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Abstract. In this study, the reliability of different versions
of autoregressive error models as post-processors for proba-
bilistic streamflow forecasts is evaluated. Rank histograms
and reliability indices are used as performance measures. An
algorithm for the construction of confidence intervals to in-
dicate ranges of reliable forecasts within the rank histograms
is presented. To analyse differences in performance of the
post-processors, scatter plots of the standardized residuals of
the error models are generated to assess the homoscedacity
of the residuals with respect to streamflow. A problem of dis-
torted impressions may appear when such plots are generated
with a regular x-scale. The problem is analysed with both
synthetic and real data, and a rank scaled x-axis is proposed
to remedy the problem. The results of the study reveal large
differences in the reliability of the post-processors. Versions
with empirical distribution functions are clearly superior to
those with standard normal distribution, but for validations
with independent data their rank histograms still lie outside
of the confidence bands for reliable forecasts.

1 Introduction

Many studies that aim at a description of the uncertainties
of a streamflow forecast do this through an explicit descrip-
tion of the main input uncertainties, i.e. the meteorologi-
cal uncertainties (e.g. Roulin, 2007; Thielen et al., 2009;
He et al. 2010; see also review on ensemble flood fore-
casting by Cloke and Pappenberger, 2009). Distributions
of the meteorological variables, represented through a finite
number of values, are transformed through a deterministic
precipitation-runoff model into a distribution of simulated
streamflow values that represent the forecast. However, the
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simulation process itself introduces further sources of uncer-
tainty such as uncertainty in model structure, model parame-
ters and initial states of the precipitation-runoff model (Seo et
al., 2006). These other uncertainties, labelled as hydrologic
uncertainties, should also be accounted for in order to obtain
a well-calibrated probabilistic forecast. A treatment of the
hydrologic uncertainties in a lumped form can be achieved
through a hydrologic uncertainty processor (Krzysztofowicz,
1999). In the context of the forecast chain, such a hydro-
logic uncertainty processor can be labelled as post-processor
(Seo et al., 2006).

In this study, different versions of autoregressive error
models are applied as post-processors to the HBV model
(Bergstr̈om, 1992). The aspects addressed with the different
versions are the type of transformation applied to the original
streamflow values, the formulation of the parameters of the
post-processor as either constant or state dependent, and the
type of distribution function used for description of the resid-
uals. In Morawietz et al. (2011) the performance of these
post-processors was evaluated with the discrete ranked prob-
ability score, an evaluation measure that mainly characterizes
the sharpness of a probabilistic forecast (Carney and Cun-
ningham, 2006). In this study, the post-processors are eval-
uated with respect to their reliability. Rank histograms (Ta-
lagrand et al., 1997) and reliability indices (Delle Monache
et al., 2006) are used as evaluation measures for the relia-
bility. Furthermore, the homoscedacity (i.e. equal scattering)
of the residuals of the post-processors was investigated us-
ing scatter plots of standardized residuals versus simulated
streamflow. Within the evaluation, two aspects are especially
addressed. (1) For the rank histograms it needs to be tested
if deviations from the uniform distribution are significant.
As an alternative to the chi-square and similar tests (Hamill
and Colucci, 1997; Jolliffe and Primo, 2008), we propose a
construction of confidence intervals for the rank histograms
that not only allow the detection of significant deviations but
also their visualization in the plots of the rank histogram.
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(2) The scaling of the x-axis in scatter plots for assessing ho-
moscedacity has a strong influence on the visual impression
and may lead to distortions and misinterpretations. We il-
lustrate the problems with both real and synthetic data, and
propose a scaling that remedies the problem.

2 Methods

2.1 The probabilistic streamflow forecast

A probabilistic streamflow forecast that accounts for both
the input uncertainties and the hydrologic uncertainties
can be described through the law of total probability
(Krzysztofowicz, 1999):

ψ(ot |y)=

∞∫
−∞

ϕ(ot |st,y)π(st |y)dst (1)

ψ is the probability density function (pdf) of the observed
streamflowot for a future timet , conditioned on a variable
y (y may also stand for several variables; the specific im-
plementation ofy for this study is given in Sect. 2.2).π is
the pdf of the simulated streamflowst that is obtained, when
the distributions of forecast temperature and forecast precip-
itation are transformed through a deterministic precipitation-
runoff model. Thusπ incorporates the input uncertainties
(meteorological uncertainties) but not the hydrologic un-
certainties. The hydrologic uncertainties are accounted for
throughϕ, the pdf of the observed streamflowot conditioned
on the simulated streamflowst and the variabley. The den-
sity ϕ thus constitutes the hydrologic uncertainty processor
or post-processor.

In this study, the focus is on the hydrologic uncertainty.
Therefore, to remove the influence of the meteorological un-
certainties, observed values of precipitation and temperature
are used as input to the precipitation-runoff model as a rep-
resentation of a perfect meteorological forecast. The density
π of the simulated streamflowst will thus become a Dirac
delta functionδ(st ) and the probabilistic forecast densityψ
becomes equivalent to the post-processor densityϕ:

ψ(ot |y)=ϕ(ot |st,y) (2)

2.2 Autoregressive error model as post-processor

The simulation errors of the deterministic precipitation-
runoff model can be described through an autoregressive er-
ror model:

dt =αtdt−1+σtεt (3)

The simulation errordt is defined as difference between the
transformed observed streamflow,ot , and transformed simu-
lated streamflow,st :

dt = ot −st (4)

whereαt andσ t are the parameters of the error model, andεt
is the standardized residual error described through a random
variable.

Solving the error model for the observed streamflow at a
future timet yields:

ot = st +αt (ot−1−st−1)+σtεt (5)

With κ being the pdf ofεt , the density of an observed stream-
flow ot conditioned onst , ot−1 andst−1 is equal to the den-
sity of the valueεt that corresponds toot through Eq. (5):

ϕ(ot |st ,ot−1,st−1)= κ(εt ) with εt =
(ot −st )−αt (ot−1−st−1)

σt
(6)

i.e.

ϕ(ot |st ,ot−1,st−1)= κ

(
(ot −st )−αt (ot−1−st−1)

σt

)
(7)

Equation (7) constitutes a post-processor as defined in
Sect. 2.1. The variabley from Eqs. (1) and (2) is now real-
ized through the two variables observed streamflowot−1 and
simulated streamflowst−1 at the timet−1 where the forecast
is generated. With8 and K being the cumulative distribu-
tion functions (cdfs) corresponding toϕ andκ respectively,
it follows equivalent to Eq. (7):

8(ot |st ,ot−1,st−1)= K

(
(ot −st )−αt (ot−1−st−1)

σt

)
(8)

The following three aspects of the post-processor are inves-
tigated:

1. Parameters: state dependent (SD) formulation of the pa-
rametersαt andσ t versus state independent parameters
(SI).

2. Transformation: logarithmic transformation (Log) of
the original values of observed streamflow,Qobs, and
simulated streamflow,Qsim,

ot = ln(Qobs(t)) (9)

st = ln(Qsim(t)) (10)

versus square root transformation (Sqrt)

ot =
√
Qobs(t) (11)

st =
√
Qsim(t) (12)

3. Distribution: standard normal distribution (Norm) for
the densityκ of the standardized residualsεt versus an
empirical distribution (Emp).

Each of the three aspect has two possible realizations, and by
forming all possible combinations of the three aspects, eight
versions of post-processors are generated (Table 1).
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Table 1. Model versions investigated in this study.

Version Label:
Parameters.Transformation.Distribution

1 SD.Log.Norm
2 SI.Log.Norm
3 SD.Sqrt.Norm
4 SI.Sqrt.Norm
5 SD.Log.Emp
6 SI.Log.Emp
7 SD.Sqrt.Emp
8 Si.Sqrt.Emp

Table 2. Five classes of meteorological and snow states (modified
from Morawietz et al., 2011).

Meteorological and snow states i(t)

Tt ≤ 0◦C 1
Tt >0◦C andPt = 0 mm and SWEt ≤ swetresh 2
Tt > 0◦C andPt = 0 mm and SWEt > swetresh 3
Tt > 0◦C andPt >0 mm and SWEt ≤ swetresh 4
Tt > 0◦C andPt >0 mm and SWEt > swetresh 5

2.2.1 State dependent parameter formulation

As state dependent parameter formulation, a parameter de-
scription used at the Norwegian Water Resources and Energy
Directorate (NVE) is applied (Langsrud et al., 1998). State
dependence of the parameters is realized in three ways:

1. Firstly, the parametersαt andσ t of the autoregressive
error model are formulated to be linearly dependent on
the transformed simulated streamflowst :

αt = ai(t)+bst (13)

ln σt =Ai(t)+Bst (14)

2. Secondly, the parametersai(t) andAi(t) of the linear
relations can assume different values, depending on
the states defined through the variables temperatureTt ,
precipitationPt and simulated snow water equivalent
SWEt at time t . It is distinguished if the temperature
is below or above 0◦C, if precipitation occurs or not,
and if the snow water equivalent is above or below a
certain threshold value swethresh; if the amount of snow
is below swethresh, the catchment is assumed to behave
as a snow free catchment. Through combination of
the three variables, five different statesi(t) are distin-
guished (Table 2).

3. Thirdly, two different sets of parametersaj , b, Aj ,
B, j=1, . . . , 5, are used, depending on if the simu-
lated streamflow at timet is above or below a flow
thresholdqthresh.

As threshold swethresh, the average simulated snow water
equivalent that corresponds to a snow cover of 10% is used.
As thresholdqthresh, the 75-percentile of the observed stream-
flow of the calibration period is used.

2.2.2 Empirical distribution function

The empirical distribution function is based on the empirical
standardized residuals

ε̂t =
dt −αtdt−1

σt
(15)

of the error model. A set of standardized empirical residuals
ε̂g,g ∈ {1,2,...,G}, that constitutes the empirical distribution
function, is calculated from all daysg = 1, . . . ,G of the cal-
ibration period after the parameters of the error model have
been estimated.

2.3 Evaluation

2.3.1 Rank histograms and reliability indices

The property of reliability, also known as statistical consis-
tency (Talagrand et al., 1997), empirical validity (Carney and
Cunningham, 2006) or calibration (Carney and Cunningham,
2006), describes the property of the forecast being correct in
a statistical sense. That means that the predicted probabilities
are in agreement with the verifying observations (Talagrand,
1997). In terms of this definition, reliability is a property
that can only be evaluated for a probabilistic forecast and not
for a deterministic forecast. A measure to evaluate the re-
liability is the rank histogram (Anderson, 1996; Hamill and
Colucci, 1997; Talagrand, 1997). For a continuous proba-
bilistic forecast, a rank histogram is constructed as follows.
The probability space [0, 1] is divided into a number ofN
bins, 1. . .N , with equal width 1/N . For a probability fore-
cast with forecast distributionF , the nonexceedance prob-
ability F(x) for the verifying observationx is determined.
It is checked, into which bin the probabilityF(x) is falling.
Repeating this over a number of forecasts and counting the
number of occurrences ofF(x) in each of the bins generates
a discrete distribution which represents the rank histogram.
For a well-calibrated forecast, the probability ofF(x) falling
into a certain bin is equal for all bins, i.e. 1/N . Thus the rank
histogram from such forecasts constitutes a sample from a
discrete uniform distribution with the categories 1. . .N ; apart
from some random variation, a rank histogram from a cali-
brated forecast should be approximately uniform. For the
current study, the forecast distributionF is given through the
post-processor cdf8 (Eq. 8) with the verifying observation
x being equivalent to the observed streamflowot .

To condense the rank histogram into one numerical mea-
sure, the reliability index (Delle Monache et al., 2006) can
be calculated as a summary measure for the flatness of the
rank histogram. As the number of bins is the same for all
rank histograms in this study (N=10), the correction factor
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that accounts for different numbers of bins becomes equal to
one and the reliability index is calculated as

RI = mean distance from ideal bin count
ideal bin count ×100

=

1
N

N∑
i=1

|counti−
r
N |

r
N

×100
(16)

whereN is the number of bins of the rank histogram, counti

is the number of times the probabilityF(x) of the observed
variablex is falling into the i-th bin, andr is the sum of
the counti for i = 1,. . . ,N , i.e. the sample size or number of
forecasts.

Finally, to summarize the overall performance of the dif-
ferent post-processors, the average reliability index over all
catchments,RI, is calculated as:

RI =
1

C

C∑
c=1

RIc (17)

where RIc is the reliability index of catchmentc, andC is the
number of catchments.

An overall reliability might also be assessed through an
average rank histogram with the bin counts pooled over all
catchments. However, if the individual rank histograms have
different shapes, an overlay of such histograms may mask
deficiencies in the individual histograms. Therefore, an over-
all evaluation through averaged reliability indices seemed
preferable.

2.3.2 Confidence intervals for rank histograms

To check for a given rank histogram if deviations from the
uniform distribution are significant, chi square goodness of
fit tests (Hamill and Colucci, 1997) or similar tests (Jolliffe
and Primo, 2008) can be applied. However, in order to get
a visual impression, we found it desirable to not only char-
acterize the significance by a single test statistic and the cor-
respondingp-value, but to visualize it through confidence
intervals in the plots of the rank histograms. Therefore, an
algorithm for the construction of such confidence intervals
based on Monte Carlo simulations was developed. The algo-
rithm is described as follows.

The confidence intervals are constructed for the null-
hypothesis that the rank histogram belongs to a well cali-
brated forecast, i.e. that the sample rank histogram comes
from a uniform distribution. For a rank histogram withN
bins which is derived from a number ofr forecasts, a confi-
dence interval for a significance level ofα is constructed as
follows.

1. Generate a number ofM sample histograms. Each his-
togram is generated by samplingr-times from a uniform
distribution with the possible outcomes 1. . .N .

2. Determine the highest count hm and the lowest count lm
in each histogramm= 1. . .M.

3. Sort the values of hm in descending order and the val-
ues of lm in ascending order. Set the lower boundary
of the confidence interval bl equal to the first element
of the sorted series of lm, and the upper boundary bu of
the confidence interval equal to the first element of the
sorted series of hm.

4. Set the lower boundary bl equal to the next element of
the sorted series of lm and the upper boundary bu equal
to the next element of the sorted series of hm.

5. Repeat step 4 until the number of histograms for which
hm≥ bu or lm≤ bl is equal toα*M.

The final values of the lower boundary bl and upper boundary
bu constitute a confidence interval which encloses the frac-
tion (1−α) of sample histograms that come from a uniform
distribution. A fractionα of the histograms will have at least
one bar that lies outside the confidence interval. The con-
fidence intervals are constructed so that the fraction of his-
tograms that exceed the upper boundary is equal to the frac-
tion of histograms that go below the lower boundary. How-
ever, these fractions will usually not be equal toα/2 but rather
larger as a number of histograms that exceed the upper bound
will also go below the lower bound.

2.3.3 Choice of x-scale in scatter plots for assessing
homoscedacity

Plots and their visual evaluation are important tools for anal-
ysis of data and results in hydrology and other sciences. Of-
ten they reveal aspects and nuances much clearer than nu-
merical measures. However, some plots may be misleading
when not generated or interpreted in the right way. One case
of such plots that may give a distorted picture appeared in this
study when producing scatter plots to assess the homoscedac-
ity of the standardized residualsεt . The problem will be il-
lustrated in the following paragraphs with both real data and
a synthetic example, and a solution to eliminate the distorting
influences is given.

The term homoscedacity is defined as having the same
variance. Two random variables are homoscedastic if they
have the same variance, and a variabley can be described
as homoscedastic with respect to another variablex, if the
variance of the variabley does not vary with varying values
of x. A common way for checking or illustrating this is to
plot the variabley versusx and to evaluate if the scatter of
y is constant over the range ofx values. In this study, the
homoscedacity of the standardized residualsεt of the post-
processors with respect to the variable simulated streamflow
Qsim was checked using scatter plots of standardized resid-
uals versus simulated streamflow. Figure 1a shows an ex-
ample plot for the catchment Bulken for the SD.Log model.
The visual impression is that the residuals are strongly non-
homoscedastic and that the variance ofεt decreases with in-
creasing values ofQsim. As the actual calculations were per-
formed with the log-transformed values of streamflow, the
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Fig. 1. Plots of standardized residualsεt versus simulated streamflow with different scales on the x-axis for the SD.Log model for the
catchment Bulken, period 1 January 1962–31 December 2005;(a) original scale;(b) logarithmic scale;(c) rank scale.

Fig. 2. Plots of the standard normally distributed variabley versus the variablex, which has a non-uniform density, with different scales on
the x-axis;(a) original scale;(b) rank scale.

same plot also was generated using the log-transformed val-
ues of simulated streamflow ln(Qsim) on the x-axis (Fig. 1b).
Surprisingly, this plot gives a very contradictory impression
of the behaviour of the variance ofεt compared to the plot
in the original scale. While the variable still appears non-
homoscedastic, the variance now seems to rather increase
with increasing values of streamflow. The explanation for
these seemingly contradictory impressions is found in the
varying density of the points in x-direction in the two plots.
A non-constant density of the points in x-direction distorts
the picture and makes an evaluation of the variance of the
variableεt difficult.

The effect can be illustrated with an example of synthetic
data. A data set (x, y) is defined so that the variabley is
homoscedastic with respect to the variablex, but the data
points have a non-constant density in x-direction. The data is
generated as follows.

1. A vector ofy-values is generated by random sampling
10 000 times from a standard normal distribution.

2. A vector ofx-values is generated by random sampling
10 000 times from a non-uniform distribution. The dis-
tribution used in this example is a gamma distribution
with shape and scale parameters equal to one.

As the data in the vector ofy-values are unordered random
values coming all from the same distribution, any associa-
tion of this data with a vector of another variablex results
in a data set wherey is by definition homoscedastic with re-
spect tox. However, in a plot ofy versusx (Fig. 2a), the
visual impression is distorted through the decreasing density
of points in x-direction, and the data appears to be strongly
non-homoscedastic with seemingly decreasing variance of
the variabley with increasingx-values.

In order to remedy the distorting effect of a non-constant
density of the points in x-direction, a plot to check for ho-
moscedacity should be made against the rank of the variable
x instead of the original values. This generates a transformed
x-scale with a constant density of the points in x-direction.
Figure 2b shows such a plot for the example of synthetic
data. With a constant point density in x-direction, the vari-
ance of the variabley appears as constant over the whole
range ofx-values, as it would be expected from the genera-
tion of the data as a homoscedastic data set. Figure 1c shows
the analogue plot for the example of real-world data. The
impression is very different from both the plot with the origi-
nal scale (Fig. 1a) and the plot with the log-transformed scale
(Fig. 1b). Though the data might not be totally homoscedas-
tic, the non-homoscedastic behaviour seems much less pro-
nounced than any of the other two plots would suggest.
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Table 3. Overview of the five validations (from Morawietz et al., 2011).

Label Validation type Period for validation Period for parameter estimation

Cal. 1 + 2 Dependent 1 + 2 (1962–2005) 1 + 2 (1962–2005)
Cal. 1 Dependent 1 (1962–1983) 1 (1962–1983)
Cal. 2 Dependent 2 (1984–2005) 2 (1984–2005)
Val. 1 Independent 1 (1962–1983) 2 (1984–2005)
Val. 2 Independent 2 (1984–2005) 1 (1962–1983)

We may conclude that, while different scales of the x-axis
may reveal different aspects of the data, for scatter plots to
evaluate homoscedacity, an x-scale using the rank of thex

variable is preferable in order to avoid distortions through
non-constant data density in x-direction

2.4 Practical implementation of the study

The underlying deterministic precipitation-runoff model
used to generate the series of simulated streamflowst is
the HBV model (Bergstr̈om 1976, Bergstr̈om 1992). The
model version used in this study is the “Nordic” HBV model
(Sælthun, 1996). The model is run with daily time steps with
catchment averages of mean daily air temperatureTt and ac-
cumulated daily precipitationPt as model inputs and mean
daily streamflowQsim(t) as model output.

Fifty-five catchments throughout Norway have been se-
lected for the study. Basis for the selection was a com-
mon data period from 1 September 1961–31 December 2005.
Catchment sizes vary from 6 to 15450 km2, with the majority
of the catchments (45) being smaller than 1000 km2.

In each catchment, the HBV model was run for the com-
plete period of data. The first four months of each model run
were discarded as warm up period and the remaining period
1 January 1962–31 December 2005 was kept to investigate
the eight post-processors.

For each of the eight post-processors, three different pa-
rameter sets were estimated from three different periods of
data in each of the 55 catchments:

– Period 1: 1 January 1962–31 December 1983

– Period 2: 1 January 1984–31 December 2005

– Period 1 + 2: 1 January 1962–31 December 2005

Then the post-processors were evaluated in three dependent
and two independent validations (Table 3). In the dependent
validations, the post-processors were applied to the same
data that was used for estimation of the parameters of the
post-processors. In the independent validations, the post-
processors were applied to independent data which had not
been used in the parameter estimation.

For each day of a validation period, a probabilistic forecast
was generated using Eq. (8). A time step of one day was used
as interval betweent−1 andt , corresponding to the time step

of the precipitation-runoff model. Based on the forecasts dis-
tributions8(ot |st ,ot−1,st−1) and the actual observationsot ,
rank histograms were generated and the corresponding reli-
ability indices were calculated according to Eq. (16). This
was done for each of the eight post-processors, version 1–8,
in each of the 55 catchments and for all five validations (Ta-
ble 3), i.e. altogether 2200 rank histograms and reliability
indices were derived.

3 Results

Figures 3 and 4 show the rank histograms for a selected
catchment (Polmak). Figure 3 shows the results for the in-
dependent validation for Period 2 (Val. 2) and Fig. 4 shows
the corresponding results for the dependent validation for the
same period (Cal. 2). The aspects described for the selected
catchment in the following paragraphs are representative for
the results received in the other catchments (either in all of
them or in the majority).

The most apparent aspect is the superior reliability of mod-
els with an empirical distribution function (Figs. 3e–f and
4e–f) over models with normal distribution. For the depen-
dent validation (Fig. 4e–f) the rank histograms are absolutely
flat and thus show a perfect reliability. This is of course ex-
pected through the definition of the distribution function by
the empirical residuals of the calibration period. But also for
the independent validation (Fig. 3e–f) the rank histograms
have a relatively flat appearance; the histograms of the differ-
ent model versions 5–8 look thereby relatively similar. How-
ever, despite the much better performance over the models
with normal distribution, all rank histograms in Fig. 3e–h
contain bars that lie outside the 95% confidence intervals.
That means that, assuming a significance level of 5%, the
null-hypothesis of being well calibrated in a statistical sense
has to be rejected also for models using an empirical dis-
tribution function when they are applied in an independent
validation.

For post-processors with normal distribution, the results
for the dependent (Fig. 4a–d) and independent (Fig. 3a–d)
validation look similar for each of the model versions 1–
4. All models show significant deviations from a flat his-
togram. The worst performance has the state independent
(SI) model with square root (Sqrt) transformation (Figs. 3d
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Fig. 3. Rank histograms for the independent validation in Period 2 (Val. 2) for the catchment Polmak. Red lines indicate 95% confidence
intervals; dashed blue lines indicate the ideal bin count, i.e. a perfectly flat histogram.
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Fig. 4. Rank histograms for the dependent validation in Period 2 (Cal. 2) for the catchment Polmak. Red lines indicate 95% confidence
intervals; dashed blue lines indicate the ideal bin count, i.e. a perfectly flat histogram.

and 4d), followed by the state independent (SI) model with
logarithmic (Log) transformation (Figs. 3b and 4b). The state
dependent (SD) models (Figs. 3a, c and 4a, c) have a bet-
ter performance. The differences between SD-models with
logarithmic and SD-models with square root transformation
are in general small. In the example shown, the reliability
index is slightly better for the model with logarithmic trans-
formation (Figs. 3a and 4a), as it is in the majority of catch-

ments. However for some catchments, models with square
root transformation may perform slightly better instead.

Table 4 gives an overview of the number of catchments for
which the null-hypothesis of a reliable forecast is rejected.
The overview is for all eight post-processors and all five val-
idations. The results are given for confidence intervals con-
structed according to the algorithm of Sect. 2.3.2 (numbers
without brackets) and for traditional chi square goodness of
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Table 4. Number of catchments for which the null-hypothesis that the rank histogram comes from a uniform distribution is rejected (sig-
nificance level: 5%); the numbers without brackets are for confidence intervals constructed according to the algorithm of Sect. 2.3.2; the
numbers in brackets are for traditional chi-square goodness of fit tests.

Validation SD.Log.Norm SI.Log.Norm SD.Sqrt.Norm SI.Sqrt.Norm SD.Log.Emp SI.Log.Emp SD.Sqrt.Emp Si.Sqrt.Emp

Cal. 1 + 2 55 (55) 55 (55) 55 (55) 55 (55) 0 (0) 0 (0) 0 (0) 0 (0)
Cal. 1 55 (55) 55 (55) 55 (55) 55 (55) 0 (0) 0 (0) 0 (0) 0 (0)
Cal. 2 55 (55) 55 (55) 55 (55) 55 (55) 0 (0) 0 (0) 0 (0) 0 (0)
Val. 1 55 (55) 55 (55) 55 (55) 55 (55) 54 (54) 55 (55) 53 (54) 54 (55)
Val. 2 55 (55) 55 (55) 55 (55) 55 (55) 55 (55) 55 (55) 55 (55) 54 (55)

Cal. 1+2 Cal. 1 Val. 1 Cal. 2 Val. 2
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Fig. 5. Values of the average reliability indicesRI (Eq. 17) for
the eight post-processors for the different periods with dependent
(white background) and independent (grey background) validation.

fit tests (Hamill and Colucci, 1997; numbers in brackets).
The numbers for the algorithm of Sect. 2.3.2 are either iden-
tical or almost identical to the corresponding numbers for the
chi square goodness of fit test. This underpins the usefulness
of the new approach of Sect. 2.3.2; the approach gives equiv-
alent results as the traditional chi square goodness of fit test
while in addition it allows a visualization of confidence in-
tervals in the rank histograms as presented in Figs. 3 and 4.

Figure 5 shows the average reliability indicesRI over all
catchments (Eq.17) for the eight post-processors in the three
dependent validations (white backgrounds) and two indepen-
dent validations (grey backgrounds). The average reliability
indices confirm the description of the model performances
given for the example catchment in the paragraphs above.
In addition they illustrate if and how average model perfor-
mances change when going from dependent to independent
validations. For the models with normal distribution (cir-
cles), there is no consistent change. Period 2 shows a certain

decrease in model performance when going from the depen-
dent (Cal. 2) to the independent (Val. 2) validation, whereas
for Period 1 there is an increase in model performances. This
shows that these post-processors do not have an over-fitting
in the sense that the model performances would consistently
deteriorate in periods with independent data. In contrast, for
the models with empirical distribution (crosses) there is a
consistent decrease of the performance from the dependent
validation with average reliability indices of 0 to the indepen-
dent validations with average reliability indices in the order
of 12–14.

To investigate the differences in performance between
models with logarithmic and models with square root trans-
formation, scatter plots of the standardized residualsεt ver-
sus the simulated streamflowQsim were generated. A rank-
scale was used for the x-axis to avoid distortion through
a non-constant data density in x-direction. Figure 6 gives
an example with plots for the catchment Knappom that is
representative for the behaviour in most of the catchments.
In Fig. 6a the standardized residuals for the state indepen-
dent model with logarithmic transformation show a fairly ho-
moscedastic behaviour, while in Fig. 6b the residuals for the
corresponding model with square root transformation show
an increasing variance with increasing streamflow values.
For the state independent models with square root transfor-
mation the assumption of a constant standard deviationσ is
therefore less justified and this is reflected in their inferior
reliability indices compared to corresponding models with
logarithmic transformation. For models with state depen-
dent parameters, the formulation ofσ as being dependent on
the simulated streamflow (Eq.14) and other flexibilities in-
troduced with the state dependent formulation, can account
for the more non-homoscedastic behaviour and other defi-
ciencies that the state independent models with square root
transformation might have compared to the corresponding
models with logarithmic transformation. Thus the differ-
ences between reliability indices of models with logarith-
mic and models with square root transformation are strongly
diminished for the models with state dependent parameter
formulation.
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Fig. 6. Plots of the standardized residualsεt versus rank of the simulated streamflowQsim(t) for models with state independent (SI)
parameters for the catchment Knappom;(a) model with logarithmic transformation (Log) of the original streamflow values;(b) model with
square root transformation (Sqrt) of the original streamflow values.

4 Discussion

When using autoregressive error models as post-processors
for probabilistic streamflow forecasts, the assumption of a
normal distribution of the residuals leads to a relatively weak
performance of the post-processors with respect to reliabil-
ity. Use of an empirical distribution function instead strongly
increases the reliability. However for the independent vali-
dations, the rank histograms, though relatively flat, are still
significantly different from a uniform distribution. This re-
flects the fact that the distribution functions of the empirical
residuals of the calibration period are significantly different
from the distribution functions of periods with independent
data. This in turn is an indication that the implicit assump-
tion that the distribution of the residuals would be the same
for all days, is not true. Rather, the distribution of the empiri-
cal residuals from the calibration period can be thought of as
an overlay of different distributions for different days. As we
may not find identical conditions in the period of the indepen-
dent validation, the composition of the distributions of the
individual days is different for the period with independent
data. Thus, the resulting “pooled” distribution of the em-
pirical residuals in the period of independent data becomes
significantly different from the calibration period, resulting
in rank histograms that are significantly different from the
uniform distribution.

In principle, two approaches can be thought of to further
improve the reliability of the post-processors with empiri-
cal distribution function for periods with independent data so
that the reliability diagrams would not be significantly dif-
ferent from a uniform distribution. The first approach would
be to modify the model structure of the error model (or pos-
sibly the precipitation-runoff model) so that the distribution
function of the residuals of the autoregressive error model be-
comesidentical for all days. The second approach would be

to identify differentempirical distribution functions for dif-
ferent conditions similar to the estimation of different model
parameters for different conditions. While the first approach
may be more satisfying from a scientific viewpoint, it seems
more difficult to assess, especially for the modification of the
precipitation-runoff model, how this approach can be real-
ized in practice. The second approach however, though less
satisfying in terms of its conciseness, may be more straight-
forward to investigate.

The findings of this study for the performances of the
eight post-processors with respect to the average reliability
indices are compatible with the performances with respect to
the average ranked probability score described in Morawietz
et al. (2011). More specific, the findings for corresponding
model versions, i.e. model versions differing in one of the
three aspects transformation, parameters or distribution func-
tion, do not contradict each other. If one model is superior
over a corresponding model with respect to one score, for the
other score either the same superiority is found or the models
do not differ significantly, but no opposite ranking is found.
Within this compatibility, the most notable differences are
two fold. (1) All four post-processors with empirical dis-
tribution function, versions 5–8, give equally good perfor-
mances with respect to the average reliability index, whereas
some differences between these versions can be found for
the ranked probability score. (2) With respect to the average
reliability index, the four post-processors with empirical dis-
tribution function, versions 5–8, are superior over all of the
four post-processors with normal distribution. However with
respect to the discrete ranked probability score, the four post-
processors with empirical distribution function, versions 5–
8, are superior over the corresponding post-processor with
normal distribution but not necessarily over all four post-
processors with normal distribution.
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5 Summary and conclusions

The reliability of eight different versions of autoregressive
error models as post-processors for probabilistic streamflow
forecasts was evaluated using rank histograms and reliability
indices. The reliability is best for models using an empiri-
cal distribution function for description of the standardized
residuals, and all models using this approach are equally re-
liable irrespective of the other two aspect of transformation
type and parameter formulation. The confidence intervals
that were constructed to indicate ranges of reliable forecasts
in the rank histograms indicate however, that for independent
data these post-processors still show deviations from a reli-
able forecast. Two approaches that might further improve the
reliability of the post-processors are indicated.

The findings for the performance of the different post-
processors with respect to rank histograms are consistent
with the findings for performances with respect to the dis-
crete ranked probability score. The post-processor that per-
forms best with respect to both performance measures is a
model with state dependent parameter formulation (SD) and
an empirical distribution function (Emp) irrespective of the
transformation type as either logarithmic or square root.
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