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Abstract. Here, we investigate whether the bulk or the shear Zhang et al. (2011) investigated the temperature and pres-
is the appropriate modulus for the defect parameters in difsure dependence of oxygen self-diffusion coefficients (see
ferent materials by focusing on those of geophysical interestbelow) in a variety of materials of geophysical interest such
We show that the self-diffusion process and just also the bulkas Mg SiOy4 polymorfs (forsterite, wadsleyite and ringwood-
modulus should be related to defect parameters. It is this inite) and MgSiQ perovskite. They found that the activation
terrelation which accounts for the emission of electric signalsenergy as well as the activation volume are directly related
before fracture, and is thus in accordance with the physicato the bulk modulus through theBQ model (Varotsos and
basis of the Seismic Electric Signal prior to earthquakes inAlexopoulos, 1986), of which a brief description will be
Greece. given below. A similar relation of the defect Gibbs activation
energy and activation volume to the bulk modulus has been
also verified by Dologlou (2010), in the case of self diffusion
in lithium hydride.

Here, we check whether in various defect processes the

During the last 3 decades, low frequeneyl(Hz) transient ~ Shear or the bulk is the appropriate elastic modulus for the
changes of the Earth’s electric field, termed Seismic Electridhterconnection of the defect parameters with the bulk prop-
Signals (SES), have been found to precede major earthquak@éties focusing on materials prevailing in the Earth’'s mantle
in Greece (Varotsos and Alexopoulos, 1984a, b; Varotsos e@ind thus of geophysical interest.

al 1986, 1988, 1993b ). The model proposed by Varotsos

and AIexopoqu_s, 1986 for th_e SES generation is based OB The B model

the pressure stimulated polarization currents (PSPC) which

are emitted from a solid containing electric dipoles upon apefect parameters can be directly estimated by means of the
gradual increase of the pressuteThese dipoles, which are . g model which interconnects the Gibbs eneggywith
formed between aliovalent impurities and vacancies that apthe pulk expansivity and elastic data according to the for-
pear in the crystal for charge compensation (Kostopoulos efyla (Varotsos, 1976, 1977, 2007a; Varotsos and Alexopou-
al., 1975), change their orientation with a relaxation time |os, 1977, 1978, 1980a, 1986; Varotsos et al., 1978):

given ast = (A\v) lexp(g/kT), wherev is the attempt fre- P

quency for a jump to a number afaccessible pathg isthe ~ § =¢ B @)
temperature angd is the Gibbs energy for the re-orientation where the superscripti™ stands for the different process
process (activation). Pressure affects the valyeafcording  mechanism, (formation, migration and activatioB)js the

to the relationw = (dg/d P)r wherev stands for the migra- isothermal bulk modulus? is the mean atomic volume, and
tion or activationvolume. In case that <0 (Varotsos and ¢’ is a dimensionless constant which can be considered as
Alexopoulos, 1980b; Varotsos et al., 1993a) an increase inndependent of temperature and pressure. This model has
pressure leads to a decrease of the relaxation tim&hen  been successfully applied to a variety of cases including rare
the increasing pressure reachesritical value P = P, a gas solids (Varotsos and Alexopoulos, 1984c), alkali and sil-
transient electric current arising from the cooperative re ori-ver halides (Varotsos and Alexopoulos, 1978, 1979, 1986;
entation of dipoles is emitted. This transient current consti-Varotsos and Miliotis, 1974; Kostopoulos et al., 1975), al-
tutes the SES (Varotsos and Alexopoulos, 1984a, b). kali halide mixed crystals (Varotsos and Alexopoulos, 1980c;
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Varotsos, 1981), diamond (Varotsos, 2007b), fluorine supe-
rionic semiconductors (Varotsos, 1976; 2008), as well as for 5 |
the electric signals emitted from crystalline materials under
pressure in a similar fashion as in the case of seismic electric
signals (SES) detected prior to large earthquakes (Varotsos$
and Alexopoulos, 1984a, b; Varotsos and Lazaridou, 1991;2 -32 1
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¥

experimental

Varotsos et al., 2002, 2005, 20064, b, 1986). T
40 -
3 Application of the ¢ B2 model in periclase 44 T . . T . .
0 20 40 60 80 100 120

For a single operating mechanism, the self-diffusion process
at different temperatureg, is described in terms of activa-

P GPa

tion Gibbs energy?®“tas

D= favpexp(—g®YkpT) )

where f is a numerical constant depending on the diffusion

mechanism and the structuke the lattice constant andis

Fig. 1. Pressure dependence of the self diffusion coefficient of O in
MgO for T =2000K. Triangles denote the experimental data and
solid circles the calculated ones.

Based on the elastic and expansivity data of Sushil (2005)

the attempt frequency. A combination of Egs. (1) and (2) (Tables 3 and 4), we calculate the valueseofind  for
leads to different pressures af = 2000K. Let us give an exam-
ple for P =117GPa. From Table 3 of Sushil (2005),
V(T,P)/V(Tp,0)=£2(20000)/ 2 (Tp,0) =1.0798 and thus
©(200Q0) = 1.0798 x 9.261 x 10-2*cm® = 10.00003 x
10-24cmd. Onthe other hand from Table 4. of Sushil (2005),
V(T,P)/V(T,0) = Q(2000117)/K(200Q0) = 0.6609

D= fa?vpexp(—c®'BQ/ kpT) (3)

If for constant temperatur@ (or pressureP) and for a
given pressureP (or temperaturd’) the self diffusion coef-
ficient D; is known, the constanf can be estimated from

the formula: which leads t02(2000117= 6.6091x 10~?*cm? and thus
kT D ®(2000117 = 3.7532x 108cm.

e ——In— (4) By inserting in Eq. 4) for the highest pressure
BiQi fajvp P = 117Gpa, the corresponding valueszooa117) =

. 8 _ 24 _
where the subscripi* stands for the value of each parameter 3-7532x 10-°cm, Q(o0a117 = 6.6091x 10~**cn?, B =
atP=P (orT=T)). 5160 kbars (Sushil, 2005; Table 6) and the diffusion coef-

Once thec® has been calculated, the self diffusion co- ficient D =4.03x 10-42m?s™* for oxygen (Ita and Cohen,

efficient D at any other pressure and/or temperature can be-997) We obtain-¢!=0.666+0.01 (the error is due to the

derived by using Eq. (3) if the values af vp, B andQ at ~ uncertainty in the estimation &f andvp).

each pressure and/or temperature are known. Through Eq. (3), the diffusion coefficient3 of oxygen
We will now proceed to the estimation of the self diffusion are estimated for the pressure range (9-117) GPa for which

coefficient of oxygen in periclase (MgO) at temperatiire exp_enmentall data are avallaple (Ita an_d Cphen, 1997)_. The

2000 K and pressure range (9.21-117) GPa for which experderived relation logD) = f(P) is shown in Fig. 1 where cir-

imental data are published (Ita and Cohen, 1997). These argles denote the calculated diffusion values and triangles the

temperature and pressure conditions similar to those prevailXPerimental ones (Ita and Cohen, 1997).
ing in the lower mantle. Periclase is one of the major earth- Thus, from a single measurement and by means of the

forming minerals with a NaCl-type structure and it plays acBQ model,. the diffusion coefficients can be succe§sfully
significant role in the physics and chemistry of the lower reproduced in a number of representative earth-forming ma-

mantle of the Earth and in related seismology and geody{erials and crystalline solids (Zhang etal., 2011; Varotsos and
namics. Alexopoulos, 1986; Dologlou, 2010).

At room pressure and room temperature, the lattice con- e will now examine whether the bulk or the shear mod-
stantisxo = 4.20x 10-8 cm (Geneste et al., 2009) and conse- ulus is the appropriate model for those materials. The defect
quently the atomic volum& = ¢3/8=9.261x 10-24cn®. ~ Volumev is defined as:

The values of the bulk moduluB at 7 =2000K and for 4 — (dg/dP) (5)
the pressure range (9—117) GPa are taken from elastic and ) )

expansivity data reported by Sushil (2005) (Table 6). TheBY inserting Eq. (1)£ = ¢B<2) in Eq. (5) we have:

Debye temperature ®p =927.4K (Zhao et al., 2007) and /¢ = (dB/dP —1)/B (6)

thusvp = 19.315x 10'2s~1 while the numerical constant is

taken f = 0.78. Since the quantitydB/d P)r significantly exceeds unity,

e.g. usually d B/d P)r lies in the range 4 to 8, the above
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