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Redundancy and Blocking in the Spatial Domain:
A connectionist model

I.P.L. McLaren*

University of Cambridge

How can the observations of spatial blocking (Rodrigo, Chamizo, McLaren
& Mackintosh, 1997)  and cue redundancy (O’Keefe and Conway, 1978) be
reconciled within the framework provided by an error-correcting,
connectionist account of spatial navigation? I show that an implementation
of McLaren’s (1995) better beta model can serve this purpose, and examine
some of the implications for spatial learning and memory.

In this paper I tackle an issue in spatial navigation. How can a system
for navigation be devised so that it combines the ability to use cue
combinations in a redundant fashion (O’Keefe and Conway, 1978) at the
same time as allowing for the spatial equivalent of blocking (Rodrigo et al,
1997). I start by briefly describing both sets of results before offering a
connectionist implementation of the approach taken in McLaren (1995) as a
partial solution to the problem.

O’Keefe and Conway’s (1978) demonstration of redundancy in spatial
navigation is illustrated in Figure 1. O’Keefe and Conway were able to show
that there were some hippocampal cells (units), that they termed place cells,
that fired when the animal was in a specific location on the maze used in
training and testing. These regions were defined by the four landmarks placed
around the maze, and O’Keefe and Conway made sure that this was the case
by rotating the maze relative to extra-maze cues from time to time. The key
result was that any two of these landmarks were sufficient for at least some of
the place cells to fire when the animal entered the appropriate region.

This is a demonstration of redundancy because the coding of spatial
location is not critically dependent on any given cue, either singly or in
combination with other cues. In this case any permutation of two cues from
four was sufficient to enable navigation, making the system serving as the
basis for navigation robust to cue removal or alteration.

Rodrigo, Chamizo, McLaren, & Mackintosh (1997) were the first to
demonstrate the spatial equivalent of blocking. The apparatus used is
illustrated in Figure 2.  This shows a swimming pool in a rectangular room,
with four potential landmarks placed around the pool in the positions shown.
                                    
* Department of Experimental Psychology. Downing Street, Cambridge, CB2 3EB, UK.
E-mail address: iplm2@cus.cam.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26757141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I.P.L. McLaren80

ca
rd fan

light

buzzer

Remove all 4 cues: 6/8 units lose ability to discriminate place field 
 
Remove any 2 cues: 3/8 units lose ability to discriminate place field

Conclusion: For some units, cues are used in combination to designate a given 
region such that any 2 cues will define it.
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Figure 1. The top panel illustrates the training regime using four cues
for this study. In the bottom 2 panels two different tests with two cues
are shown. An example of the type of region on the maze that would
lead to firing of a specific place cell is shown in black.

The basic design of the experiment was for the experimental animals
(Blocking group) to be pre-trained for a number of trials with landmarks A, B
and C in place, before being trained with all the landmarks in place (i.e. X
added). A Control group was trained on landmarks A, B, C, X without pre-
training (in later experiments pre-training on landmarks P, Q, R was used for
the controls). The pattern of results obtained is shown below in Figure 3.
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Figure 2. The swimming pool, platform (in black) and landmarks
used in Rodrigo et al (1997).

Testing the animals with the cue combination ACX without the platform
present produced better performance from the controls than from the
experimental animals (lower score reflecting the larger amount of time spent
in the target quadrant where the platform was on training trials). The
experimental animals were, if anything, somewhat better than controls when
tested on ABC, however, and as a result performance on ABC was
significantly better than on ACX in the Blocking group. Thus it would appear
that the pre-training to ABC has in some way blocked learning to the
additional cue, X. The parallel with typical blocking results (e.g. Kamin, 1968)
is obvious. In this type of study training A+ followed by AX+ reduces
responding to X when compared to controls only trained on AX+ (or pre-
trained on B+).

We are now in a position to appreciate the conundrum posed by the
combination of spatial blocking in spatial learning with cue redundancy in
navigation. Consider one class of explanation of the phenomenon of blocking,
that which postulates cue competition in an error correcting system as in
Rescorla and Wagner’s (1972) influential model of Pavlovian conditioning.
The reason why X may not have very much associative strength for the US on
this explanation is that the competitor cue, A, has already developed near
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asymptotic associative strength to the US and so reduced the error term
governing learning to near zero. As a consequence learning to X is slow, and
produces little by way of responding on test. If now we take a similar
approach to the spatial blocking result of Rodrigo et al then we would need to
say that learning to ABC had reduced the error score to near zero and that this
blocked learning when X was added. The problem here is that when we take
O’Keefe and Conway’s demonstration of redundancy into account then a
paradox arises. How can a system accommodate both blocking, allowing
some cues to prevent learning to others, and redundancy, allowing any
combination of (effective) cues  to be equally effective? The type of error-
correcting system that explains Kamin’s results does not easily lend itself to
this purpose. It operates by dividing up some associative strength amongst the
cues used in the experiment. Such a system will tend to degrade in
performance as (effective) cues are removed. We know that the cues in
O’Keefe and Conway’s experiment are all effective, but performance did not
degrade (for some cells / units) as cues were deleted. Thus it would seem that
there is a tension between the two sets of results that argues against any error-
correcting account of spatial navigation.
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Figure 3. Results from Rodrigo et al (1997); dependent variable =
mean rank so lower scores are better. T1 is the test with ACX, T2 is
the test with ABC. G1 is the Blocking group, G2 the Control group.

The account favoured by O’Keefe and Nadel (1978), which postulates
some map-like representation by way of explanation of the results of O’Keefe
and Conway’s experiments, fares no better when we take the spatial blocking
result into consideration. This is because the result to be expected on a
“cognitive map” hypothesis is that pre-training to ABC should, if anything,
facilitate learning to X when it is added as a cue. The pre-training will have
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engaged the map-making process, and the addition of a novel cue should then
trigger appropriate exploratory behaviour and lead to its rapid integration into
the pre-existing map. As the exact opposite is observed experimentally, i.e.
learning is slower to X in the pre-trained group, then the result is difficult to
accommodate in terms of any map.

Model
The aim in what follows is to show how an error-correcting system for

spatial navigation can be devised such that it reconciles the two data sets
considered here. The example of a guidance system given here follows on
from McLaren's (1995) generalisation of the Beta model (Zipser, 1986) to the
two landmark case. The necessary result given in that paper is straightforward,
and is illustrated in Figure 4. If the line joining two landmarks makes an angle
Ø with the animal's current X axis (assuming it to be employing Cartesian co-
ordinates for its egocentric frame of reference), and the X co-ordinate of one
of the landmarks (A) is Xa, then the X co-ordinate of some goal location (the
platform, P, in this case) in the current frame of reference is given by X =
UcosØ + VsinØ + Xa. Similarly the Y co-ordinate is given by Y = UsinØ -
VcosØ + Ya, where U and V are constants that depend only on the goal
location. This result applies wherever the animal is in the environment, and
whatever its current egocentric frame of reference. There is one value for each
of U and V which corresponds to a given goal location in a given
environment. Thus, U and V act as a representation of the goal location when
taken in conjunction with perceptual information derived from the appropriate
landmarks, and this representation is rotation and translation invariant. The
problem, then, is to specify how the animal learns the correct values for U and
V at the goal location, and how it learns to link these with the correct
landmarks. If it can do this, then it can always make its way back to the goal if
the landmarks remain unchanged, and can use U and V to stand for the goal.

If we set up a simple connectionist module employing units with linear
activation functions, we can make the activity of the X1 unit a weighted
combination of the activities of the units coding for cosØ, sinØ, and Xa, as
illustrated in the enlargement at the top left of Figure 5. In effect, the network
instantiates the equation for X given above: it merely needs to learn the
appropriate weights U and V to give the correct result (the weight from Xa is
fixed at 1). If the animal is at the goal then X1 can be set to zero and we can
use an error correcting learning algorithm ( e.g. delta rule) to adjust U and V.
The problem we now face, however, is that for a given set of values of Xa and
Ø there are many values of U and V that satisfy the requirement that X1 be
zero. The solution is to allow the animal to 'look around' at the goal, thus
varying Xa and Ø, and to keep running the error correction procedure with
every new 'look'. Only the correct values of U and V will give X1 as zero for
all Xa and Ø combinations, and the network will gradually settle on these.
Once U and V have been learnt at the goal location, the animal can be placed
anywhere in the environment, and, as long as it can estimate Xa and Ø, the
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network will give the correct X co-ordinate of the platform as the activity of
X1. Since a similar scheme gives the Y co-ordinate, the animal will be able to
generate the vector from its current position to the goal location. If, however,
the animal has had insufficient time at the goal location to develop the correct
U and V then its specification of X and Y will be subject to error.
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Figure 4. A schematic illustration of the quantities involved in
McLaren’s (1995) model of spatial navigation. A, B and C are
landmarks. X and Y denote the current x and y axes in the animals
egocentric reference frame.

The model as shown in Figure  5 has X1 represented as a unit whose
activation carries the value for X, and then passes this to a final X Module. A
viable scheme for representing this final value is to use a distributed pattern of
activation across a set of units as shown in Figure 6.

The idea here is that it is the pattern of activation that represents the X
value, not the activation of any one individual unit. This is done by ‘tuning’
each of the units so that it responds to a certain value, v, maximally and
declines in response away from this value. To give a Gaussian distribution, a
function of the form av = Ae-k(x-v)^2 is used for this, where a is the activation of
the unit at value v on the dimension, x is the X value, and A and k are
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constants.  The connection from X1 to each of the units is taken to be of
weight 1.

X

XcosØ sinØa
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Figure 5. The basic architecture of the connectionist implementation of
the Beta model. See text for details.

The point of this scheme is that it tackles the problem of generalising
this approach to environments containing more than two cues. The answer
adopted here is to assume that each pairwise combination of cues is dealt with
separately by the type of network module just described, but that the results of
these computations then combine to give the final X (the lower right portion
of Figure 5 shows how this might be done). But there is then a danger that
fluctuations in the number of cues considered could lead to inappropriate
variation in the output value. This would certainly be the case if we just
summed the various outputs from the various Xi into one unit activation. But
the problem does not arise if, instead, each pairwise combination of landmarks
present and attended to will generate an Xi (which should be zero at the goal
location) which is then passed on by fixed links to the final X module (which
controls behaviour) as constituted in Figure 6. This is because it is the pattern
of activation over units that counts at this level of the system, and the overall
effect is to give not only the right answer, but also one that is independent of
the number of landmarks currently present / attended to in the environment,
since variation in this number will only affect the total activation of the units,
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not the distribution of activation across them. Thus, this system will be robust
to cue removal, and will still be able to generate the correct goal location
provided that at least two landmarks are available, though given any noise in
the system its output will be subject to greater error when based on fewer
landmarks.

0 +ve values-ve v alues

X 1

Figure 6. A distributed pattern of activation representing a value on a
dimension. This allows for a coding of X that is robust to variation in
the number of landmarks used in the computation of X.

Learning, in this case error correction, is driven by the X module units
whose pattern of activity is compared to the desired pattern corresponding to a
value of 0 at the goal (shown in Figure 6) to give an error score. The
maximum activation in the target pattern (A) is simply set to the maximum
currently observed across these units, and the other target activations are
scaled from this. The error score in this case is the sum of the squares of the
differences between desired and actual activations. Error correction is
implemented by taking the error of each Xi unit when at the goal to be this
error score multiplied by -1, ensuring that each unit's activation will (in the
long run) be driven towards zero. This is because learning depends on error
multiplied by activation, and as the error score as defined here will be always
positive, then if X is positive the input to it will be decreased, but if it is
negative it will be increased (and so X will become less negative).
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Simulations
Using this system it is possible to train responding with an arbitrary

number of landmarks, but the simulations reported here used one to four
landmarks as in O’Keefe and Conway’s (1978) experiment. When trained on
four landmarks the system learned to generate a vector to the goal location
very readily, and when then tested on any three or any two landmarks it
succeeded in generating the same vector without significant degradation in
performance. Thus it is able to show the kind of cue redundancy found by
O’Keefe and Conway, though no claim is made here for any correspondence
with the neural basis of those findings. The model considered here is purely
computational in nature and does not seek to map onto specific brain
mechanisms, only to explain behaviour.

We are now in a position to return to the issue of spatial blocking, and
in doing so we find that the conundrum posed in the introduction to this paper
undergoes the most remarkable transformation! The problem was that cue
redundancy and spatial blocking might be incompatible features of a model of
spatial navigation that used error-correction. The resolution offered here is
that it is because of cue redundancy that our error correcting model will now
deliver blocking. If a goal location had already been learned with three cues,
and now a fourth is added, then the error signal would necessarily be relatively
small, because of its dilution by the output from the many other x activations
which will be at or near zero already, and learning would consequently be
quite slow. In other words, the output pattern of activation will be near to the
desired pattern corresponding to zero output, and so will give a low error
score and produce slow learning. Consequently the Us and Vs for the fourth
landmark (in combination with the others) would take some time to develop.
If, instead, all four cues were novel then the error term would tend to be larger,
and learning would be rapid (at least initially). By the time the error term
approaches the value for the blocking group the weights involving the fourth
cue will be much nearer their correct values. Performance involving the fourth
cue is thus predicted to be better in this group (given the right amount of
training), and performance on the 'original' three cues may well be somewhat
worse. In summary, blocking will depend on two main features of the model.
First, that learning is error driven, with the error determined by all the
landmarks present. Second, that performance is based on all the landmarks in
a redundant fashion so that any subset of the landmarks will suffice.

Figure 7 shows some typical simulation results for the type of
experiment considered in this paper. The Blocking group has been given
extensive training with landmarks A,B,C prior to training with the complete set
A,B,C,X. The Control group has been trained in exactly the same way on
A,B,C,X after earlier training on P, Q, R (three other landmarks). The results
are quite clear, performance (indexed by a score reflecting the error in X, with
a higher score signifying worse performance) on A,C,X in the Blocking group
is worse than that in the Control group, while performance on A,B,C shows
some advantage for the animals pre-trained with this set of landmarks.
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Figure 7. Simulation results for the spatial blocking preparation used
by Rodrigo et al (1997).

Thus we have a model that can successfully show the required
robustness in the face of cue deletion and demonstrate spatial blocking. I now
consider some further implications of this approach to spatial navigation.

DISCUSSION

The most obvious implication that can be derived from the model with
very little by way of analysis, is that learning to navigate in an environment
will be a function of the experience with that environment. In particular, the
sort of restricted viewing conditions employed by Mazmanian and Roberts
(1983), whereby the animal cannot see all the landmarks when at the goal, and
has only limited experience of the possible variation in appearance (angle,
distance) of those it can see must be expected to lead to poor learning and
poor performance. This was the result found by Mazmanian and Roberts. It
can be explained in model terms by appealing to the need to sample the
landmark combinations learned about from a variety of different orientations
when at the goal. If the viewing angle is restricted the possible variation will be
limited and learning will take longer to reach asymptote; indeed, if too little
variation is possible, it may never reach it.

Another prediction of the model follows from the fact that only one of
the landmarks need be proximal, in the sense that the distance to it can be
assayed. If we let landmark B in Figure 4 recede into the far distance then the
equations given still apply, but now B will serve simply as a directional cue.



Redundancy and blocking in spatial domain 89

Collett, Cartwright, and Smith (1986) provide evidence relevant to this issue
derived from experiments with gerbils. The animals were trained in an open
arena containing distal cues and more proximal landmarks placed in the arena.
Animals searched in the appropriate spot when trained to find seeds at a
constant distance and direction from a single cylindrical landmark. The
landmark and seed were translated about the arena during training, and the
animal's start point was also varied. This suggests that distance information is
provided by the landmark, but that the distal cues provide the necessary
orientation, as this will not be greatly affected by the movement of objects and
animals within the arena. Note, however, that it is not simply the case of some
distant cue(s) being used as a "beacon" to orient the animal. This would lead
to errors when the landmark was moved. The distal cues must be used to
compute some reference direction that is relatively independent of location.
This could then be used in conjunction with the more proximal landmark to
give a vector to the goal, as the model considered here would predict. The idea
is shown in Figure 8.
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Figure 8. The cylindrical arena used by Collett et al (1986) with both
proximal (A) and distal (B) cues. The model generalises well to this
case as long as at least one cue is near enough for its distance to be
estimated. The more distal cues give directional information (Ø).
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Collett et al were also able to demonstrate that gerbils could encode
goals in terms of proximal landmark arrays if they were the only reliable cue,
i.e. if the array and goal were translated and rotated during training. They will
use this configurational information even when the distal cues can be
exploited, as they showed by performing an experiment that brings the two
sets of cues into conflict. Gerbils trained to search for food in the centre of an
equilateral triangle that was translated about the arena during training were
then tested on the triangle rotated through sixty degrees. The result of this was
that the animal searched in the centre of the triangle (correct according to array
based information) and at three other locations just outside the triangles
boundaries midway along its sides. The latter locations are those that
correspond to partial matches between the vectors from the landmarks to the
goal coded with respect to the reference direction provided by the distal cues.
It may be that the model offered here is the only one that can accommodate
both types of search result observed in this experiment.

A final consideration concerns studies of overshadowing in the spatial
domain ( e.g. Sanchez, Rodrigo, Chamizo & Mackintosh, 1999) and their
relationship to the model outlined here. Overshadowing is often considered to
be closely related to blocking as an empirical phenomenon, and both are often
explained in terms of an error correcting learning algorithm. This is not the
approach taken here, however, since the model developed in this paper will not
predict overshadowing. Instead I propose to interpret the findings of studies
of overshadowing in the spatial domain as relating more to the issue of
landmark identification, an issue glossed over up to this point in our
discussion of spatial learning. It is clearly a prerequisite of the model
described here that landmarks can be accurately  identified and linked to the
appropriate coefficients if the animal is to navigate successfully. It would be
disastrous to apply a set of coefficients to the wrong landmarks, as this would
generate spurious goal information. I would expect the identification
mechanism to differentiate well between similar landmarks, as confusion
could lead to major errors in estimating goal location. With these
considerations in mind, I note that studies that have demonstrated
overshadowing in the spatial domain tend to use a manipulation of the
landmarks that would fall foul of such a sensitive identification mechanism. In
Sanchez et al (1999) one landmark had both visual and auditory components
during training. On test one component was removed and this resulted in
worse performance. An interpretation in terms of overshadowing is possible,
but one in terms of generalisation decrement is also viable, and this would fit
in with the explanation offered here. If the landmark had changed sufficiently
that it was not considered to be the same landmark any more then it would no
longer be of any use for navigation. Further studies which show that training
involving a landmark with just a visual component say, before the addition of
an auditory component on test does not result in a similar decline in
performance are not necessarily a problem for this explanation. It may be that
if a full feature match is obtained then the landmark identification mechanism
is satisfied, and the presence of additional features is deemed irrelevant, or
they are construed as another landmark. If that were so, then there is no
reason to expect any generalisation decrement in such a case.
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In conclusion, the model offered here is by no means complete. For
example: it currently has little to say about landmark identification, or how that
is used to engage appropriate learning to a given landmark. But it does show
how a relatively sophisticated guidance system could, in principle, explain a
number of basic phenomena with respect to spatial navigation. Given this, I
hope that the reader will agree with me that it is an approach to modelling
spatial navigation that warrants further development.
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