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This work presents a state estimator for a continuous bioprocess. To this 
aim, the Non Linear Filtering theory based on the recursive application of 
Bayes rule and Monte Carlo techniques is used. Recursive Bayesian 
Filters Sampling Importance Resampling (SIR) is employed, including 
different kinds of resampling. Generally, bio-processes have strong non-
linear and non-Gaussian characteristics, and this tool becomes 
attractive. The estimator behavior and performance are illustrated with 
the continuous process of alcoholic fermentation of Zymomonas mobilis. 
Not too many applications with this tool have been reported in the 
biotechnological area. 
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INTRODUCTION 
 
 Over the last few years several authors have contributed to the important progress 
in the technology used for monitoring, sensing, and process control. In spite of this 
progress, the biotechnological area has a lack of online process information that charac-
terize chemical and biological variables such as biomass concentration, specific bacterial 
activity, and intermediate products concentration, among others. Frequently, these 
variables constitute the bioprocess states, and they are very necessary for its monitoring 
and control. A state estimator can be defined as a set of calculations that provides an 
estimate of a critical parameter, the value of which cannot be directly measured, based on 
information obtained from other variables in a dynamic system. The choice of an 
observer or a state estimator depends inherently on the particular problem. In practice, 
this choice is mainly influenced by the availability of a sufficiently representative model 
of the process, as well as by the reliability of the experimental data. When an adequate 
model is available, an Extended Kalman Filter (EFK) can be used, or a kind of High Gain 
observer or several estimators that use the process model (generally based on first 
principles) to perform the estimation of different variables (Jahanmiri and Rasooli 2005). 
On the other hand, if a model is not representative enough, asymptotic observers are 
implemented because the dependency of the model is not too strict, but their convergence 
depends on the operating conditions. Many times, observers are based on artificial 
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intelligence, such as neural networks. Approaches using support vector machines and 
fuzzy logic might be explored (Karatuzu et al. 2006; Yan et al. 2004). 
  Simulation and modeling are intimately related. Modeling is the activity of 
building mathematical expressions of a process by describing its fundamental physical 
and/or chemical relationships. Process behavior can be reproduced by simulations, 
through a process model. The construction of high-accuracy models requires deep 
modeling and process expertise, and is usually performed by an experienced specialist. 
By contrast, much process simulation is carried out using "off-the-shelf" models that 
provide little competitive advantage, or purely steady-state models that do not always 
capture the complexity of process operation. Instead of that, process simulation is a very 
important tool and valuable and essential activity, which must be significantly enhanced 
by using high-accuracy customer models of the process to capture corporate knowledge. 
From a control engineering point of view, simulation is a useful tool for the development 
and optimization of complex and nonlinear processes. Particularly we are focusing on the 
complex dynamic of enzymatic hydrolysis of lignocellulosic material and its subsequent 
fermentation to produce ethanol from Zymomonas mobilis (Z. m). 

When the model is incomplete or is not available by way of a-priori knowledge 
about the process, then by using different techniques it is possible to look in the literature 
for the state estimation from the input/output information. Several approaches for state 
estimation of biotechnological process have been developed, the most representative of 
which are the works of (Dochain 2002, 2003; Boillereaux 2000; Ascencio Leal 2001; 
Adilson and Rubens 2000; Rallo et al. 2002). Not many applications in the 
biotechnological area have been reported with nonlinear filtering tools. 

Zymomonas mobilis is a gram-negative bacterium that attracts the researcher’s 
attention due to the use of the Entner-Doudoroff pathway to produce energy from glucose 
catabolism. This pathway is inefficient because one ATP molecule per glucose molecule 
is consumed. This inefficiency is compensated by the bacterium’s ability to metabolise 
glucose at a high rate (Parker et al. 1997). There is an industrial interest in the use of Z. m 
due to its capability to produce ethanol and sorbitol (Oliveira et al. 2005). There exists a 
requirement of more competitive ethanologenic microorganisms to expand the ethanol 
industry. Z. m has attracted attention as a promising bacterium for improving ethanol 
production (Daugulis et al. 1997). These micro-organisms show a highly nonlinear and 
oscillatory kinetic behaviour; besides, some states of the process are difficult or 
impossible to measure, and these include the biomass concentration and intermediate 
variables that represent the rate of ethanol production and to determine the inhibition 
effect.  

In Z. m there are two possible mechanisms involving lipids to explain the ethanol 
tolerance. In the first mechanism, it is postulated that the high levels of cyclic lipids in the 
cell membranes protect the bacterium from the toxic effects of ethanol. In the second 
mechanism, it is postulated that the high levels of cis-vaccenic acid in the phospholipids 
of the bacterial membrane protect the bacterium from ethanol toxicity (Tano et al. 2000). 
The alcoholic fermentation of the Z. m has a few advantages when compared to other 
micro-organisms; these advantages are: Z. m provides ethanol levels production near to 
those that are achieved theoretically; it has a low biomass wastage; there are not any 
requirements respect to oxygen; the fermentation might be produced at low value of pH; 
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and most importantly, it shows a high specific productivity (98%), high efficiency in 
ethanol production, and a doubling of the specific rate (Mullan et al. 1991). The most 
important benefit of the process is the last characteristic: high ethanol yields and higher 
specific productivities (Kesava and Panda 196l; Kesava et al. 1996).  

Recently another benefit has been observed, in a broad context. Biomass is a term 
for all organic material that stems from plants, trees, and crops. Also, organic waste and 
agricultural and forest residues are considered as biomass.  By means of hydrolysis of 
lignocellulosic materials, as a pretreatment for ethanol production by Zymomonas mobilis 
fermentation, it is possible to add this fermentable substrate to the process. There have 
been many publications associated with this concept (OlssonHahn-Hiigerdal 1996; 
Szczodrak and Fiedurek 1996; Sun and Cheng 2002). The fermentation with Zymomonas 
mobilis has increased recently in importance because there exists the possibility of adding 
fermentable substrate to the process, reducing the cost of production and giving 
characteristics of lower environmental impact. The acid hydrolysis of lignocellulosic 
biomass produces reducing sugar in a suitable concentration for the mentioned 
fermentation process. Simulation is useful as tool to find the optimal actions to use Z. m 
properly for fuel ethanol and higher value products. 
 Quintero et al. (2004, 2005) explored the possibility of using the Kalman filter 
and the extended Kalman filter to perform the biomass estimation in this fermentation. 
The estimations obtained were not satisfactory due to the strong nonlinearity present in 
all the process states. The authors present in this work a comparison between particles 
filtering techniques and the classical tools.  
 In general, the optimum filtering techniques are used to reach the states estimation 
of a dynamical system with inputs and outputs that are observed by measurements 
disturbed by noise. “System states” is defined as the minimum information requirements 
in time that, in conjunction to the inputs values defined in all time from t≥t0, make it 
possible to determine the behavior of the system to any time t≥t0.  The measurements are 
in general uncertain; they are called “noise measurements” and, even if the real states 
system are known, the measurements are not a deterministic function of the states 
mentioned, and also have a random component.  In this context, the time evolution of the 
states is modeled through a dynamical system perturbed by a stochastic process (state 
noise), by using a stochastic differential equation. The noise or states disturbance, which 
is incorporated into the model to represent the uncertainties of the dynamic system, can 
arise not only from the random nature of the system, but also from signals or dynamics 
not considered in the model. In accordance with the Bayesian paradigm, the solution of 
the optimal filtering problem in time consists into obtaining the conditional probability 
distribution of the states with respect to the information obtained from the 
available measurements. 
 In this work, a state estimator to the continuous alcoholic fermentation process of 
Z. m is developed. In this area a nonlinear filtering, based on the recursive application of 
Bayes rule and Monte Carlo techniques, constitutes a novel tool. There are several 
variations of this method, proposed initially by (Gordon et al. 1993), and it is known by 
different names in the literature: particle filters, recursive Bayesian filters, Monte Carlo 
recursive filters, and simulation based filters (see Doucet 1998; Crisan and Doucet 2002). 
Spec-ifically, in this work the authors use variations of a Bayesian recursive filter SIR 
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(Sam-pling Importance Resampling), and different resampling schemes were applied to 
reduce the effect of the “sampling impoverishment” (Doucet 1998; Doucet et al. 2001, 
2006). 
 Biotechnological processes have pronounced nonlinear and non-Gaussian 
features, and basically for this reason it is justifiable the use of the Bayes theory. In 
addition, as mentioned previously, other estimation techniques applied to the mentioned 
process, have not provided satisfactory results. In this work, the system states are 
estimated (Biomass concentration and the intermediate variables) from input/output 
information and an available process model. In addition, the random nature of a 
biochemical reaction at the molecular scale has been mentioned and studied by Gillespie 
(2000). At a macroscopic scale, Kurtz (1978) modeled the overall effect of these 
individual reactions on the global concentrations, by an additive noise term of variance 
proportional to the reaction kinetics (or propensity function) r. In this context, the states 
(biomass, substrate and product) are a Markov process, satisfying the Langevin chemical 
equation (Joannides 2004). All the previously mentioned features convert the bioprocess 
into an attractive application to use nonlinear filtering tools for state observer design. The 
results are based on simulation and numerical results. The use of such results as the basis 
for this work should not have a negative impact, since it is pioneering the use of particle 
filters in the biotechnological area.  
 The paper is organized as follows: First, the main features of the continuous 
fermentation process of Zymomonas mobilis are presented, then a brief summary of the 
estimation tools used in this work. Subsequently, a description of algorithms and the 
structure used to the state estimation is addressed; also, the results obtained and the 
corresponding analyses are presented.  
 
 
CASE STUDY AND ESTIMATION TOOLS 
 
Alcoholic Continuous Fermentation of Zymomonas mobilis 
 The continuous alcoholic fermentation process of Z. m can provide high ethanol 
performance, but it has an oscillatory behavior on the state variables of the process. From 
the control perspective, it represents a challenge due to the difficulties to measure some 
of these states, with the aim to be used as feedback signals. A model of the process 
(Oliveira 2005; Daugulis et al. 1997; Tano et al. 2000) is represented by the following 
differential and algebraic equations: 
 

The change in biomass concentration can be obtained from, 
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where µ  is the specific speed growth, R is the micro organisms recycling rate, and 2F , 

4F , and 6F  are the bio reactor output, separator output and biomass feedback flow, 
respectively. Ds is the substrate dilution rate, and V the volume (see Fig. 1). 
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The change in substrate concentration is given by, 
 

 ( )
/

1
p in

p s

dS Q X DS DS
dt Y

 
= − + −  
 

                                  (2) 

 
where Yp/s is the substract/product performance coeficient, Qp is the specific ethanol 
production rate, D is the total dilution rate, and Sin is the substrate concentration on the 
input flow. 
 

 
Figure. 1 Continuous fermentation process scheme 

 
The change in product concentration is given by 
 
 

p
dP Q X DP
dt

= −                                                                      (3) 

 
The weighted average of the ethanol concentration rate is, 
 

 
( )dZ I Z

dt
β= −

                                                                      (4) 
 
where β  is a weighted historic parameter for the ethanol concentration rate and I is an 
intermediate variable auxiliary for the inhibition effect determination: 
 
 ( )p

dI Q X DP I
dt

β= − −                                                   (5) 

 
 For further information about the physical meaning of inhibition variables see 
(Daugulis et al. 1997). The dynamic effect of the ethanol concentration rate on the 
biomass growth is given by, 
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where δ  and λ  are the parameters associated with the inhibition factor of the ethanol 
concentration rate. 
 
The biomass growth rate is given by, 
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where maxµ is the maximum value of the specific growth speed, Pma and Pob are factors of 
the ethanol inhibition for the specific growth rate expressed in (g/L), Pmb is the factor 
related to the maximum ethanol inhibition for the cells growth expressed in (g/L), a and b 
are inhibition exponents for the ethanol production rate, Ks is the substrate saturation 
coefficient, and Ki is a substrate inhibition. The following conditions are considered: 
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The dynamic growth speed is defined by:  
 
 *f eµ µ µ=                                                            (9) 
 
And finally, the specific rate to the ethanol production is given by: 
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mp me

S PQp Qp
K S P

α    
 = −     +    

                    (10) 

 
For this process, it is very important to reach an accurate estimation of the non-
measurable system states with the purpose of using them for control. 
 It is necessary to put all equations in form of state variables, to see all interactions 
between variables involved. From Eqs (1)-(5), 
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 By working on the equations and replacing the Eqs. (6), (7), (9), and (10), one can 
obtain the following: 
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By a set of algebraic considerations from Eq. (1), and working with the defined 

flows in (Echeverry et al.  2003), the biomass term will be expressed as function of the 
mentioned D that is the total dilution rate. The total dilution rate is Ds + Dr, in which Dr 
is the dilution rate associated to biomass recycle R and substrate dilution rate Ds. Then let 
us consider the following set of differential equations, 
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 The set of parameters used to this simulation are the defined in (Daugulis et al., 
1997; Daugulis et al. 1999; Echeverry et al, 2003). The parameters used to simulate 
oscillatory behavior of the Z. m are presented in Table 1. 
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Table 1. Parameters Used for Simulation of Fermentation. 
 

Parameters Oscilatory behavior 
α  8.77 
β  0.0366 
δ  0.824 
λ  21.05 
a 0.3142 
b 1.415 

maxQp  2.613 

maxµ  0.41 

/p sY  0.495 
Pma 217 g/l 
Pob 50 g/l 
Pmb 108.0 g/l 
Ks 0.5 g/l 
Ki 200 g/l 
Si 80.0 g/l 

Pme 127 g/l 
Kmp 0.5 g/l 

 
 The solution proposed to simulate the real behavior of the continuous 
fermentation was performed by the use of Matlab, through the Euler and Runge Kutta 
numerical methods in self developed functions to be used as part of the filtering 
simulation. The sample time used for simulation, was that which has been considered 
most appropriate for real plants. The sampling time values selected were 0.05 and 0.1 
hours. 
 
Estimator Design 

The method that establishes the basis for many developed filters is known as 
bootstrap, condensation algorithm, particle filtering, and survival fittest, among other 
names. This method uses the importance function, defined as a probability distribution 
function which depends on the observations until time k, when it will be easily sampled. 
In this way, the posterior density (the conditional probability of the states to the 
measurements until time k-1) can be approached by 

 
Ns

0: 1: 1 0: 0:
i=1

( / ) ( )i i
k k k k kp x y W x xδ− ≈ −∑

         (14) 
 

where Ns is the number of particles used, δ(.) is the dirac delta function, the weights Wk
i 

are chosen by importance sampling, under the following considerations i) the probability 
density of the evaluation samples is proportional to the importance function q(x), 

( ) ( )p x q x∝ , and ii) the states should be sampled from the importance density function xi 
~q(x) 

Then, the importance function is chosen and the weights are factorised to make it 
dependent only on 1kx − ; this way the weights can be expressed as, 
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and the posterior density, by: 

 
Ns

1:
i=1

( / ) ( )i i
k k k k kp x y W x xδ≈ −∑

         (16) 
 
The algorithm consists of the recursive propagation of the weights and support 

points when each measurement (output measurement) is obtained sequentially. The 
algorithm itself, in its original conception, had many issues with respect to the variance 
reduction and presented some problems of particles degeneration.  Consequently, some 
improvements oriented to avoiding the consideration of particles with no information 
contribution, and to minimise the observer’s variance, were performed. The resampling 
step should be performed by the observation of the degeneracy of the function and its 
comparison with a basis value. This step eliminates the particles with low weights and 
concentrates the particles with large weights.  

 
This implies generating a new set of samples generated by resampling or rejection 

with the form of { }*

1

Nsi
k i

x
=

 
  

. In this way, an approximate discrete representation of the 

posterior density function can be obtained: 
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1:
i=1

( / ) ( )i i
k k k k kp x y W x xδ≈ −∑

         (17) 
 
The resampling step is obtained by using different variants: stratified sampling, 

residual sampling and systematic sampling among others. The resampling step reduces 
the effects of degeneration but introduces some practical issues, limiting the opportunity 
of parallelism in the algorithm, because it combines set of particles, and in addition, the 
particles with large weights are selected statistically in many times. This phenomenon 
leads to a sample impoverishment, which is a loss in the diversity as the particles contain 
repeated points. This is a very important outcome when a process noise is low, and 
finally, due to the particles pattern diversity reduction, any application of smoothing 
technique must be degenerated. Another possible solution to the weights degeneracy 
issue is to start the algorithm with a good importance function, or else, evaluate its 
behaviour into the algorithm. The choice of an importance function, q(x), is shown in the 
literature as a key factor in the SIS-SIR algorithm. This function must be chosen to 
minimise the variance of the optimal weights *

kW , maximising the degeneracy or 
maximum effort measure, N̂eff . (Doucet 1998; Crisan and Doucet 2002; Doucet et al., 
2001, 2006). The importance function will be expressed as: 
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by some operations on weights expressions, 

  

1 1( / ) ( / )i i i i i i
n n n n n n nW W p y x p x x dx− −∝ ∫      (19) 

 
See Appendix A for the detailed algorithm. In order to use this solution to the 

problem, there exist some issues, such as the ability to sample from the a-priori 
function 1( / , )i

n n np x x y− , or to evaluate the integral to the weights calculation in each new 
state. The optimal importance function is not always easy to find; for this reason, just a 
few cases can be performed as optimal. One of these is the case when states xk belong to a 
finite set; in that case, the integral becomes tractable and might be handled as summatory; 
the sampling from 1( / , )i

n n np x x y−  is possible in that way. This is the case of the Jump 
Markov Linear System. Figure 2 shows the estimation scheme. The input signals u(t) 
(input substrate concentration Sin, dilution rate Ds, and microorganisms recycle term R), 
and the output signals y(t) (outflow Substrate S and product P) corresponding to the 
model used as real process, feed the filter block that makes the state estimation. The 
estimations are compared with the model considered as patron. The bioreactor simulation 
was made in open loop (oscillatory behavior), and the inputs u(t) were considered 
constants (Daugulis et al. 1997). The dynamics and the delays on the inhibition variable 
that make this process highly nonlinear easily observed. 

 

 
Figure. 2. Estimation scheme used 
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updated each sample time particle by particle; and ( )2 , 1tx tσ =  combined with different 
Gaussian noise samples in the components tdw , tdv , ,

tdw  and ,
tdv , to simulate unknown 

disturbances of measurement equipment. 
 
It is important to remark that the measurements used to feed the filter as external 

information were taken from the model corresponding to the plant. They included the 
diffusion term built with the Gaussian noise and the corresponding diffusion term for 
states simulation (because both Substrate and Product are also states of the system). 
These values of Substrate and Product updated each simple time are also added to the 
value calculated from the corresponding diffusion term by simulating the effects of 
electronic noise in sensors, as discussed briefly above. 
 
 
RESULTS AND DYNAMIC ANALYSIS 
 

The results given in this section are based on simulation and numerical results of 
particle filtering technique, using from 100 to 1000 particles. Variations of the random 
components added to the dynamical system were made. A set of tests to measure the 
effectiveness of the filter proposed in front of the computational application cost were 
used; and the efficiency resampling schemes used in this configuration was analysed. The 
results showed that to the intermediate inhibition variables, which depend on the rates 
into product concentrations, the errors presented were, in some cases less than the other 
variables. It will be used as a monitoring variable into a continuous fermentation, to know 
how the fermentation process is possible to be handled. It is important to remark that this 
information is relevant, in the sense of information for control. The model has the enough 
accuracy to be validated and used for a process, and the estimation obtained by the filter 
can be easily used for real control purposes. Figure 3 shows the test results performed 
with 500 particles by the use of the deterministic resampling to the continuous 
bioprocess. A measurable output of substrate and product (S and P) was considered. As 
additive model to the measures, a normal Gaussian noise was used, with mean and 
variance adequate and of considerable magnitude. 
 Computational time to reach a good approach was smaller than the sample time 
appropriate for this application. Sample time used for simulation of Z.m fermentation was 
0.1 hours (6 minutes), because the dynamic behaviour doesn’t change considerably 
within this time interval. It means that algorithms developed can be easily implemented 
into a real plant.  
 It is important to remark that at the end estimation time, the error magnitude tends 
to increase. That is, the quality of the estimation tends to decrease because the 
deterministic resampling scheme is not efficient in this case, in addition to the effect of 
the meaningful noise features, used as test to the robustness in the filter estimation. It is 
established as a hypothesis that the increase in the error magnitude is dependent on the 
choice of the importance function to this particular case, and the possibility to use another 
one is considered.  
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Figure 3. Estimation errors of process states during the 150 hours test in simulation with a sample 
time of 0.1 hours. 
 
 In Fig. 4 it can be observed from results that the particle filter performance is 
adequate for simulated data. These results are remarkable from the perspective of the 
level of accuracy of the model used (Daugulis et al. 1997; Raposo et al. 2005; Daugulis et 
al. 1999), and its closeness to the data reported in the literature. This figure also illustrates 
the fact that for biotechnological variables, the measurements cannot be easily sampled, 
and this approach provides an approximated estimation value that can replace the real 
measurement over a time interval. In the same way, the filter performance makes it 
possible to assume the uncertainties on measures and disturbances in the measurement 
methods.  
 Figure 5 presents the inhibition variables I and Z present in the dynamic behavior 
of the Z. m bacteria. These variables are relevant in the sense of the information they 
provide about the effect of the ethanol concentration rate, not only as a weighted average, 
but also as an intermediate variable for the determination of the inhibition effect from 
ethanol. The filter performs these estimations of variables satisfactorily and handles the 
possible influence of noised measurements of product, and its possible effects on the 
estimation properly.  
 Future work will be performed by the use of real data from measurable variables, 
and the estimation scheme will be developed looking for the real application and control 
purposes. An important remark is that the filter follows the model properly, and as 
approach to the real problem, the performance to online implementation was tested. The 
modeled dynamics are according to the real behavior and the robustness against 
disturbances of modeling and uncertainties was shown in simulation. It was necessary to 
apply the SMC Particle Filtering methodology the assumption of a sampled data model 
for the SDE´s; this way the set of equations are posed as a new and improved model that 
includes uncertainties and disturbances. SIR Filters are satisfactory, but even if this is a 
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novel application of the SMC, it may require a more advanced SMC method to the real 
data problem solution (Briers et al. 2004, 2005; Briers 2006). 
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Figure 4. Estimation performance for the biomass concentration in the fermentation process of 
Zymomonas mobilis.  The dotted line describes the estimated biomass concentration by the SIR 
filter while the solid line describes the real value. 

 
 In previous works, some techniques for state estimation in Z.m have been 
explored. The work of Quintero et al. (2004) presented a control scheme in closed loop 
with a virtual sensor based on a fuzzy model. The estimator performs well in simulation, 
but despite that, it is not reliable, and its performance depends on the data used for 
training. After that, Quintero et al. (2005) used the Kalman Filter and Extended Kalman 
Filter for the same purpose. These results are inferior to those presented in this work, 
even if they are obtained in simulation, by the use of models developed and validated 
with real data by (Raposso et al. 2005).  
 The implementation on a real fermentation should be the logical continuation of 
research in the subject. Currently the authors are working on the improvement of this 
work based son real data fermentation both in oscillatory and steady state behavior. 
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Figure 5a. 5b. Estimation performance for the inhibition variables.  The dotted lines represent the 
dynamics of Inhibition Z and I estimated by the SIR filter and while the solid lines are the 
considered real system dynamics 
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CONCLUSIONS 
 
1. A state estimator based on non-linear filtering techniques was presented. The 

application of the particle filters developed as state estimators can be applied to non-
linear non-Gaussian dynamical systems. The technique and methodology were 
applied to the case of a bioreactor for the continuous alcoholic fermentation process 
of Zymomonas mobilis, one of the most promising micro-organisms for genetic 
engineering envisaging the development of strains for lignocellulose fermentation. 

2. An approach for a SDE´s model for a Zymomonas mobilis continuous fermentation 
was presented, looking for the correct modeling of uncertainties and the right 
implementation of SMC methodology for state estimation. It was observed that the 
application of the use of particle filtering as state estimator is acceptable and feasible, 
and the implementation to solve the problem of online biomass estimation, in a 
continuous process, is viable due to its reliability and admissible computational cost 
relative to the real problem sample times. 

3. In the same way, the filter showed a good performance with the inhibition variables, 
of relevant importance for the dynamic behaviour of bacteria in open and closed loop. 
Currently, we are first proving this method with real data and later, the performance 
of the estimation tool into a numerical methods control closed loop will be studied. 

4. Results were satisfactory beyond the authors’ expectations. Compared with other 
techniques previously developed, such as fuzzy logic and Kalman filter and Extended 
Kalman filter, the performance of this estimator was better. 

 
 
APPENDIX A 
 
 Filtering general algorithm detail, Sequential Importance Sampling SIS 
(Arumpalam et al. 2002): 
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 Sequential importance sampling with resampling step SIR (Doucet, de Freitas, 
2000): 
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The resampling methods used are the residual, deterministic, and multinomial. 
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