperature.

Although there were a number of afternoon overpasses
throughout the field campaign which were cloud free, some
difficulties were encountered in obtaining early morning
cloud free observations on the relevant days. The problem
of morning cloud contamination was the primary limitation
to using a greater number of image pairs. For larger scale ap-
plications, not affected by land-surface/ocean boundaries as
present here, the possibility of using geostationary platforms,
such as in the work of Norman et al. (2003), should offer a
more extensive and continuous source of calibration data.

2.5 Predictions of evapotranspiration and calculation of
surface resistance

The NOAA derived temperature pairs represent precisely
300 1 km2 land surface pixels, distributed across the spa-
tial domain of the study region (see Fig. 2). In effect,
this procedure generates three hundred unique calibration
records, each containing ten clear sky surface temperature
differences against which model output can be compared.
Instead of analysing a single record of temperature differ-
ences, as would be done for a traditional point-scale evalu-
ation exercise, all responses derived from the AVHRR tem-
perature records were used as evaluation data, each describ-
ing a unique pixel within the region. In this way, numerous
temporal records of observations (i.e. surface temperatures)
are used to extract from the patch based land surface model
a spatially distributed hydrological response (i.e. evapotran-
spiration).

In order to capture the range of hydrological behaviour ex-
pected at the regional scale, the TOPUP model was run nu-
merous times using available meteorological forcing, with
required model parameters sourced from the ranges speci-
fied as part of the GLUE process. In this application, 20 000
unique parameter sets were constructed using Monte-Carlo
random sampling from within the pre-defined parameter
ranges (see Table 1) for the 51 days (or 2448 half-hourly time
steps) of the field experiment. In order to compare model
predictions with observation data, TOPUP-based tempera-
ture differences were calculated for each of the 20 000 model
runs corresponding to the times of the NOAA-AVHRR over-
pass. While the modelled aerodynamic temperature and the
observed radiometric temperature are not the same variable,
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the difference between the two is expected to maintain some
temporal consistency (Huband and Monteith, 1986; Basti-
aanssen et al., 1998). Moran et al. (1997) indicate that these
differences tend to be non-linear for non-vegetated surface.
Over the region studied here, there are comparatively few
such areas, increasing the confidence in the correlation of
these variables.

After producing a temporally coincident series of model
and observation outcomes, each of the 300 individual
NOAA-AVHRR based evaluation records were compared to
the 20 000 modelled simulations. A least squares likelihood
function was used to discriminate those parameter sets that
best reproduced the observed temperature differences from
all possible outcomes. From these likelihood values, the best
200 (or 1%) of parameter sets were identified. This pro-
cess was repeated for each of the 300 evaluation responses,
thereby associating each pixel throughout the catchment with
the best 200 parameter sets identified from the calibration
process. From these sets, the mean cumulative ET and stan-
dard deviations for each pixel over both the entire study pe-
riod and for individual weeks throughout the campaign were
determined. The following section presents the results of
the spatial patterns of cumulative evapotranspiration derived
from the temperature difference records, extending the anal-
ysis to include an examination of another model output – the
surface resistance patterns observed throughout the study re-
gion.

3 Results

3.1 Spatial patterns of time changes in land surface temper-
ature

The spatial variation of clear sky temperature differences
across the region for the ten clear days discriminated during
the experimental period (Fig. 3) illustrate that there is a level
of spatial structure evident throughout the region which is re-
lated to the underlying surface vegetative conditions or land
use. For instance, the regions towards the bottom-middle of
the catchment (indicated by pixel coordinatesx, y=5, 10) ex-
hibit greater surface temperatures differences than surround-
ing areas in the 15 January image. These pixels correspond
to the relatively limited urban (built up) areas located within
the catchment. The urban effects can be compared with the
relatively lower temperature differences at the top end of the
catchment (x, y=35, 13), where the surface is dominated by
more established vegetation communities. The coastline, fol-
lowing the lower edge of the study region, exhibits an in-
creased temperature range than surrounding pixels due to the
influence of sand dunes, which in some areas extend hun-
dreds of metres from the shoreline.

The influence of variations in the moisture status of the
catchment can also be observed. The images from the pre-
dominantly hotter and drier January period contrast well with
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Fig. 3. Spatial distribution of surface temperature changes (◦C) cal-
culated as the difference between early morning (05:30 a.m.) and
afternoon (03:30 p.m.) NOAA-AVHRR overpasses.x andy units
are in kilometers and the images have a pixel scale of 1 km.

the generally cooler and wetter conditions prevalent during
much of February. For instance, the images for 4, 18 and 22
February, correspond to periods after significant precipita-
tion events across the catchment (17 mm, 13 mm and 27 mm,
respectively). It is this feedback between the surface mois-
ture status and the surface temperature response which forms
much of the basis for the concept of thermal inertia.

The degree of spatial variation in the surface temperature
differences on any one day is revealing, especially when spa-
tial variability in model forcing data of air temperature (e.g.
Prihodko and Goward, 1997) or net radiation (see Anthoni et
al., 2000) is not routinely considered in land surface schemes.
Clearly, there are correlations between the surface temper-
ature and the underlying surface condition, which also im-
pact on air temperature and net radiation. Even at the catch-
ment scale studied here, it would be expected that through
feedbacks within the surface temperature results alone, these
forcing variables should also vary. Unfortunately, while as-
sumptions of constant forcing data may increase uncertainty
in predictions, there is generally little information available
to spatially interpolate these variables from regionally sparse
meteorological networks.
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Fig. 4. Spatial distribution of cumulative evapotranspiration (mm)
for individual weeks (left colour bar) and for the entire study period
(right colour bar).x andy units are in kilometers and the images
have a pixel scale of 1 km.

3.2 Spatial patterns of evapotranspiration

Spatially distributed maps of TOPUP calculated cumulative
evapotranspiration are presented in Fig. 4, illustrating the
patterns of the mean evapotranspiration over the two months
of measurements and the individual weeks comprising this
period. It is important to realise that actual pixel values repre-
sent the mean of the two hundred cumulative ET values iden-
tified as a result of the calibration process, based in this in-
stance, on comparing modelled temperature differences with
the satellite retrieved surface temperature differences. To
understand the variability within the pixel responses, Fig. 5
presents the corresponding standard deviations. The cumu-
lative evapotranspiration for the entire study period encom-
passes the range 107–185 mm. During particular periods
evaporative patterns are more closely linked to the underly-
ing surface conditions, with the lowest evaporative rates oc-
curring in the urban area. Such a result is entirely a function
of the higher surface temperatures produced in this region, as
no unique parameterisation of urban surface types was incor-
porated into the TOPUP model.

The weekly evapotranspiration totals offer useful insight
into the spatial and temporal variations across the watershed.
As can be seen, the first three weeks indicate a degree of spa-
tial variation that is not evident in the latter portion of the
field campaign. In fact, the cumulative weekly evapotranspi-
ration in Week 1 is perhaps higher than would be expected
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Fig. 5. Spatial distribution of the standard deviation of the mean
cumulative evaporation (mm) for individual weeks (left colour bar)
and for the entire study period (right colour bar). The range of the
standard deviation for Week 2 varies between 0 and 10.x andy

units are in kilometers and the images have a pixel scale of 1 km.

given it is in the middle of a dry spell. The most likely ex-
planation for this is the effect of a model parameter (INSR)
that defines the fractional moisture of the initial root zone
storage (SRMAX). INSR varies between zero for depleted
root zone soil moisture and 1.0 for root zone soil moisture
at capacity. Analysis of parameter sensitivity to various cali-
bration records indicated that when calibrating model predic-
tions to temperature differences, INSR shows some bias to-
wards the upper range of the a priori parameter distribution.
Thus, model runs would be initialised with an INSR value
approaching unity, resulting in the higher evapotranspiration
values evidenced in the results for Week 1. Knowledge of
the antecedent conditions, such as soil moisture distribution
from a satellite, could potentially be used to condition model
outcomes. Alternatively, such information could be used in a
multi-objective framework to co-condition model responses
(see McCabe et al., 2005a).

Overall, results during the first three weeks reflect the
hydrometeorological conditions characteristic for this hot
and dry period, with weekly evaporative totals ranging be-
tween 20–26 mm/week (generally less than 3 mm/day). Fig-
ure 4 indicates that there is a reduction in the average
weekly evaporative totals between Week 1 and Week 3 of
approximately 6–10 mm/week (or 0.85–1.45 mm/day), iden-
tifying the expected dry-down occurring during this pe-
riod, confirmed through comparison with in situ measured
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groundwater records (Fig. 6a). The average daily cumula-
tive evapotranspiration estimated from Fig. 4 in the area en-
compassing the location of the central field site (marked by
the circle in Fig. 2) varies between 2.8 mm/day in Week 1
to 4 mm/day in Week 6. Measurements from the Bowen ra-
tio system installed here offer some intermittent comparisons
with these weekly values. Data collected from the system of-
fered 21 days with which to compare model responses, with
an average of 3 measurements per week. No in situ flux data
was available for the first week and a half due to equipment
related problems.

Independently measured flux data for Weeks 2 and 3 re-
flect the low levels of evapotranspiration occurring during
this period, with measurements indicating a high of 1.48
mm/day (25 January) and an average of 1.14 mm/day over
this 2 week period. These values compare relatively well
with results in Fig. 4, which indicate weekly evapotranspi-
ration estimates in the range 10–15 mm (1.4–2.2 mm/day) at
the field site. These results should be considered in light of
accuracies typical of the Bowen ratio technique, which are
often in the range of 20% (Kanemasu et al., 1992) depend-
ing on field conditions. Field based measurements during
February reflect the increased rates of evapotranspiration oc-
curring in this period. Of the nine in situ measurements dur-
ing Weeks 4 to 6, only 2 have values less than 3 mm/day,
with the majority indicating totals greater than 4 mm. These
correspond well to the TOPUP results, with estimates in the
range 24–29 mm/week (3.4–4.2 mm/day). The drying down
of the moisture stores is reflected in the data for Week 7,
with an average value of 2.6 mm/day from the Bowen ratio
measurements. This suggest a drop of nearly 10 mm/week
compared to preceding weeks – a value which is supported
by comparison with the overall spatial distributions evident
in Fig. 4.

Overall, comparisons with available flux measurements
indicate that the model is correctly capturing the observed
hydrological dynamics evident throughout the study period.
While Bowen ratio measurements were not available for
Week 1, a trend consistent with both the observed hydrom-
eteorology and surface temperature maps (Fig. 3) was evi-
dent in the variation of the evaporative fraction (measured la-
tent heat divided by the observed available energy) over the
course of the investigation. For most of January, the aver-
age evaporative fraction did not exceed 0.2, highlighting the
dominance of sensible heat flux across the catchment, and
the corresponding rise in observed surface temperatures. Af-
ter the rainfall events of late January, the evaporative fraction
reached a maximum value of 0.78. The varying dynamics oc-
curring during February were reflected in the changing evap-
orative fraction, which oscillated between 0.35 and 0.75 for
the rest of the month, but generally exceeded 0.6.

Weeks 4–6 present a relatively uniform areal distribu-
tion of evapotranspiration as a result of the sporadic rainfall
events of varying intensity and the subsequent increase in soil
moisture status throughout the catchment. These trends are
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Fig. 6. Water table depth measured from ground level (top) and
daily rainfall and soil moisture trends (bottom) at the central field
site. The water access tube for water table depth measurements
has a surface datum at 8.40 m, from which measurements are taken
relative to sea level (0.0 AHD).

reflected in Fig. 5b which illustrates both the rainfall events
and soil moisture estimates determined from a probe located
at the central field site. The results are consistent with ob-
served increases in evaporative totals compared to earlier pe-
riods of the investigation, with areal averages approaching
26–28 mm/week (approx. 4 mm/day). The spatial patterns il-
lustrated in Week 5 and Week 7 reveal some insight into the
drying dynamics of the catchment. As expected, as mois-
ture availability is increased, so too is the evapotranspiration
rate. However, this increased rate rapidly returned to pre-
rainfall levels, at least within the time scales examined here,
indicating that incident rainfall is swiftly evaporated from the
surface, or infiltrates to the watertable.

The intermittent wetting and drying dynamics of the catch-
ment, particularly throughout February, are prevalent in
Fig. 4. The degree of variation is demonstrated through ref-
erence to the standard deviations about the means shown in
Fig. 5. Interestingly, the wetting and drying phases do not
seem to significantly affect the variability in evaporative pre-
dictions, at least in instances where the catchment moisture
stores have been replenished. The standard deviations are
linked with the prevailing meteorological conditions of the
time, with dry periods exhibiting greater variability than oc-
curs in wetter conditions. This is highlighted by an increased
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Fig. 7. Mean values of the 5% and 95% quantiles of evapotranspira-
tion (W/m2) across the study region based on TOPUP simulations
with 200 parameter sets at each pixel for each of the 2448 half-
hourly time steps.

amount of standard deviation (relative to other periods) for
Week 2. The range of the variation for this period is between
0 and 10 mm/week, as opposed to other periods which main-
tain deviations less than 5 mm/week. February in general dis-
plays minimal variation about the mean values, characteristic
of the wetter catchment conditions, with standard deviations
between 0.5–2 mm/week. In contrast, the drier January pe-
riods produce standard deviations approaching 4 mm/week.
These results are consistent with the ability of land surface
models and remote sensing based approaches to predict evap-
orative response. In general, the surface responses at limit-
ing cases (i.e. soil controlled/atmospherically controlled) are
easier to simulate than transitional periods, due primarily to
uncertainties in partitioning the available energy.

Characterising prediction uncertainty is an often over-
looked component of model prediction. In remote sens-
ing based approaches for flux estimation, 50 W/m2 is often
cited as the useful accuracy limit for flux prediction (Kustas
and Norman, 2000). An uncertainty of 50 W/m2 maintained
over a 12 h daylight period (as opposed to an instantaneous
remote sensing based prediction) is equivalent to approxi-
mately 0.9 mm of evapotranspiration. Understanding the un-
certainty inherent in model applications is facilitated by con-

sidering the range of possible parameter realisations, as un-
dertaken here using the GLUE methodology. With appro-
priate calibration, it seems comparable accuracy can still be
achieved using uncertainty based modelling approaches as in
using remote sensing techniques.

3.3 Temporal changes in regional evapotranspiration

The uncertainty of regional scale estimates can be assessed
through examination of the range of evaporative predictions
throughout the catchment at an instant in time. Intuitively, it
should be expected that when the moisture status of a catch-
ment is high, the range of predicted evapotranspiration would
be reduced, given that the surface evaporation approaches the
potential rate. In contrast, a drier period should exhibit a
greater degree of spatial variation and hence more areal un-
certainty, as the influence of soil properties and vegetation
dynamics exert greater control.

In the following analysis, uncertainty bounds are produced
to describe the catchment response at each time step dur-
ing the field campaign. At each of the 2448 half-hourly
time steps, the range of evaporative predictions throughout
the catchment is examined by considering the 200 model re-
sponses identified by the likelihood analysis, for all of the
300 pixels defining the study region. The 5% and 95% quan-
tiles are determined at each of these, and mean responses
for the entire region calculated by averaging the 300 pixels
at these two intervals. As a result, the subsequent ranges
of values for each time step represent the 5% and 95% spa-
tial quantiles of the areal mean evapotranspiration. Figure 7
illustrates the results of this process for the 2448 half-hour
time steps of the TOPUP model run.

The greatest degree of spatial variation occurs in the period
from 11–27 January. The clear sky days from 20–27 January
indicate an areal difference in evaporation across the region
of up to 300 W/m2 at particular instances in time. This trend
is consistent with the weekly spatial patterns evident in Week
2 and Week 3 (Fig. 4). As observed in Fig. 6, there was no
rainfall before 27 January. After that date, intermittent pre-
cipitation occurred, replenishing the depleted moisture stores
throughout the catchment and reducing the spatial variability
evident in the pre-rainfall evapotranspiration maps of Fig. 4.
During the wetter month of February, the range of evapotran-
spiration predictions throughout the catchment is reduced,
with the difference between the 5% and 95% quantiles rarely
exceeding 200 W/m2 at the diurnal peak, but less than this
at other times. Indeed, most days have a range approaching
100 W/m2 which, considering the variability in land surface
types and covers throughout the catchment, is not particu-
larly large. Comparisons with the weekly evaporative trends
(Fig. 4) and the standard deviations (Fig. 5), confirm the dy-
namics of the temporal patterns displayed in Fig. 7. The spa-
tial variability evident during drier periods is a function of the
different drying dynamics throughout the catchment, which
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in turn is related to soil properties and vegetation character-
istics.

3.4 Regional patterns in surface resistance to evapotranspi-
ration

Following the same approach as for the evapotranspiration
analysis described in Sect. 3.2, spatial maps of the surface
resistance, a TOPUP model output, were produced for both
the entire period and for weekly intervals throughout the field
campaign. In order to graphically present the spatial varia-
tion, mean values were calculated over each time period ex-
amined. Because there were 200 associated responses for
each pixel, an average pixel surface resistance was first cal-
culated from within these responses, with results presented
in Fig. 8.

While the response for the entire period is not particu-
larly informative, the temporal development throughout the
campaign exhibits some interesting trends. As reflected in
the spatial evapotranspiration patterns, Week 1 shows a rel-
atively even distribution of surface resistances, with values
approaching 150 s/m and greater – likely a product of the cal-
ibrated models preference for an increased initial moisture
storage (see discussion in Sect. 3.2). It should be expected
that the relationship between soil moisture status and evap-
otranspiration would be strongly reflected in the surface re-
sistance patterns. The dry conditions prevalent during much
of January rapidly deplete the available soil moisture stor-
age, allowing spatial patterns to become more evident during
Weeks 2 and 3. In some parts of the catchment, values for
the surface resistance approach 300 s/m during this drying
period. The influence of the small amounts of precipitation
that occurred at the end of January cause the spatial patterns
displayed in Week 3 to reflect those in Week 1. During these
first three weeks, the standard deviation of the modelled sur-
face resistance – calculated from within the 200 samples for
each pixel location – is generally within the range 25–50 s/m.
Such a high value, relative to the mean surface resistance es-
timate presented in Fig. 8, highlights the uncertainty of de-
termining the surface resistance during these water limited
conditions.

In contrast, the responses for most of February demon-
strate a more uniform distribution of resistance values, with
an average of approximately 100 s/m, and varying between
50 s/m and 200 s/m over the 4 week period. The effect of
the intermittent drying and wetting phases of the surface is
reflected in the variation throughout the weekly spatial pat-
terns. The impact on the standard deviation also reflects the
influence of precipitation on the surface resistance pattern.
Weeks 4–7 display a marked reduction in the standard devi-
ation across the catchment, with values approaching 10 s/m.
Considering the variability in the first three weeks of the field
campaign, this represents a significant reduction in the spatial
and temporal uncertainty. The feedback between the surface
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Fig. 8. Spatial distribution of the average surface resistance (s/m)
for both weekly averages and for the entire study period (bottom
right). x andy units are in kilometers and the images have a pixel
scale of 1 km.

resistance and evapotranspiration is well represented in the
corresponding evapotranspiration maps of Fig. 4.

The temporal variation of surface resistances can be ex-
amined in greater detail through discrimination of individ-
ual pixel responses. Examination of these temporal patterns
also offers an opportunity to qualitatively assess the perfor-
mance of the land surface model. It is expected that the
vegetative states of the surface should influence the tempo-
ral development of the surface resistance, especially where
drying of the moisture stores occurs. As such, the hydro-
meteorological conditions experienced throughout the field
campaign should be reflected in the temporal response of
the surface resistance. To examine this further, Fig. 9 dis-
plays the temporal trends of the 5% and 95% quantiles of
surface resistance computed for two different vegetated sur-
faces within the study region. The procedure employed here
is the same as that for Fig. 7.

These two pixels were selected from a detailed land sur-
face map of the dominant vegetation units throughout the re-
gion (Woolley et al., 1995) and correspond to a swamp wood-
land and heath and to a mixture of heath, swamp forest and
open forest. As can be seen from Fig. 9, the more densely
vegetated forested surface (bottom) displays a slower rise
towards the peak surface resistance over the drying period
from 11–28 January compared to that of the swamp wood-
land/heath surface (top). Not only is the gradient reduced for
this response, but so too is the maximum surface resistance
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Fig. 9. Time series of the 5% and 95% quantiles of the surface
resistance (s/m) for the duration of the field campaign for distinct
vegeation units characteriistic of the catchment.

value, which peaks at approximately 400 s/m compared to
500 s/m. These same trends are reflected throughout the re-
mainder of the study period, as the moisture status of the
area is increased through precipitation during February and
reduced during clear sky periods with strong surface drying
between storm events.

Intuitively, these results are expected given the nature of
the vegetation cover for each surface. The forested surface
is likely to have deeper rooting depths than the swamp-heath
land. As a consequence, the forest cover should be more tol-
erant to a reduction in the moisture status, as occurs through-
out January and for periods in February. However, there is
insufficient information to reach any definitive conclusions
on these patterns. Depth to the water table for instance, may
bias results if one surface has a shallower water table than
the other. Also, without further information on the vegetation
characteristics of each of the surfaces, it is difficult to obtain
more detailed insight. From a qualitative perspective, the re-
duced bounds on the surface resistance during February are
also reflected in the spatial patterns of Figs. 4 and 5. During

February, the spatial variability of the evapotranspiration is
lower when compared to the drier January responses, which
correspond to periods of greatest variability and uncertainty,
in the surface resistance. This result was observed by Dol-
man (1992) who comments that: “areal evaporation from dry
regions is more sensitive to the spatial variability (in surface
resistance) than evaporation from wet regions”.

4 Discussion and conclusion

Bastiaanssen et al. (1998) highlighted one of the major prob-
lems associated with regional scale estimation techniques:
how can regional evaporation predicted by simulation mod-
els be validated with limited field data? They proposed that
model verification can proceed through the use of in situ
surface flux measurement, airborne flux measurement, soil
moisture profiles in the field or through conventional hy-
drological modelling. However, the majority of these tech-
niques are generally the result of intensive field campaigns
rather than through routine measurement. In most instances,
the paucity of distributed measurements means that required
information is not generally available to validate model re-
sponses and hence most techniques remain unverified (e.g.
Ottle et al., 1989; Smith and Choudhury, 1990), particularly
at large spatial scales where data is simply not available.
Clearly, an alternative approach is required to allow the as-
sessment of large scale flux behaviour in a more operational,
or routine, capacity.

A methodology that can be validated at the field scale and
applied to the regional scale would prove very useful for
model assessment and evaluation purposes. An ability to as-
sess surface flux predictions using remotely sensed temper-
atures offers much potential in land surface and in general
climate modelling, where the scales at which processes are
represented often preclude the actual measurement of sur-
face fluxes for their validation. The development of evapo-
transpiration patterns through time is of particular interest,
given that there is generally a lack of information describ-
ing both spatial and temporal evaporative patterns. While
there are advances in providing increasingly accurate predic-
tions of evapotranspiration directly from remote sensing vari-
ables (Norman et al., 2003; Su et al., 2005), one of the major
shortcomings of such approaches is that they remain essen-
tially instantaneous retrievals. An approach which makes use
of intermittent snapshots of the surface condition to expand
knowledge of the surface flux throughout time would prove
particularly useful.

The results from this study provide some evidence for the
utility of spatially distributed satellite data in constraining
predictions within an uncertainty modelling framework. Dis-
tinct patterns of evapotranspiration were clearly observable
throughout the study period, and insight into the close rela-
tionship of the surface response to precipitation events was
identified. The drying and wetting patterns throughout the
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catchment, as observed in the spatial plots, also offered some
insight into the surface resistance patterns throughout the re-
gion. The dynamic response of the surface resistance to the
catchment moisture status was evident through examination
of the temporal plots and provided some corroboration for
the model results throughout the duration of the field cam-
paign.

The TOPUP land surface model represents a simple patch
based approach, broadly parameterised to account for the
range of responses expected from a heterogeneous surface.
Through calibration against an observed record of surface
temperatures, some insight into both the evapotranspiration
patterns across the catchment, and also the temporal devel-
opment of the surface resistance to evapotranspiration was
obtained. The fact that TOPUP was able to characterise
trends consistent with observed vegetation distributions,
without having been explicitly spatially parameterised for
these characteristics, is a significant result as it offers the
possibility of parameterising models based on operationally
available remote sensing information. Such an approach
facilitates an increased opportunity to calibrate land surface
models using a variety of remotely sensed hydrological
variables, such as instantaneous evapotranspiration (e.g.
Su et al., 2005), near surface soil moisture (e.g. McCabe
et al., 2005c) or details on the land surface condition.
Further investigations are in progress examining the utility
of incorporating such remotely sensed information into a
simplified representation of catchment processes to further
our understanding of ungauged basins.

Edited by: A. Montanari
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