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Abstract. In this study, the reliability of different versions simulation process itself introduces further sources of uncer-
of autoregressive error models as post-processors for probdainty such as uncertainty in model structure, model parame-
bilistic streamflow forecasts is evaluated. Rank histogramgers and initial states of the precipitation-runoff model (Seo et
and reliability indices are used as performance measures. Aal., 2006). These other uncertainties, labelled as hydrologic
algorithm for the construction of confidence intervals to in- uncertainties, should also be accounted for in order to obtain
dicate ranges of reliable forecasts within the rank histograms well-calibrated probabilistic forecast. A treatment of the
is presented. To analyse differences in performance of thénydrologic uncertainties in a lumped form can be achieved
post-processors, scatter plots of the standardized residuals tfirough a hydrologic uncertainty processor (Krzysztofowicz,
the error models are generated to assess the homoscedacit999). In the context of the forecast chain, such a hydro-
of the residuals with respect to streamflow. A problem of dis-logic uncertainty processor can be labelled as post-processor
torted impressions may appear when such plots are generat€8eo et al., 2006).

with a regular x-scale. The problem is analysed with both |y this study, different versions of autoregressive error
synthetic and real data, and a rank scaled x-axis is proposeghodels are applied as post-processors to the HBV model
to remedy the problem. The results of the study reveal larggpergstim, 1992). The aspects addressed with the different
differences in the reliability of the post-processors. Versionsyersions are the type of transformation applied to the original
with empirical distribution functions are clearly superior to streamflow values, the formulation of the parameters of the
those with standard normal distribution, but for validations post_processor as either constant or state dependent, and the
with independent data their rank histograms still lie outsidetype of distribution function used for description of the resid-
of the confidence bands for reliable forecasts. uals. In Morawietz et al. (2011) the performance of these
post-processors was evaluated with the discrete ranked prob-
ability score, an evaluation measure that mainly characterizes
1 Introduction the sharpness of a probabilistic forecast (Carney and Cun-
ningham, 2006). In this study, the post-processors are eval-
Many studies that aim at a description of the uncertaintiesuated with respect to their reliability. Rank histograms (Ta-
of a streamflow forecast do this through an explicit descrip-lagrand et al., 1997) and reliability indices (Delle Monache
tion of the main input uncertainties, i.e. the meteorologi- et al., 2006) are used as evaluation measures for the relia-
cal uncertainties (e.g. Roulin, 2007; Thielen et al., 2009;bility. Furthermore, the homoscedacity (i.e. equal scattering)
He et al. 2010: see also review on ensemble flood foreOf the residuals of the post-processors was investigated us-
casting by Cloke and Pappenberger, 2009). Distributiondnd scatter plots of standardized residuals versus simulated
of the meteorological variables, represented through a finitestreamflow. Within the evaluation, two aspects are especially
number of values, are transformed through a deterministi@ddressed.1j For the rank histograms it needs to be tested
precipita’[ion_runoﬁ model into a distribution of simulated if deviations from the uniform distribution are Significant.

streamflow values that represent the forecast. However, th&s an alternative to the chi-square and similar tests (Hamill
and Colucci, 1997; Jolliffe and Primo, 2008), we propose a

construction of confidence intervals for the rank histograms

Correspondence tayl. Morawietz that not only allow the detection of significant deviations but
BY (martin.morawietz@geo.uio.no) also their visualization in the plots of the rank histogram.
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(2) The scaling of the x-axis in scatter plots for assessing howherea,; ando, are the parameters of the error model, and
moscedacity has a strong influence on the visual impressiors the standardized residual error described through a random
and may lead to distortions and misinterpretations. We il-variable.

lustrate the problems with both real and synthetic data, and Solving the error model for the observed streamflow at a
propose a scaling that remedies the problem. future timer yields:

0y =8+, (0;—1— ;1) +0:r& (5)

2 Methods
With « being the pdf ot,, the density of an observed stream-

2.1 The probabilistic streamflow forecast flow o, conditioned ory;, 0,—1 ands,_1 is equal to the den-
sity of the valueg, that corresponds to through Eq. §):

A probabilistic streamflow forecast that accounts for both

the input uncertainties and the hydrologic uncertainties(o:ls:,0;-1,5:-1) =k (¢;) With g, =

can be described through the law of total probability

(0r —8¢1) — s (0r—1— 51-1) (6)

Oy

(Krzysztofowicz, 1999): l.e.
T @(orlsr,01-1,51-1) =k <(0t_Sl)_at(0t_l_St_1)> @)
Waly) = [ plols.nmtinds @ 2
“s0 Equation {) constitutes a post-processor as defined in

Sect. 2.1. The variablg from Egs. () and @) is now real-
ized through the two variables observed streamflow and
simulated streamflow;_; at the timer—1 where the forecast
is generated. Witlb and K being the cumulative distribu-

Y is the probability density function (pdf) of the observed
streamflowo, for a future timer, conditioned on a variable
y (y may also stand for several variables; the specific im-
plementation O.fy for this study is given n Sect_. 2.2)r is tion functions (cdfs) corresponding and« respectively,
the pdf of the simulated streamfloywthat is obtained, when it follows equivalent to Eq.7):
the distributions of forecast temperature and forecast precip- q q4-4:
itation are transformed through a deterministic precipitation-

®(or]s1,00-1,8-1) =K

runoff model. Thusr incorporates the input uncertainties

(meteorological uncertainties) but not the hydrologic un- . )
certainties. The hydrologic uncertainties are accounted forl N€ following three aspects of the post-processor are inves-

(o _St)_at(ot—l_st—l)> (8)

Oy

throughe, the pdf of the observed streamflewconditioned ~ tigated:

on the simulated streamflow and the variable. The den- 1. Parameters: state dependent (SD) formulation of the pa-
sity ¢ thus constitutes the hydrologic uncertainty processor  rametersy, ando, versus state independent parameters
Or post-processor. (Sl).

In this study, the focus is on the hydrologic uncertainty.
Therefore, to remove the influence of the meteorological un- 2. Transformation: logarithmic transformation (Log) of
certainties, observed values of precipitation and temperature  the original values of observed streamflo@gys, and
are used as input to the precipitation-runoff model as a rep-  simulated streamflowQ sim,
resentation of a perfect meteorological forecast. The density

7 of the simulated streamflow will thus become a Dirac 0r =IN(Qobs(?)) 9
delta functions(s;) and the probabilistic forecast densify
becomes equivalent to the post-processor depsity s; =IN(Qsim(1)) (10)
Y (or|y) =@ (orlst,y) )

versus square root transformation (Sqrt)

01 =+/Qobs(1) (11)

2.2 Autoregressive error model as post-processor

The simulation errors of the deterministic precipitation-

runoff model can be described through an autoregressive er- ¢ _ /o7 (12)

ror model:

d =ad,_1+0,e 3) 3. Distribution: standard normal distribution (Norm) for
the densityc of the standardized residualsversus an

The simulation errod; is defined as difference between the empirical distribution (Emp).

transformed observed streamflaw, and transformed simu-

lated streamflows; : Each of the three aspect has two possible realizations, and by

forming all possible combinations of the three aspects, eight
di=o0;—s; (4) versions of post-processors are generated (Table 1).
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Table 1. Model versions investigated in this study.

Is as post-processors 111

As threshold swgresnh the average simulated snow water
equivalent that corresponds to a snow cover of 10% is used.
As thresholdyinresh the 75-percentile of the observed stream-

Version Label: . . N
Parameters.Transformation.Distribution flow of the calibration period is used.
1 SD.Log.Norm 2.2.2 Empirical distribution function
2 Sl.Log.Norm
3 SD.Sqrt.Norm The empirical distribution function is based on the empirical
4 SI.Sgrt.Norm standardized residuals
5 SD.Log.Emp
. di —od;—
6 Sl.Log.Emp R (15)
7 SD.Sqrt.Emp Ot
8 Si.Sqrt.Emp

Table 2. Five classes of meteorological and snow states (modified
from Morawietz et al., 2011).

~.

~

Meteorological and snow states

T; <0°C

T; > 0°C andP; = 0mm and SWE= sweesh
T; > 0°C andP; = 0mm and SWE> SW@esh
T; > 0°C andP; > 0 mm and SWE< swW&yesh

of the error model. A set of standardized empirical residuals
&¢,8 €{1,2,...,G}, that constitutes the empirical distribution
function, is calculated from all days=1, ... G of the cal-
ibration period after the parameters of the error model have
been estimated.

2.3 Evaluation
2.3.1 Rank histograms and reliability indices

The property of reliability, also known as statistical consis-

GO WN

T; > 0°C andP; > 0mm and SWE> SW8yesh tency (Talagrand et al., 1997), empirical validity (Carney and

2.2.1 State dependent parameter formulation

Cunningham, 2006) or calibration (Carney and Cunningham,
2006), describes the property of the forecast being correct in
a statistical sense. That means that the predicted probabilities
are in agreement with the verifying observations (Talagrand,

As state dependent parameter formulation, a parameter der997). In terms of this definition, reliability is a property

scription used at the Norwegian Water Resources and Energihat can only be evaluated for a probabilistic forecast and not

Directorate (NVE) is applied (Langsrud et al., 1998). Statef

dependence of the parameters is realized in three ways:

or a deterministic forecast. A measure to evaluate the re-
liability is the rank histogram (Anderson, 1996; Hamill and

www.adv-geosci.net/29/109/2011/

1. Firstly, the parameters, ando, of the autoregressive Colucci, 1997; Talagrand, 1997). For a continuous proba-

bins, 1.. N, with equal width 1N. For a probability fore-

o =ai@)+bst (13) cast with forecast distributiod, the nonexceedance prob-
ability F(x) for the verifying observation: is determined.
In or = Aiy + Bs; (14)  Itis checked, into which bin the probabili®(x) is falling.

Secondly, the parametets,, and A;, of the linear Repeating this over a number of forecasts and counting the
' relations can assuMme diff((ta)rent vallﬁzas depending oumber of occurrences df(x) in each of the bins generates
the states defined through the variables, temperaiyre a discrete distribution which represents the rank histogram.
precipitation P, and simulated snow water equivalent For a well-calibrated forecast, the probability/©fx) falling

SWE at timer. It is distinguished if the temperature into a certain bin is equal for all bins, i.e.M/ Thus the rank
is below or above OC, if precipitation occurs or not,

histogram from such forecasts constitutes a sample from a
and if the snow water equivalent is above or below a?rljr(;]restc?rﬁgIl;zamdgrlzt\r/lg:gggr:\”;hrtzr?kcﬁigyorrlg;ﬂzg?npzncali-

certain threshold value swsri If the amount of snow brated forecast should be a, roximatel gimiform For the

is below sweyesn the catchment is assumed to behave bp y '

as a snow free catchment. Through combination of

current study, the forecast distributiéhis given through the
the three variables, five different statg€s) are distin- post-processor cdb (Eq. 8) with the verifying observation
guished (Table 2).

x being equivalent to the observed streamflgw

To condense the rank histogram into one numerical mea-
. Thirdly, two different sets of parametets, b, A;, sure, the reliability index (Delle Monache et al., 2006) can
B, j=1, ..., 5, are used, depending on if the simu- be calculated as a summary measure for the flatness of the
lated streamflow at time is above or below a flow rank histogram. As the number of bins is the same for all
thresholdginresh rank histograms in this studyVE=10), the correction factor

Adv. Geosci., 29, 108-2011
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that accounts for different numbers of bins becomes equal to 3. Sort the values of i in descending order and the val-

one and the reliability index is calculated as

__ mean distance from ideal bin cou
Ri= N ideal bin count Q 100
¥ 2 |count—
==L X100

N

(16)

whereN is the number of bins of the rank histogram, ceunt
is the number of times the probabilify(x) of the observed
variable x is falling into thei-th bin, andr is the sum of
the countfori =1,... N, i.e. the sample size or number of
forecasts.

Finally, to summarize the overall performance of the dif-
ferent post-processors, the average reliability index over al
catchmentsRlI, is calculated as:

_ 1E&
Rl=— RI.

where R} is the reliability index of catchmemt andC is the
number of catchments.
An overall reliability might also be assessed through an

(17)

average rank histogram with the bin counts pooled over all
catchments. However, if the individual rank histograms have

ues of J, in ascending order. Set the lower boundary
of the confidence interval;kequal to the first element
of the sorted series of;| and the upper boundary, lof

the confidence interval equal to the first element of the
sorted series of ju

4. Set the lower boundary; lequal to the next element of
the sorted series of,land the upper boundary, lequal

to the next element of the sorted series gf h

5. Repeat step 4 until the number of histograms for which

h,, > b, orl,, <b;is equal tax* M.

The final values of the lower boundarydnd upper boundary

bu constitute a confidence interval which encloses the frac-
tion (1—«) of sample histograms that come from a uniform
distribution. A fractionx of the histograms will have at least
one bar that lies outside the confidence interval. The con-
fidence intervals are constructed so that the fraction of his-
tograms that exceed the upper boundary is equal to the frac-
tion of histograms that go below the lower boundary. How-
ever, these fractions will usually not be equakfa but rather
larger as a number of histograms that exceed the upper bound

will also go below the lower bound.

different shapes, an overlay of such histograms may mask 3 3 chojce of x-scale in scatter plots for assessing

deficiencies in the individual histograms. Therefore, an over-

homoscedacity

all evaluation through averaged reliability indices seemed

preferable.
2.3.2 Confidence intervals for rank histograms

To check for a given rank histogram if deviations from the

uniform distribution are significant, chi square goodness of

fit tests (Hamill and Colucci, 1997) or similar tests (Jolliffe
and Primo, 2008) can be applied. However, in order to ge
a visual impression, we found it desirable to not only char
acterize the significance by a single test statistic and the c
respondingp-value, but to visualize it through confidence

intervals in the plots of the rank histograms. Therefore, an

algorithm for the construction of such confidence intervals

based on Monte Carlo simulations was developed. The algo,

rithm is described as follows.
The confidence intervals are constructed for the null-

hypothesis that the rank histogram belongs to a well cali-
brated forecast, i.e. that the sample rank histogram come

from a uniform distribution. For a rank histogram with
bins which is derived from a number efforecasts, a confi-
dence interval for a significance level @fis constructed as
follows.

1. Generate a number @f sample histograms. Each his-
togram is generated by samplingimes from a uniform
distribution with the possible outcomes 1N...

2. Determine the highest count,land the lowest count,|
in each histogram =1...M.

Adv. Geosci., 29, 10918 2011
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Plots and their visual evaluation are important tools for anal-
ysis of data and results in hydrology and other sciences. Of-
ten they reveal aspects and nuances much clearer than nu-
merical measures. However, some plots may be misleading
when not generated or interpreted in the right way. One case
of such plots that may give a distorted picture appeared in this
study when producing scatter plots to assess the homoscedac-

tity of the standardized residuals. The problem will be il-

lustrated in the following paragraphs with both real data and
a synthetic example, and a solution to eliminate the distorting
influences is given.

The term homoscedacity is defined as having the same
variance. Two random variables are homoscedastic if they
have the same variance, and a variaplean be described
as homoscedastic with respect to another variablié the
variance of the variable does not vary with varying values
of x. A common way for checking or illustrating this is to
Blot the variabley versusx and to evaluate if the scatter of
y is constant over the range ofvalues. In this study, the
homoscedacity of the standardized residualsf the post-
processors with respect to the variable simulated streamflow
Osim Was checked using scatter plots of standardized resid-
uals versus simulated streamflow. Figure 1a shows an ex-
ample plot for the catchment Bulken for the SD.Log model.
The visual impression is that the residuals are strongly non-
homoscedastic and that the variance ofiecreases with in-
creasing values afsim. As the actual calculations were per-
formed with the log-transformed values of streamflow, the

www.adv-geosci.net/29/109/2011/
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Fig. 1. Plots of standardized residuals versus simulated streamflow with different scales on the x-axis for the SD.Log model for the
catchment Bulken, period 1 January 1962—-31 December Z8ps&riginal scale(b) logarithmic scale(c) rank scale.
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Fig. 2. Plots of the standard normally distributed variableersus the variable, which has a non-uniform density, with different scales on
the x-axis;(a) original scale{b) rank scale.

same plot also was generated using the log-transformed valAs the data in the vector of-values are unordered random
ues of simulated streamflow I@gin) on the x-axis (Fig. 1b).  values coming all from the same distribution, any associa-
Surprisingly, this plot gives a very contradictory impression tion of this data with a vector of another variableresults

of the behaviour of the variance ef compared to the plot in a data set wherg is by definition homoscedastic with re-

in the original scale. While the variable still appears non- spect tox. However, in a plot ofy versusx (Fig. 2a), the
homoscedastic, the variance now seems to rather increasésual impression is distorted through the decreasing density
with increasing values of streamflow. The explanation for of points in x-direction, and the data appears to be strongly
these seemingly contradictory impressions is found in thenon-homoscedastic with seemingly decreasing variance of
varying density of the points in x-direction in the two plots. the variabley with increasingc-values.

A non-constant density of the points in x-direction distorts | order to remedy the distorting effect of a non-constant
the_ picture gnd makes an evaluation of the variance of th‘?jensity of the points in x-direction, a plot to check for ho-
variables, difficult. moscedacity should be made against the rank of the variable

The effect can be illustrated with an example of synthetic x instead of the original values. This generates a transformed

data. A data setx( y) is defined so that the variableis  x-scale with a constant density of the points in x-direction.
homoscedastic with respect to the variablebut the data  Figure 2b shows such a plot for the example of synthetic
points have a non-constant density in x-direction. The data igjata. With a constant point density in x-direction, the vari-
generated as follows. ance of the variable appears as constant over the whole

range ofx-values, as it would be expected from the genera-

1. A vector of y-values is generated by random sampling tion of the data as a homoscedastic data set. Figure 1¢ shows
10000 times from a standard normal distribution. the analogue plot for the example of real-world data. The

impression is very different from both the plot with the origi-

2. A vector of x-values is generated by random sampling nal scale (Fig. 1a) and the plot with the log-transformed scale
10000 times from a non-uniform distribution. The dis- (Fig. 1b). Though the data might not be totally homoscedas-
tribution used in this example is a gamma distribution tic, the non-homoscedastic behaviour seems much less pro-
with shape and scale parameters equal to one. nounced than any of the other two plots would suggest.

www.adv-geosci.net/29/109/2011/ Adv. Geosci., 29, 10%-2011
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Table 3. Overview of the five validations (from Morawietz et al., 2011).

Label Validation type  Period for validation  Period for parameter estimation
Cal.1+2 Dependent 1+2 (1962-2005) 1+2 (1962-2005)
Cal. 1 Dependent 1 (1962-1983) 1 (1962-1983)
Cal. 2 Dependent 2 (1984-2005) 2 (1984-2005)
Val. 1 Independent 1 (1962-1983) 2 (1984-2005)
Val. 2 Independent 2 (1984-2005) 1 (1962-1983)

We may conclude that, while different scales of the x-axis of the precipitation-runoff model. Based on the forecasts dis-
may reveal different aspects of the data, for scatter plots tdributions® (o,|s;,0,-1,s;—1) and the actual observationg
evaluate homoscedacity, an x-scale using the rank okthe rank histograms were generated and the corresponding reli-
variable is preferable in order to avoid distortions through ability indices were calculated according to E@6) This

non-constant data density in x-direction was done for each of the eight post-processors, version 1-8,
o _ in each of the 55 catchments and for all five validations (Ta-
2.4 Practical implementation of the study ble 3), i.e. altogether 2200 rank histograms and reliability

. _— . indices were derived.
The underlying deterministic precipitation-runoff model

used to generate the series of simulated streamflovs
the HBV model (Bergstim 1976, Bergstim 1992). The
model version used in this study is the “Nordic” HBV model
(Seelthun, 1996). The model is run with daily time steps with
catchment averages of mean daily air temperafysnd ac-
cumulated daily precipitatio®, as model inputs and mean
daily streamflowQsjm(7) as model output.

Fifty-five catchments throughout Norway have been se-
lected for the study. Basis for the selection was a com-
mon data period from 1 September 1961-31 December 200
Catchment sizes vary from 6 to 15450 %mwith the majority
ey catohmart, the Fov el ias ran orth com. _ The most apparent aspect i the Superior reliabityof o
plete period of data. The first four months of each model run‘als with an empmca] d|str|but|oq fu.nct|.on (Figs. 3e—f and
were discarded as warm up period and the remaining perioée_f) over models with normal distribution. For the depen-

1 January 1962-31 December 2005 was kept to investigat etnt V?jlﬁ]atlonh(':'g' 4e—ff) thte ";‘.”';.*I‘.'tsm?;?‘ms a1rte absolutely
the eight post-processors. at and thus show a perfect reliability. This is of course ex-

. : : pected through the definition of the distribution function by
For each of the eight post-processors, three different pa he empirical residuals of the calibration period. But also for

i from three diff i f ; us of the ¢ :
rameFer sets were estimated rom three different periods o he independent validation (Fig. 3ef) the rank histograms
data in each of the 55 catchments: . . .
have arelatively flat appearance; the histograms of the differ-

3 Results

Figures 3 and 4 show the rank histograms for a selected
catchment (Polmak). Figure 3 shows the results for the in-
dependent validation for Period 2 (Val. 2) and Fig. 4 shows
the corresponding results for the dependent validation for the
same period (Cal. 2). The aspects described for the selected
atchment in the following paragraphs are representative for
he results received in the other catchments (either in all of
them or in the majority).

— Period 1: 1 January 1962—31 December 1983 ent model versions 5-8 look thereby relatively similar. How-
) ever, despite the much better performance over the models
— Period 2: 1 January 1984-31 December 2005 with normal distribution, all rank histograms in Fig. 3e~h

contain bars that lie outside the 95% confidence intervals.
That means that, assuming a significance level of 5%, the
Then the post-processors were evaluated in three dependenull-hypothesis of being well calibrated in a statistical sense
and two independent validations (Table 3). In the dependenbas to be rejected also for models using an empirical dis-
validations, the post-processors were applied to the samtsibution function when they are applied in an independent
data that was used for estimation of the parameters of thalidation.

post-processors. In the independent validations, the post- For post-processors with normal distribution, the results
processors were applied to independent data which had ndor the dependent (Fig. 4a—d) and independent (Fig. 3a—d)
been used in the parameter estimation. validation look similar for each of the model versions 1—

For each day of a validation period, a probabilistic forecast4. All models show significant deviations from a flat his-

was generated using E®)( A time step of one day was used togram. The worst performance has the state independent
as interval between— 1 andt, corresponding to the time step (SI) model with square root (Sqrt) transformation (Figs. 3d

— Period 1 +2: 1 January 1962—-31 December 2005

Adv. Geosci., 29, 10918 2011 www.adv-geosci.net/29/109/2011/
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Fig. 3. Rank histograms for the independent validation in Period 2 (Val. 2) for the catchment Polmak. Red lines indicate 95% confidence
intervals; dashed blue lines indicate the ideal bin count, i.e. a perfectly flat histogram.
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Fig. 4. Rank histograms for the dependent validation in Period 2 (Cal. 2) for the catchment Polmak. Red lines indicate 95% confidence
intervals; dashed blue lines indicate the ideal bin count, i.e. a perfectly flat histogram.

and 4d), followed by the state independent (SI) model withments. However for some catchments, models with square
logarithmic (Log) transformation (Figs. 3b and 4b). The stateroot transformation may perform slightly better instead.
dependent (SD) models (Figs. 3a, ¢ and 4a, c) have a bet- Table 4 gives an overview of the number of catchments for
ter performance. The differences between SD-models withyhich the null-hypothesis of a reliable forecast is rejected.
logarithmic and SD-models with square root transformationThe overview is for all eight post-processors and all five val-
are in general small. In the example shown, the reliability idations. The results are given for confidence intervals con-
index is slightly better for the model with logarithmic trans- structed according to the algorithm of Sect. 2.3.2 (numbers
formation (Figs. 3a and 4a), as it is in the majority of catch- without brackets) and for traditional chi square goodness of
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Table 4. Number of catchments for which the null-hypothesis that the rank histogram comes from a uniform distribution is rejected (sig-
nificance level: 5%); the numbers without brackets are for confidence intervals constructed according to the algorithm of Sect. 2.3.2; the
numbers in brackets are for traditional chi-square goodness of fit tests.

Validation SD.Log.Norm Sl.Log.Norm SD.Sgrt.Norm SI.Sgrt.Norm SD.Log.Emp Sl.Log.Emp SD.Sqrt.Emp Si.Sqrt.Emp
Cal.1+2 55 (55) 55 (55) 55 (55) 55 (55) 0(0) 0(0) 0(0) 0(0)
Cal. 1 55 (55) 55 (55) 55 (55) 55 (55) 0(0) 0(0) 0(0) 0(0)
Cal. 2 55 (55) 55 (55) 55 (55) 55 (55) 0(0) 0(0) 0(0) 0(0)
Val. 1 55 (55) 55 (55) 55 (55) 55 (55) 54 (54) 55 (55) 53 (54) 54 (55)
Val. 2 55 (55) 55 (55) 55 (55) 55 (55) 55 (55) 55 (55) 55 (55) 54 (55)
; ‘ ‘ "o decrease in model performance when going from the depen-
o : © § ' o : dent (Cal. 2) to the independent (Val. 2) validation, whereas
8 = ‘ o for Period 1 there is an increase in model performances. This
§ ] : shows that these post-processors do not have an over-fitting
€1 © § ° o o in the sense that the model performances would consistently
o o o f ° deteriorate in periods with independent data. In contrast, for
g4 © 1 9 ' %0 § the models with empirical distribution (crosses) there is a
1 %% § : consistent decrease of the performance from the dependent
E | ‘ ‘ validation with average reliability indices of 0 to the indepen-
% X % X dent validations with average reliability indices in the order
S : : of 12-14.
To investigate the differences in performance between
o S STV SEVEL models with logarithmic and models with square root trans-
1 formation, scatter plots of the standardized residealger-
Normal distribution (Norm) | | | Empirical distribution (Emp) sus the simulated Streamﬂc@lsim were generated. A rank-
g 2:Dsg:rt g i'DLffg 1 § ELSS";‘H ; §L,Lf§g scale was used for the x-axis to avoid distortion through
‘ : ‘ : ‘ : ] : a non-constant data density in x-direction. Figure 6 gives
Cal. 142 cal.1 Val. 1 cal.2 val. 2 an example with plots for the catchment Knappom that is

Period and validation type

representative for the behaviour in most of the catchments.
- In Fig. 6a the standardized residuals for the state indepen-
Fig. 5. Values of the average reliability indicé®l (Eq. 17) for  gent model with logarithmic transformation show a fairly ho-
the eight post-processors for the different periods with dependenty ,ooqqastic hehaviour, while in Fig. 6b the residuals for the
(white background) and independent (grey background) validation. . . -
corresponding model with square root transformation show
an increasing variance with increasing streamflow values.
For the state independent models with square root transfor-
fit tests (HamIII and Colucci, 1997; numbers in brackets). mation the assumption of a constant standard deviatien
The numbers for the algorithm of Sect. 2.3.2 are either identherefore less justified and this is reflected in their inferior
tical or almost identical to the corresponding numbers for thereliability indices compared to corresponding models with
chi square goodness of fit test. This underpins the usefulnesggarithmic transformation. For models with state depen-
of the new approach of Sect. 2.3.2; the approach gives equivdent parameters, the formulation®fs being dependent on
alent results as the traditional chi square goodness of fit teshe simulated streamflow (Ed44) and other flexibilities in-
while in addition it allows a visualization of confidence in- troduced with the state dependent formulation, can account
tervals in the rank histograms as presented in Figs. 3 and 4.for the more non-homoscedastic behaviour and other defi-
Figure 5 shows the average reliability indid@sover all  ciencies that the state independent models with square root
catchments (EdL7) for the eight post-processors in the three transformation might have compared to the corresponding
dependent validations (white backgrounds) and two indepenmodels with logarithmic transformation. Thus the differ-
dent validations (grey backgrounds). The average reliabilityences between reliability indices of models with logarith-
indices confirm the description of the model performancesmic and models with square root transformation are strongly
given for the example catchment in the paragraphs abovediminished for the models with state dependent parameter
In addition they illustrate if and how average model perfor- formulation.
mances change when going from dependent to independent
validations. For the models with normal distribution (cir-
cles), there is no consistent change. Period 2 shows a certain
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Fig. 6. Plots of the standardized residualsversus rank of the simulated streamfl@y(z) for models with state independent (SI)
parameters for the catchment Knappda);model with logarithmic transformation (Log) of the original streamflow val@iesmodel with
square root transformation (Sqrt) of the original streamflow values.

4 Discussion to identify differentempirical distribution functions for dif-
ferent conditions similar to the estimation of different model

When using autoregressive error models as post—proces;sof‘)s":lrameters for d|_fferg nt condmon_s. W.h'le.the f'r.St a_pproach
may be more satisfying from a scientific viewpoint, it seems

for probabilistic streamflow forecasts, the assumption of am e difficult t iallv for the modification of th
normal distribution of the residuals leads to a relatively weak ore diflicuit to assess, especially Tor the modification ot the
precipitation-runoff model, how this approach can be real-

performance of the post-processors with respect to reliabil—izeoI i practice. The second approach however. thouah less
ity. Use of an empirical distribution function instead strongly P ' PP ’ 9

increases the reliability. However for the independent Va“_sausfymg in terms of its conciseness, may be more straight-

i . . .. forward to investigate.
dations, the rank histograms, though relatively flat, are still - .
significantly different from a uniform distribution. This re- The findings of this study for the performances of the

flects the fact that the distribution functions of the empirical .e'(gj.ht Postprocessors W'.”r‘] respect to the average reliability
residuals of the calibration period are significantly different '?1 ices are ComEa;' € Vt\)”tb';[' € per or(rjnanc%s \cliw't respec_t to
from the distribution functions of periods with independentt € average ranked probabi ity score described In Morametz
data. This in turn is an indication that the implicit assump- etal. (2011). More specific, the findings for corresponding

tion that the distribution of the residuals would be the sametmh?del verS|tcmt‘:,, r'}'ef' :r:r?itielnversrorrls ?'frfe“?gi'?ri%m; c:fthf
for all days, is not true. Rather, the distribution of the empiri- €€ aspects franstormation, parameters or distrioution func-

cal residuals from the calibration period can be thought of ast'on’ do not contradict each other. If ene model is superior

an overlay of different distributions for different days. As we gfférasiﬁrrﬁﬁﬁggmg smaonizlsvlvjmérrii S”rtJ e(i:st Egl?:(jejf;r:'nf]%rdtglz
may not find identical conditions in the period of the indepen- P y

dent validation, the composition of the distributions of the do not differ significantly, but no opposite ranking is found.

individual days is different for the period with independent :Mth;nléhls foz:rft'b'my’ ihe most notaplti dlffer_e_nC(Iezlare
data. Thus, the resulting “pooled” distribution of the em- wo fold. (1) our post-processors with empirical dis-

pirical residuals in the period of independent data becomeérIbUtIOn function, versions 5-8, give equally good perfor-

significantly different from the calibration period, resulting ;noe:ggej.f\?g :;rr]izzeg;o(tar(]aenat\éirsigeé?s“'i?\l!t)é;dgé ;’;hi:f?;
in rank histograms that are significantly different from the ! W Vers| u

uniform distribution. theT rapkegi probability score2) With respect' to the average
reliability index, the four post-processors with empirical dis-
In principle, two approaches can be thought of to furtheripytion function, versions 5-8, are superior over all of the
improve the reliability of the post-processors with empiri- foyr post-processors with normal distribution. However with
cal distribution function for periOdS with independent data so respect to the discrete ranked probabmty score, the four post_
that the reliability diagrams would not be significantly dif- processors with empirical distribution function, versions 5—
ferent from a uniform distribution. The first approaCh would 8, are Superior over the Corresponding post-processor with

be to modify the model structure of the error model (or pos-normal distribution but not necessarily over all four post-
sibly the precipitation-runoff model) so that the distribution processors with normal distribution.

function of the residuals of the autoregressive error model be-
comesidenticalfor all days. The second approach would be
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5 Summary and conclusions Carney, M. and Cunningham, P.: Evaluating density forecasting
models, Trinity College Dublin, Department of Computer
The reliability of eight different versions of autoregressive  Science, Dublin, Ireland, Computer Science Technical Report
error models as post-processors for probabilistic streamflow TCD-CS-2006-21, 12 pp., available athttps://www.cs.tcd.
forecasts was evaluated using rank histograms and reliability ie/publications/tech-reports/reports.06/TCD-CS-2006-21.pdf
indices. The reliability is best for models using an empiri- _ 2006.
cal distribution function for description of the standardized ©!oké, H. L. and Pappenberger, F.  Ensemble flood
residuals, and all models using this approach are equally re- forecasting: = A~ review, ~J. ~Hydrol. 375, 613-626,
liable irrespective of the other two aspect of transformationD doi:10.1016jjhydrol.2009.06.005, 2009.

. . : elle Monache, L., Hacker, J. P., Zhou, Y., Deng, X., and Stull,
type and parameter formulgtlon. The Confldgnce intervals R. B.: Probabilistic aspects of meteorological and ozone re-
that were constructed to indicate ranges of reliable forecasts gional ensemble forecasts, J. Geophys. Res., 111, D24307,
in the rank histograms indicate however, that for independent qoi:10.1029/2005JD006917, 2006.
data these post-processors still show deviations from a reliHamill, T. M. and Colucci, S. J.: Verification of Eta-RSM short-
able forecast. Two approaches that might further improve the range ensemble forecasts, Mon. Weather Rev., 125, 1312-1327,
reliability of the post-processors are indicated. 1997.

The findings for the performance of the different post- He, Y, Wetterhall, F., Bao, H, Cloke, H., Li, Z., Pappenberger,
processors with respect to rank histograms are consistent F» Hu, Y., Manful, D., and Huang, Y: Ensemble forecast-
with the findings for performances with respect to the dis- "9 Using TIGGE for the July-September 2008 floods in the
crete ranked probability score. The post-processor that per- (LngPf(; ﬂ)‘g /:;tggrgef;.z_a13<;aszeoféudy, Atmos. Sci. Lett., 11,
forms best with respect to both performance measures is o o ' '

del with d d f lati SD olliffe, I. T. and Primo, C.: Evaluating rank histograms using de-
model with state dependent parameter formulation (SD) an compositions of the chi-square test statistic, Mon. Weather Rev.,

an empirical distribution function (Emp) irrespective of the 136 21332139, doi:10.1175/2007MWR2219.1, 2008.

transformation type as either logarithmic or square root.  kyzysztofowicz, R.: Bayesian theory of probabilistic forecasting
. via deterministic hydrological model, Water Resour. Res., 35,
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