

INTERNATIONAL JOURNAL CONSERVATION SCIENCE

ISSN: 2067-533X

Volume 3, Issue 4, October-December 2012: 309-318

www.ijcs.uaic.ro

BIODIVERSITY STATUS, DISTRIBUTION AND USE PATTERN OF SOME ETHNO-MEDICINAL PLANTS

Priti KUMARI^{1,2}, Girish Chandra JOSHI^{1*}, Lalit Mohan TEWARI²

¹ Regional Research Institute of Himalayan Flora, Tarikhet-263663, Uttarakhand, India

Abstract

The erosion of plant biodiversity is a matter of global concern. Due to unawareness the building blocks of entire ecosystems are disappearing. Some medicinal plants like Taxus baccata Linn., Thymus serpyllum Linn., Coleus forskohli Will., Oroxylum indicum Linn., Valeriana hardwickii Wall., Malaxis acuminata D.Don, Habenaria edgeworthii Hook. f.ex.Collett., Costus speciosus (Koen.) Sm., Dioscorea deltodea Wall., Gloriosa superba Linn., Polygonatum cirrhifolium Wall. and Polygonatum verticillatum Linn., Thalictrum foliolosum DC., Berberis aristata DC., Baliospermum montanum Will., Bergenia ciliata (Haworth) Sternb., Clerodendrum serratum Linn., Valeriana jatamansii Jones, Celastrus paniculatus Will., Habenaria intermedeia D. Don, and Curculigo orchioides Gaerth are reached on the border of extinction. The 2008 IUCN Red List shows that the number of threatened plant species is increasing gradually (IUCN 2008). Therefore, there is an immediate need for conservation steps to be taken up along with promotion of conservation of medicinal plants.

Keywords: Threat categorization; Biodiversity; Use pattern; Ethno-medicine.

Introduction

The erosion of plant biodiversity is a matter of global concern. One by one, the building blocks of entire ecosystems are disappearing. The 2008 IUCN Red List shows that the number of threatened plant species is increasing gradually [1]. The numbers of threatened plants are 8457, out of which 247 plants are found at different biodiversity hotspots in India. Many of them serves as sources of food, fuel, fodder, timber, medicine, etc. and functions as integral parts of local agricultural production systems. The resurgence of public interest in plant-based medicine coupled with rapid expansion of pharmaceutical industries necessitated as an increased demand of medicinal plants, leading to over exploitation that threatened the survival of many of them medicinal plants [2]. Further, the degree of threat to natural population of medicinal plants has increased because more than 90% of the plant raw material for herbal industries in India is drawn from natural habitats. Conservation biologists warn that 25% of all species could become extinct during the next 20 to 30 years [3]. Causes for the loss of species are numerous, but the most important is the loss and fragmentation of natural habitats. The loss, decline or fragmentation of habitat through excessive clearing of native vegetation possesses a significant threat to flora and fauna [4, 5].

Corresponding author: pritiksingh78@yahoo.co.in; Tel/ Fax: +91-5966-220151

² Department of Botany, DSB Campus, Kumaun University, Nainital, Uttarakhand, India

The continuous exploitation of several medicinal plant species from the wild [6] and substantial loss of their habitats during past 15 years have resulted in population decline of many high value medicinal plant species over the years [7]. The primary threats to medicinal plants are those that affect any kind of biodiversity used by humans [8, 9]. The weakening of customary laws, which have regulated the use of natural resources, is among the causes of threatening the medicinal plant species [10, 11]. These customary laws have often proved to be easily diluted by modern socio-economic forces [12]. There are many other potential causes of rarity in medicinal plant species, such as habitat specificity, narrow range of distribution, land use disturbances, introduction of nonnative, habitat alteration, climatic changes, heavy livestock grazing, explosion of human population, fragmentation and degradation of population, population bottleneck, and genetic drift [11, 13-15]. Additionally, natural enemies (i.e., pathogens, herbivores, and seed predators) could substantially limit the abundance of rare medicinal plant species in any given area [16, 17].

In addition to the consumption of medicinal plants by animals, there are physical ailments in humans, which are cured by different species of the same genera. For example, the malarial fever is treated by many species of *Swertia* (e.g. *Swertia chiraiyta*, *S. angustifolia*, and *S. cordata*). Similarly, different species of *Berberis* (e.g. *Berberis aristata*, *B. asiatica*, *B. lycium*, *B. chitria* and *B. jaeschkeana*) are used as a source of berberidine to cure certain eye diseases. Furthermore, different species of the same genera contain different proportions of chemical quantity, and there is a preference over their demand; however, the degree of threat for their exploitation is relatively lower than those species, which do not have alternatives.

The meager availability of data on the population and quantum of rare species in nature, however, has restricted their categorization to a few species on the basis of herbarium collection and by consultation by a few experts [13]. The present assessments are also questioned for their validity on the assignment of threat categories to the species, including the number of taxa in danger for specific area. The problems in assessing the species is increased in the mountainous region, especially high altitude areas because of tough and inaccessibility of the terrain, inhospitable climatic conditions, and short life cycle of plants. Most of the available data have been collected from the easily accessible areas in these mountains. Indigenous communities and commercial herb gatherers also raid these same areas for collection of medicinal plants. Therefore, the estimated population density of categorized rare medicinal plants is not precise because it differs the areas that never and hardly undergone any collection of such rare medicinal plant species [18].

An area-specific threat categorization of species is very important for short- or long-term management planning. The present study represents such an attempt in this area, using information on different attributes. The occurrence of critically endangered, endangered and vulnerable medicinal plants indicates high anthropogenic pressure on these species. If over-exploitation and habitat degradation of these species continues, they may disappear from the area within a few years. Population assessment of these species using standard ecological methods and notification of key areas as medicinal plants conservation areas (MPCAs) for *in situ* conservation, with the involvement of the Forest Department and tribal communities, are suggested. In addition, mass reproduction using conventional (vegetative and seeds) methods, establishment and maintenance of herbal gardens and medicinal plants nurseries for *ex situ* conservation and ensuring the availability of quality planting material for cultivation, together with education and awareness programmes for large-scale cultivation are suggested [19].

Materials and Methods

The Almora district lies between 29°30'N to 30°20'N latitudes and 79°20' E to 80°20'E longitudes. It is located in the central part of kumaun region of Uttarakhand, India (Fig. 1). The field survey was conducted in thirty-five area of different forest sites of Almora district of

BIODIVERSITY STATUS, DISTRIBUTION AND USE PATTERN OF SOME ETHNO-MEDICINAL PLANTS

Uttarakhand (India) and the information provided by the secondary sources [20] and available literature [21] three forest stands(500-1200m, 1200-2000 m, 2000-2800 m) were selected as Zone-1, Zone-2 and Zone-3 in the wide elevation range along the gradient of disturbances. Several field trips were undertaken for collection of plants.

Fig. 1. Map of Study site

Collection of medicinal plants from the natural habitat(s) provided information on local names, altitudinal ranges, life forms, habitat(s), part(s) used and use values, including indigenous knowledge and practices. The threat category of a species was identified using six attributes (i.e. habitat preference, distribution ranges, population size, use patterns, extraction trends, native and endemic species) following [19, 20, 22]. Species with a combination of these criteria (serial number 1, 2 and 3) were given marks accordingly. Species with scores > 60 were identified as critically endangered; 56-60 as endangered; 51-55 as vulnerable; 46-50 as near threatened; and < 46 as of least concern (Table 1).

S.N	Habitat	Distribution	Population (Ind/Location)	Use Pattern	Extraction	Native and Endemic	Score
1	Single	< 500	<250/upto 2 locality	4 & > 4	Commercial	Native & Endemic	10
2	2-3	500-1000	250-1000 Ind/ 3-5 locality	2-3	Self Use	Native or Endemic	6
3	>3	>1000	>1000 Ind/ >5 locality	Single	No Use	Non-Native	2

Table 1. Threat Assessment of the Medicinal Plant Diversity using Different Criteria

Results and Discussion

The present study deals with a threat analysis of threatened ethno-medicinal plants selected from our study site presented in table 2, from different areas of Almora district of Uttarakhand (India).

In total, 21 species of ethno medicinal plants belonging to 16 families were recorded. Of these, 2 species were trees, 1 shrub, 16 herbs and 2 climbers. The families are Taxaceae, Ranunculaceae, Berberadaceae, Euphorbiaceae, Saxifragaceae, Verbenaceae, Bignonoaceae, Celastraceae, Costaceae, Dioscoreaceae and Hypoxidaceae having single species, Valerianaceae and Lamiaceae, having two species and Orchidaceae, Liliaceae having three species were identified. In terms of altitudinal distribution, the greatest number (17 spp.) of medicinal plants was recorded from 1200-2000m (Zone II), followed by the 2000–2800m (Zone III) (11 spp.), with the lowest number (7 spp.) in the 500-1200m (Zone I) altitudinal zone. The habitat-wise distribution showed maximum diversity of medicinal plants in moist

forest, hill slopes, rocky substrate, forest openings, edges and wastelands, shady forest, shady and moist rocks, road side, moist shady slopes, forest floors, grassy slopes, open grasslands, open marshy slopes, undergrowth in moist shady areas, open shady grassy fields, along forest margins habitat.

Table 2. List of Threatened Ethno-Medicinal Plants with their Life Form, Habitat and Use Pattern

Study	Altitudes	Plant Species	Family	Habit	Habitat	Use Pattern
Area	(m)	Tiant Species	raininy	Habit	Habitat	
Area 1	1800-2000	Taxus baccata Linn.	Taxaceae	Tree	Moist forest	Cold, Fever, Conjunctivitis, Malaria, Typhoid, Leucorrhoea, Boils, Jaundice, Snakebite, Anticancer, Blood Pressure, Cancer
Area 2 Area 3	1350-1900 2250-2800	Thalictrum foliolosum DC.	Ranunculaceae	Herb	Open places, Hill slopes	Eye Inflammation, Snake Bite, Jaundice
Area 4 Area 5	1600-1900 2400-2800	Berberis aristata DC.	Berberadaceae	Shrub	Open places, Rocky substrate	Eye & Ear disease, Fever, Diabetes.
Area 6 Area 34	700-1000 1200-1500	Baliospermum montanum Will.	Euphorbiaceae	Herb	Forest openings, Edges and Wastelands	Constipation, Dropsy, Jaundice, Skin Disease, Asthma,
Area 7	1700-1900	Thymus serpyllum Linn.	Lamiaceae	Herb	Shady forest	Digestive Disorders, Vermifuse, Toothache, Antiseptic
Area 8 Area 9	800-1100 1400-1800	Coleus forskohli Will.	Lamiaceae	Herb	Rocky substrate	Constipation, Heart tonic, Low Blood Pressure
Area 10 Area 11	1500-1900 2400-2800	Bergenia ciliata (Haworth) Sternb.	Saxifragaceae	Herb	Shady and Moist rocks	Constipation, Dysentery, Kidney Stones, Gall Bladder Stones, Painful and Small Urination, Boils, Piles, Urinary trouble, Asthma, Fever
Area 12 Area 13	900-1200 1250-1700	Clerodendrum serratum Linn.	Verbenaceae	Herb	Road side, Open places	Cough Asthma, Bronchitis, Hiccough, Chronic Skin Diseases, Headache, and Fevers
Area 14	700-1000	Oroxylum indicum Linn .	Bignonoaceae	Tree	Open places	Snake-Bite, Urinary Disorders, Fever, Epilepsy, Indigestion, Pneumonia, Headache
Area 15	2400-2800	Valeriana hardwickii Wall.	Valerianaceae	Herb	Moist shady slopes	Wounds, Urinary Disorder, Joint Pain
Area 16 Area 17	1400-2000 2250-2800	Valeriana jatamansii Jones.	Valerianaceae	Herb	Moist places, Forest floors	Wounds and Blister
Area 18 Area 19	700-1100 1200-1100	Celastrus paniculatus Will.	Celastraceae	Climber	Rocky substrate, Open places	Piles, Gout, Cold, Rheumatism, Dysentery, Diarrhea, Leprosy, Snake-Bite, Wounds.
Area 20 Area 21	1400-2000 2200-2750	Malaxis acuminata D. Don	Orchidaceae	Herb	Moist Shady places	Fever, Weakness, Tuberculosis, General Debility
Area 22 Area 35	2400-2800 1500-1950	Habenaria intermedeia D. Don	Orchidaceae	Herb	Open grasslands, Grassy slopes	Skin Disease, Tonic, Asthma
Area 23 Area 24	1600-1950 2400-2800	Habenaria edgeworthii Hook. f.ex.Collett.	Orchidaceae	Herb	Open grasslands	Burning Sensation, Fever, Cough, Gout and General Debility
Area 25 Area 26	700-1100 1250-1550	Costus speciosus (Koenig ex Retz.) Smith.	Costaceae	Herb	Open marshy slopes	Boils, Ventral Disease, Urinary Tract Infection, Diabetes
Area 27	1550-1950	Dioscorea deltoidea Wall.	Dioscoreaceae	Climber	Open places	Piles, Dysentery, Jaundice, Applied in hair to kill lice
Area 28 Area 29	1500-1900 900-1200	Curculigo orchioides Gaerth	Hypoxidaceae	Herb	Undergrowth in moist shady areas, Open shady grassy fields	Wounds, Asthma, Snake-Bite, Piles, Stomach Disorders, Scorpion bite, Skin Diseases, Itching, Cough.
Area 30 Area 31	700-1100 1200-1500	Gloriosa superba Linn.	Liliaceae	Herb	Along forest margins,	Painful Delivery, Skin Diseases, Gonorrhea, Piles, Snake-Bite, Scorpion Stings, Tumors, Rheumatism, Leprosy Intermittent Fever
Area 32	1700-1950	Polygonatum cirrhifolium (Wall.) Royl.	Liliaceae	Herb	Moist shady places	Blood purifier, Cold, Cough, Burning sensation, Skin disease, Ulcers, Fever and general debility
Area 33	1700-1950	Polygonatum verticillatum Linn.	Liliaceae	Herb	Moist open grasslands	Piles, Bone Fracture, Fever, Appetite, Aphrodisiac, Burning sensation, Weakness

BIODIVERSITY STATUS, DISTRIBUTION AND USE PATTERN OF SOME ETHNO-MEDICINAL PLANTS

Out of 21 species, Taxus baccata Linn., Thymus serpyllum Linn., Coleus forskohli Will., Oroxylum indicum Linn., Valeriana hardwickii Wall., Malaxis acuminata D.Don, Habenaria edgeworthii Hook. f.ex.Collett., Costus speciosus (Koen.) Sm., Dioscorea deltodea Wall., Gloriosa superba Linn., Polygonatum cirrhifolium Wall. and Polygonatum verticillatum Linn. these 12 species is in single habitat and Thalictrum foliolosum DC., Berberis aristata DC., Baliospermum montanum Will., Bergenia ciliata (Haworth) Sternb., Clerodendrum serratum Linn., Valeriana jatamansii Jones, Celastrus paniculatus Will., Habenaria intermedeia D. Don, Curculigo orchioides Gaerth.

These 9 species is in two to three habitat types but there is no species with more than three habitat types. Among 21 ethno medicinal plants Taxus baccata Linn., Berberis aristata DC., Baliospermum montanum Will., Coleus forskohli Will., Clerodendrum serratum Linn., Oroxylum indicum Linn., Valeriana jatamansii Jones, Celastrus paniculatus Will., Malaxis acuminata D. Don, Habenaria intermedeia D. Don, Habenaria edgeworthii Hook. f. ex. Collett., Curculigo orchioides Gaerth, Gloriosa superba Linn., Polygonatum cirrhifolium Wall. having trade value where as Polygonatum verticillatum Linn, Thalictrum foliolosum DC., Thymus serpyllum Linn., Bergenia ciliata (Haworth) Sternb., Valeriana hardwickii Wall, Costus speciosus (Koen.) Sm., Dioscorea deltodea Wall. having self use extraction.

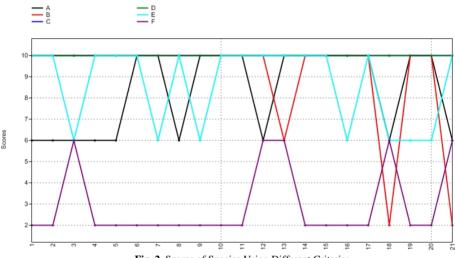


Fig. 2. Scores of Species Using Different Criteria: A-Habitat, B-Distribution, C-Population (Ind/Location), D-Use Pattern, E- Extraction, F-Native and Endemic.

Of the total 21 species five species were native to Indian Himalayan region and rests of species were non-native. On the basis of above criteria of threat categorization, obtained scores of Taxus baccata Linn., Thalictrum foliolosum DC., Berberis aristata DC., Baliospermum montanum Will., Thymus serpyllum Linn., Coleus forskohli Will., Bergenia ciliata (Haworth) Sternb., Clerodendrum serratum Linn., Oroxylum indicum Linn , Valeriana hardwickii Wall, Valeriana jatamansii Jones, Celastrus paniculatus Willd., Malaxis acuminata D. Don, Habenaria intermedeia D. Don, Habenaria edgeworthii Hook. f. ex. Collett., Costus speciosus (Koen.) Sm., Dioscorea deltoidea Wall., Curculigo orchioides Gaerth, Gloriosa superba Linn., Polygonatum cirrhifolium Wall., Polygonatum verticillatum Linn. are presented in Figure-2.

Almora district has rich biological diversity that is now under threat from rapidly expanding human populations and concomitant environmental degradation occurring at a fast pace. There are major gaps in our knowledge of biological resources and the means by which

biological diversity is maintained [23]. In Almora district, threat assessment of all 21 documented species has been made by the researcher. On the basis of above criteria of threat categorization, obtained scores of *Taxus baccata* Linn., *Thalictrum foliolosum* DC., *Berberis aristata* DC., *Baliospermum montanum* Will., *Thymus serpyllum Linn., Coleus forskohli Will., Bergenia ciliata (Haworth) Sternb., Clerodendrum serratum* Linn., *Oroxylum indicum* Linn, *Valeriana hardwickii* Wall, *Valeriana jatamansii* Jones, *Celastrus paniculatus* Willd., *Malaxis acuminata* D. Don, *Habenaria intermedeia* D. Don, *Habenaria edgeworthii* Hook. f. ex. Collett., *Costus speciosus* (Koen.) Sm., *Dioscorea deltoidea* Wall., *Curculigo orchioides* Gaerth, *Gloriosa superba* Linn., *Polygonatum cirrhifolium* Wall., *Polygonatum verticillatum* Linn. are presented in Table 3.

Table 3. Scores of Species Using Different Criteria

S.N	Name of Species	Habitat	Distribution	Population (Ind/Locatio n)	Use Pattern	Extraction	Native and Endemic	Score
1.	Baliospermum montanum Will.	6	10	10	10	10	2	48
2.	Berberis aristata DC	6	10	10	10	10	2	48
3.	Berginia ciliata Royl.	6	10	10	10	6	6	48
4.	Celastrus paniculatus Will.	6	10	10	10	10	2	48
5.	Clerodendron serratum Linn.	6	10	10	10	10	2	48
6.	Coleus forskohli Will.	10	10	10	10	10	2	52
7.	Costus speciosus(Koen.) Sm.	10	10	10	10	6	2	48
8.	Curculigo orchioides Gaertn.	6	10	10	10	10	2	48
9.	Dioscorea deltoidea Wall.	10	10	10	10	6	2	48
10.	Gloriosa superb Linn.	10	10	10	10	10	2	52
11.	Habenaria edgeworthii Hook. f.ex. Collett. D. Don	10	10	10	10	10	2	52
12.	Syn. / Platanthera edgeworthii (Hook. f. ex Collett) Habenaria intermedia D.Don.	6	10	10	10	10	6	52
13.	Microstylis wallichii (Lindl.) Kuntz.	10	6	10	10	10	6	52
	Syn. / Malaxis acuminate D. Don. Oroxylum indicum Linn	10	10	10	10	10	2	52
14.	Polygonatum cirrhifolium Wall.							52
15.	Polygonatum verticilatum Linn.	10 10	10 10	10 10	10 10	10 6	2 2	48
16.	Taxus baccata Linn.	10			10		2	
17.	Thalictrum foliolosum DC.		10	10		10		52
18.	•	6	2	10	10	6	6	40
19.	Thymus serphyllum Benth.	10	10	10	10	6	2	48
20.	Valeriana hardwickii Wall	10	10	10	10	6	2	48
21.	Valeriana wallichii Jones	6	2	10	10	10	6	44

On the basis of score opted threat categorization has been done. *Taxus baccata* L. fell in vulnerable, *Thalictrum foliolosum* DC. least concern, *Berberis aristata* DC. near threatened, *Baliospermum montanum* Will. near threatened, *Thymus serpyllum* Linn near threatened, *Coleus forskohli* Will. vulnerable, *Bergenia ciliata (Haworth) Sternb.* near threatened,

BIODIVERSITY STATUS, DISTRIBUTION AND USE PATTERN OF SOME ETHNO-MEDICINAL PLANTS

Clerodendrum serratum Linn. near threatened, Oroxylum indicum Linn. vulnerable, Valeriana hardwickii Wall near threatened, Valeriana jatamansii Jones. least concern, Celastrus paniculatus Will. near threatened, Malaxis acuminata D. Don vulnerable, Habenaria intermedeia D. Don vulnerable, Habenaria edgeworthii Hook. f.ex.Collett. vulnerable, Costus speciosus (Koen.) Sm. near threatened, Dioscorea deltodea Wall. near threatened, Curculigo orchioides Gaerth near threatened, Gloriosa superba Linn. vulnerable, Polygonatum cirrhifolium Wall. vulnerable, and Polygonatum verticillatum near threatened categories. Attempts have been made at the regional, national and global levels to identify threatened species, including medicinal plants, using various attributes such as biogeographical range, habitat specificity, and population size and use values [24 - 31]. About 10% of the world's vascular plants species are under various degrees of threat as estimated by the International Union for the Conservation of Nature and Natural Resources (IUCN). IUCN status, observed status and threat are to be seen in table 4.

Table 4. Status and Threat of Plant Species

C.N.	Name of Species	Family	IUCN	Observed	Threat
S.N	•	·	Status	Status	
1.	Baliospermum montanum Will.	Euphorbiaceae	LRnt	NT	G,HD
2.	Berberis aristata DC	Berberadaceae	En	NT	OE,HD
3.	Berginia ciliata Royl.	Saxifragaceae	Vu	NT	OE, HD
4.	Celastrus paniculatus Will.	Celastraceae	LRnt	NT	HD
5.	Clerodendron serratum Linn.	Verbenaceae	Vu	NT	HD
6.	Coleus forskohli Will.	Lamiaceae	NE	VU	HD
7.	Costus speciosus(Koen.) Sm.	Costaceae	NT	NT	HD,G
8.	Curculigo orchioides Gaertn.	Hypoxidaceae	Vu	NT	OE,G
9.	Dioscorea deltoidea Wall.	Dioscoreaceae	En	NT	HD
10.	Gloriosa superb Linn.	Liliaceae	Vu	VU	HD
11.	Habenaria edgeworthii Hook. f.ex.Collett. D. Don Syn. / Platanthera edgeworthii (Hook. f. ex Collett)	Orchidaceae	Vu	VU	G,HD
12.	Habenaria intermedia D.Don.	Orchidaceae	En	VU	HD
13.	Microstylis wallichii (Lindl.) Kuntz. Syn. / Malaxis acuminate D. Don.	Orchidaceae	En	VU	OE,HD
14.	Oroxylum indicum Linn	Bignonoaceae	NE	VU	HD,OE
15.	Polygonatum cirrhifolium Wall.	Liliaceae	Vu	VU	OE, HD
16.	Polygonatum verticilatum Linn.	Liliaceae	Vu	NT	OE, HD
17.	Taxus baccata Linn.	Taxaceae	En	VU	HD
18.	Thalictrum foliolosum DC.	Ranunculaceae	Vu	LC	OE
19.	Thymus serphyllum Benth.	Lamiaceae	Vu	NT	OE
20.	Valeriana hardwickii Wall	Valerianaceae	Vu	NT	G, HD
21.	Valeriana wallichii Jones	Valerianaceae	CR	LC	OE

CR: Critically endangered; En: Endangered; NT: Near threatened; LRnt/ LC: Least concern; HD: Habit degradation; OE: Over exploitation; G: Grazing; Vu: Vulnerable

It is observed that out of 21 documented species, 8 species are in vulnerable category, 11 species are in near threatened and only 2 species are in least concern category. Seen in the light of percentage status of these 21 species, it is clear that least concern is 9.52%, vulnerable is 38.10% and near threatened is 52.38% (Fig. 3).

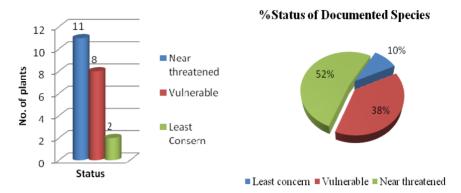


Fig. 3. Status of Documented Species

IUCN criteria were taken into background, it was observed that 121 species have been recorded in the Red Data Book of Indian plants from Indian Himalayan Region, of these 17 rare medicinal plants [32]. Threat categorizations at global and regional levels have been also done in which *Taxus baccata* Linn., *Dioscorea deltoidea* Wall., *Valeriana jatamansi* Jones have been recorded under critically rare categories; *Berberis aristata* DC., *Gloriosa superba* Linn. and *Polygonatum verticillatum* Linn. Endangered categories; *Bergenia ciliata* (Haworth) Sternb., *Clerodendrum serratum* Linn., *Curculigo orchioides* Gaerth, and *Thalictrum foliolosum* DC. under vulnerable category, *Baliospermum montanum* Will. and *Celastrus paniculatus* Will. under near threatened status [33].

Conclusions

The medicinal plants of the IHR are subjected to harsh climatic conditions. Many of them are herbs and prone to cattle grazing and trampling in addition to large-scale and reckless collection. Human interaction with environment is an important ingredient of society and culture. This interaction involves exploitation of natural resources, implying thereby a certain degree of environmental destruction. However, over exploitation of these resources leads to ecosystem destruction and extinction of valuable species. Lack of systematic collection and organized cultivation has resulted in pushing many of these plants into the list of vulnerable, endangered or threatened species. Therefore, there is an immediate need for conservation steps to be taken up along with promotion of conservation of medicinal plants.

References

- [1] http://www.iucnredlist.org, IUCN Red List, 2008 (May 15, 2012)
- [2] P. Kumari, G.C. Joshi, L.M. Tewari, B.K. Singh, *Quantitative Assessment and Antibacterial Activity of Origanum vulgare L.*, **Journal of Phytology**, 3(12), 2011, pp. 15-21.
- [3] J.S. Singh, *The Biodiversity Crisis: A Multifaceted Review*, **Current Science**, **82**, 2002, pp. 638–647.
- [4] H.A. Ford, J.R, Walters, C.B. Cooper, S.J.S. Debus, V.A.J. Doerr, *Extinction Debt or Habitat Change? Ongoing Losses of Woodland Birds in North- Eastern New South Wales, Australia, Biological Conservation*, 142, 2009, pp. 3182-3190.
- [5] M. Maron, J.A. Fitzsimons, Agricultural Intensification and loss of Matrix Habitat over 23 year in the West Wimmera, South-eastern Australia, Biological Conservation, 135, 2007, pp. 603-609.

- [6] C.P. Kala, Commercial Exploitation and Conservation Status of high value Medicinal Plants Across the Borderline of India and Nepal in Pithoragarh, The Indian Forester, 129, 2003, pp. 80-84.
- [7] * * *, State of the World's Forest, FAO, Rome: Food and Agricultural Organization, 2003.
- [8] M.R. Rao, M.C. Palada, B.N. Becker, *Medicinal and Aromatic Plants in Agro-forestry Systems*, **Agroforestry Systems**, **61**, 2004, pp. 107-122.
- [9] R.C. Sundriyal, E. Sharma, Cultivation of Medicinal Plants and Orchids in Sikkim Himalaya. G.B. Pant Institute of Himalayan Environment and Development, Almora, 1995.
- [10] S.K. Ghimire, D. McKey, Y. Aumeeruddy-Thomas, Heterogeneity in Ethnoecological Knowledge and Management of Medicinal Plants in the Himalayas of Nepal: Implication for Conservation, Ecology and Society, 9(6), 2005, pp. 32-43.
- [11] C.P. Kala, Health Traditions of Buddhist Community and Role of Amchis in Trans-Himalayan Region of India, Current Science, 89, 2005, pp. 1331-1338.
- [12] J. Belt, A. Lengkeek, J. van der Zant, *Developing a sustainable medicinal plant chain in Uttaranchal India*, , **Bulletins of the Royal Tropical Institute** (**Cultivating a Healthy Enterprise**, KIT Publication, Amsterdam, Netherlands), **350**, 2003, pp. 1-56.
- [13] C.P. Kala, Status and Conservation of Rare and Endangered Medicinal Plant in the Indian Trans-Himalaya, Biological Conservation, 93, 2000, pp. 371-379.
- [14] C.W. Weekley, T. Race, *The Breeding System of Ziziphus celata Judd and D.W. Hall (Rhamnaceae)*, A Rare Endemic Plant of the Lake Wales Ridge, Florida, USA: Implications for Recovery, **Biological Conservation**, 100, 2001, pp. 207-213.
- [15] J.G.B. Oostermeijer, S.H. Luijten, J.C.M. Den Nijs, *Integrating Demographic and Genetic Approaches in Plant Conservation*, **Biological Conservation** 113, 2003, pp. 389-398.
- [16] R.L. Bevill, S.M. Louda, L.M. Stanforth, *Protection from Natural Enemies in Managing Rare Plant Species*, **Conservation Biology**, **13**, 1999, pp. 1323-1331.
- [17] P.P. Dhyani, C.P. Kala, Current Research on Medicinal Plants: Five Lesser Known but Valuable Aspects, Current Science, 88, 2005, pp. 335-340.
- [18] C.P. Kala, Revitalizing Traditional Herbal Therapy by Exploring Medicinal Plants: A Case Study of Uttaranchal State in India, Proceedings of an International Conference Pennsylvania (Indigenous Knowledge's: Transforming the Academy), Pennsylvania State University, 2004, pp. 15-21.
- [19] A. Singh, M. Lal, S.S. Samant, *Diversity, Indigenous Uses and Conservation Prioritization of Medicinal Plants in Lahaul Valley, Proposed Cold Desert Biosphere Reserve, India,* **International Journal of Biodiversity Science and Management, 5**(3), 2009, pp. 132–154.
- [20] S.S. Samant, U, Dhar, R.S. Rawal, *Biodiversity Status of a Protected Area of West Himalaya* Askot Wildlife Sancturay, **International Journal of Sustainable Development and World Ecology 5**, 1998, pp. 194-203.
- [21] R.N. Chopra, S.L. Nayar, I.C. Chopra, Glossary of Indian Medicinal Plants, Publications and Information Directorate, CSIR, New Delhi, 1956.
- [22] D.K. Ved, G.A. Kinhal, K. Ravikumar, V. Prabhakaran, U. Ghate, R. Vijaya Shankar, J. H. Indresha, Conservation Sssessment and Management Prioritization for the Medicinal Plants of Jammu and Kashmir, Himachal Pradesh & Uttaranchal, Foundation for Revitalization of Local Health Traditions, Bangalore (India), 2003.
- [23] V.H. Heywood, **Global Biodiversity Assessment**, Cambridge University Press, Cambridge, 1995.
- [24] A.N. Pandey, J.S. Singh, *Mechanism of Ecosystem Recovery: A Case Study of Kumaun Himalaya*, Recreation and Revegetation Research, 3, 1985, pp. 271-292.
- [25] S.S. Samant, U. Dhar, R.S. Rawal, *Botanical Hotspots of Kumaun Himalaya: Conservation Perspectives.* **Himalayan Biodiversity Conservation Strategies,** (Editor U. Dhar). Gyanodaya Prakashan. Nainital, 1993, pp. 377-400.

- [26] S.S. Samant, U. Dhar, R.S. Rawal, *Conservation of Rare Endangered Plants: The context of Nanda Devi Biosphere Reserve*, **Conservation and Management of Biological Resources in Himalaya**, (Editors P.S. Ramakrishnan, A.N. Purohit, K.G. Saxena, K.S. Rao and R.K. Maikhuri), Oxford & IBH Publishing Company Private Limited, New Delhi, 1996, pp. 521-545.
- [27] S.S. Samant, U. Dhar, R.S. Rawal, Diversity, Distribution and indigenous uses of threatened medicinal plants of Askot wildlife sanctuary in west Himalaya: conservation and managegement perspectives, Himalayan Medicinal Plants: Potential and Prospects, Gyanodaya Prakashan, Nainital, 2001.
- [28] U. Dhar, R.S. Rawal, S.S. Samant, Structural Diversity and Representativeness of Forest Vegetation in a Protected Area of Kumaun Himalaya, India: Implications for Conservation, Biodiversity and Conservation, 6, 1997, pp. 1045-1062.
- [29] P.B. Singh, *Medicinal plants of Kangara District in north-west Himalaya*. **Himalayan Medicinal Plants: Potential and Prospects**, Gyanodaya Prakashan, Nainital, 2001.
- [30] S.K. Uniyal, A. Awasthi, G.S. Rawat, Current Status and Distribution of Commercially Exploited Medicinal and Aromatic Plants in Upper Gori Valley, Kumaon Himalaya, Uttaranchal, Current Science, 82(10), 2002, pp. 1246-1252.
- [31] P. Kumari, G.C. Joshi, L.M. Tewari, *Diversity and Status of Ethno-medicinal Plants of Almora district in Uttarakhand, India*, **International Journal of Biodiversity and Conservation**, **3**(7), 2011, pp. 298-326.
- [32] M.P. Nayer, A.R.K. Sastry, *Red Data Book of Indian Plants*, **Botanical Survey of India**, Calcutta, vol. I, 1987, vol. II, 1988 and volo. III, 1990.
- [33] * * *, Red List Criteria under the Biodiversity Conservation Prioritisation Project (BCPP), Conservation Assessment and Management Plan Workshop Process WWF, India, Zoo/CBSG, India and Uttar Pradesh Forest Department, International Union for Conservation of Nature and Natural resources (IUCN), 1997.

Received: April, 17, 2012 Accepted: October, 19, 2012