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Abstract. Salinity determination in seawater has been car-
ried out for almost 30 years using the Practical Salinity Scale
1978. However, the numerical value of so-called practi-
cal salinity, computed from electrical conductivity, differs
slightly from the true or absolute salinity, defined as the mass
of dissolved solids per unit mass of seawater. The difference
arises because more recent knowledge about the composi-
tion of seawater is not reflected in the definition of practical
salinity, which was chosen to maintain historical continuity
with previous measures, and because of spatial and tempo-
ral variations in the relative composition of seawater. Ac-
counting for these spatial variations in density calculations
requires the calculation of a correction factorδSA , which is
known to range from 0 to 0.03 g kg−1 in the world oceans.
Here a mathematical model relating compositional perturba-
tions toδSA is developed, by combining a chemical model
for the composition of seawater with a mathematical model
for predicting the conductivity of multi-component aqueous
solutions. Model calculations for this estimate ofδSA , de-
notedδSsoln

R , generally agree with estimates ofδSA based
on fits to direct density measurements, denotedδSdens

R , and
show that biogeochemical perturbations affect conductivity
only weakly. However, small systematic differences between
model and density-based estimates remain. These may arise
for several reasons, including uncertainty about the biogeo-
chemical processes involved in the increase in Total Alkalin-
ity in the North Pacific, uncertainty in the carbon content of
IAPSO standard seawater, and uncertainty about the haline
contraction coefficient for the constituents involved in bio-
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geochemical processes. This model may then be important
in constraining these processes, as well as in future efforts to
improve parameterizations forδSA .

1 Introduction

Procedures for routine estimation of the salinity of seawater
have been standardized for nearly 30 years. These proce-
dures are based on combining measurements of the electrical
conductivityκ of the water with a purely empirical equation
relating conductivity and a so-called practical salinitySP:

SP= f78(κ) (1)

The equationf78(·) is specified by the Practical Salinity
Scale 1978, denoted PSS-78 (UNESCO, 1981), with a low-
salinity correction (Hill et al., 1986a) that extends the range
of validity down to near-zero salinities. Temperature and
pressure are also important factors in these equations but are
omitted from the notation used here. Note also that practical
considerations add some complexity to this brief description
of PSS-78.

It was clearly recognized at the time PSS-78 was adopted
that the utility of the computed salinities depended on two
factors. First, it was necessary that the relative chemical
composition of seawater would be constant throughout the
world’s oceans. Thus waters of the same salinity would have
the same conductivity and vice versa. It was known that there
were (and are) spatial variations in the composition, but in-
vestigations suggested that the numerical effects on salinity
estimates arising from these variations remained within lim-
its acceptable to the research standards of the day (Lewis
and Perkin, 1978; Hill et al., 1986b). Second, it required a
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Table 1. List of important symbols and abbreviations.

C∗ Chemical composition of standard seawater
C0 Chemical composition of standard seawater whenSP=35.
ci Concentration (mol kg−1) of ith constituent of seawater
c∗
i

Concentration (mol L−1) of ith constituent of seawater
δC∗ Small composition perturbation (added toC∗)
δSP Practical Salinity change resulting from compositional perturbation
δS∗

P Simpler estimate of Practical Salinity change resulting from compositional perturbation
δSsoln

∗ Absolute salinity change resulting from compositional perturbation

δS
soln(1)
R Salinity correction estimated using fixed chlorinity calculation

δS
soln(2)
R Salinity correction estimated using fixed conductivity calculation

δSdens
R Estimate of salinity correction based on density (e.g.,McDougall et al., 2009)

ε relative error of Pa08 prediction
I∗ Ionic strength (mol L−1)
Im Ionic strength (mol kg−1)
κ True conductivity
κPa08 Conductivity estimated using Pa08
λ◦
i

infinite dilution ionic equivalent conductivity
λi ionic equivalent conductivity
Mi Molar mass ofith constituent of seawater
M08 Chemical model of seawater inMillero et al. (2008)
Pa08 Conductivity model described byPawlowicz(2008)
ρ Density of seawater
SP Practical salinity
Ssoln

A Absolute salinity
Sdens

A Absolute salinity using procedure ofMillero et al. (2008); McDougall et al.(2009)
SR Reference salinity (Millero et al., 2008)
SSW IAPSO Standard Seawater
SSW76 Chemical model for SSW circa 1976 in this work
zi Valence ofith constituent of seawater

method by which different investigators could intercalibrate
their measurements. Procedures providing “standard” sea-
water from a single source for calibrating chlorinity titrations
were adapted to provide batches of labelled IAPSO standard
seawater (SSW) for conductivity calibrations; PSS-78 itself
is based primarily on measurements of SSW batches P73,
P75, and P79 (Perkin and Lewis, 1980).

However, there is a small numerical difference between
the computed practical salinitySP of seawater and its true or
absolute salinitySsoln

A in g kg−1, defined as the mass of solids
dissolved in solution per unit mass of seawater, i.e.:

Ssoln
A = s(C)=

Nc∑
i=1

Mici (2)

whereMi (Table 2) is the molar mass of theith of Nc
components of seawater (not including dissolved gases), and
C = {c1,c2,...,ci,..} is a vector of the corresponding con-
centrations. This difference arises for historical reasons (see,
e.g.,Millero et al., 2008, for more details). For SSW this
difference can be accounted for by a simple scaling

SR = γ SP (3)

whereγ incorporates updated knowledge of the true chem-
ical composition of SSW, andSR is the reference salinity,
i.e., the absolute salinity of SSW with the measured conduc-
tivity. However, for real ocean waters there are also small
spatial and temporal differences in the relationship arising
from small variations in the relative chemical composition of
seawater. Thus in general:

Ssoln
A = SR+δSsoln

R (4)

The salinity anomalyδSsoln
R has previously been denotedδSA

(Millero et al., 2008), and is in the range of 0 to 0.03 g kg−1

in the open ocean, with largest values in the North Pacific
(McDougall et al., 2009), and can be as large as 0.05 g kg−1

in some estuarine waters (Millero, 1984). It should be zero
by definition when measurements are made of SSW.

In recent years the increasing number of high-quality con-
ductivity measurements of seawater on global scales has led
to the realization that these spatio-temporal differences may
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Table 2. Model parameters including molar massesMi , infinite dilution equivalent conductivitiesλ◦
i
, ionic equivalent conductivitiesλi in

SSW76, conductivities per unit massψi , and coefficients multiplyingδci in the approximateδSsoln
R Eq. (30).

Mi λ◦
i

λi ψi 1−
ψi
ψ

Mi(1−
ψi
ψ
)

Species [g mol−1] [mS cm−1(mol L−1)−1] [mS cm−1 (g kg−1)−1] – ×10−3

Na+ 22.9898 50.1 29.9 1.33 0.02 0.40
Mg2+ 24.3050 53.0 20.5 1.73 −0.28 −6.78
Ca2+ 40.0780 59.5 23.8 1.21 0.10 4.14
K+ 39.0983 73.5 48.2 1.26 0.07 2.67
Sr2+ 87.6200 59.4 24.3 0.57 0.58 50.88
Cl− 35.4530 76.3 50.1 1.45 −0.07 −2.43
SO2−

4 96.0626 80.0 33.5 0.71 0.47 45.38
Br− 79.9040 78.1 51.8 0.66 0.51 40.69
F− 18.9984 55.4 33.1 1.78 −0.32 −6.01
HCO−

3 61.0168 44.5 24.8 0.42 0.69 42.28

CO2−

3 60.0089 69.3 26.7 0.91 0.33 19.57
B(OH)3 61.8330 – – – 1.00 61.83
B(OH)−4 78.8404 35.2 17.1 0.22 0.84 65.89
CO2 44.0095 – – – 1.00 44.01
OH− 17.0073 198.0 156.9 9.44 −5.98 −101.69
H+ 1.0079 349.6 279.0 283.23 −208.36 −210.02
NO−

3 62.0049 71.4 43.9 0.73 0.46 28.77
Si(OH)4 96.1149 – – – 1.00 96.11

have practical importance in understanding the global circu-
lation. A reevaluation of the procedures for determining ther-
modynamic properties of seawater, including density, sug-
gests that more accurate results can be obtained by returning
to a procedure in which absolute salinity is used instead of
SP as a state variable (Feistel, 2008; Millero et al., 2008).
In this procedure a best estimateSR for the absolute salinity
of SSW is made by takingγ=uPS≡35.16504/35≈1.004715.
For non-standard seawaters an offset, which was also called
δSA (Millero et al., 2008) but is here denotedδSdens

R to indi-
cate that it is found from measurements of density anomalies,
is added toSR to calculateSdens

A as a best estimate for the ab-
solute salinity (McDougall et al., 2009).

The absolute salinity can be directly estimated by measur-
ing the density of water samples and then inverting the equa-
tion of state which relates density and salinity. The algorithm
for δSdens

R provided byMcDougall et al.(2009) is based on
a fit of such data against measured Si(OH)4 concentrations.
Other algorithms for estimatingδSdens

R also exist (Brewer and
Bradshaw, 1975; Millero, 2000). These are also based on
purely empirical correlations of density anomalies with con-
centrations of specific chemical species, typically nutrients
and components of the carbonate system.

However, little work has been done on understanding the
full theoretical basis for these corrections. A complete chem-
ical theory would include a model for seawater, and a method
for determining the variations in conductivity and density
that result from compositional variations. Density has been

well-studied (e.g.Millero et al., 1976), but in spite of the
practical importance of conductivity in ocean measurements
there has been virtually no work done in developing a the-
ory of electrical conductivity for natural seawaters. Recently,
a model has been developed for calculating the electrical
conductivity of natural freshwaters, based on their chemical
composition (Pawlowicz, 2008, hereafter Pa08). Although
the Pa08 model works well for waters of low salinities (less
than a few g kg−1 of dissolved solids), accuracy in waters of
higher salinities is not sufficient to directly replace the em-
pirical relationship specified by PSS-78. However, it will be
shown here that the model can be used to quantitatively cal-
culate the effects of small compositional variations on the
known PSS-78 conductivity/salinity relationship.

The purpose of this paper is then twofold. First, to develop
a seawater conductivity model, based on Pa08, capable of
quantitatively determining the effects of small variations in
the chemical composition of a model seawater on its conduc-
tivity, and consequently onSP. Second, to use this model
to compute correctionsδSsoln

R directly from a suitable set of
observations of the concentrations of specific constituents of
seawater, independent of density measurements. This model
will then be a complement to the available empirical density-
based estimatesδSdens

R .
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2 Methods

The general approach is based on modeling perturbations
about a known base state for SSW. The base state consists
of the known PSS-78 relationship (Eq.1), and a chemical
composition which is a function of the practical salinity.

The first step is then to construct the model composition
C∗ for SSW, with an assumed practical salinitySP*, true
conductivityκ∗=f

−1
78 (SP*), and computed reference salinity

(via Eq.2) S∗ = γ SP*, which in this case equals the absolute
salinity. The compositionC∗ will be based on a model of the
changes arising from dilutions and evaporations of a refer-
ence compositionC0 for which SP=35. Thus our seawater
model will mimic the seawater used to develop PSS-78, and
can be used to estimateγ .

The second step is to compute conductivity and abso-
lute salinity perturbations,δκ andδSsoln

∗ respectively, arising
from compositional changes. There are two kinds of calcu-
lation possible. The most straightforward occurs when an
initial base stateC∗ is known, and a known perturbationδC∗

is added. The Pa08 conductivity model is used to estimate
δκ. In this calculation a nonzero offsetδSsoln

R can arise be-
cause both absolute and conductivity-based reference salini-
ties change (to values ofSsoln

A andSR respectively), but gen-
erally by different amounts. Since these situations often in-
volve composition changes only in the nonconservative ele-
ments of seawater, we call this a constant chlorinity calcula-
tion. However, estuarine situations when freshwaters (which
may contain Cl− and other so-called conservative elements)
are added will also be handled in this way. Results can be
simplified into an approximate analytical form, which can
then be used to qualitatively understand the effect of pertur-
bations.

In contrast, a more formally correct procedure for the cor-
rection of ocean measurements is to computeδSsoln

R when
the composition is perturbed, but only the final conductiv-
ity κ (and henceSR) are known. In this constant conduc-
tivity calculation the addition of a known concentration of
(say) nitrate, which is ionic and would increase conductivity,
would be balanced by a small dilution of the SSW composi-
tion corresponding to the measuredSR, in order to keep con-
ductivity constant. The Pa08 model is then used iteratively
to calculate the dilution factor, such that the conductivity of
final composition composed of diluted SSW plus the compo-
sition anomaly matches the measurement. A changeδS

soln(2)
R

is found by subtracting the initialSR from the absolute salin-
ity of the final composition. The compositional perturbations
are small in the examples considered here, and the two proce-
dures provide nearly identical values for the offset associated
with a given composition anomaly.

Unless otherwise stated, all calculations are carried out for
a temperature of 25◦C and a sea pressure of 0 dbar. This is
appropriate for comparisons with laboratory measurements
on water samples. The accuracy of the Pa08 conductivity

model has also been most comprehensively investigated un-
der these conditions.

2.1 A composition model for standard seawater
(SP=35)

Typical oceanic concentrations of virtually all elements in the
periodic table are now known (e.g.,Nozaki, 1997), but many
elements are present in only trace quantities. The model base
state (labelled SSW76, see columns 1–2 of Table3) is meant
to match as closely as possible the composition of SSW de-
rived from North Atlantic surface seawater circa 1976 used
to determine both PSS-78 and the 1980 equation of state
(Millero and Poisson, 1981). It includes all components that
can affect salinity down to the level of 1 mg kg−1, although
traditional practice in not including the dissolved gases N2
(16 mg kg−1), and O2 (0–8 mg kg−1) is followed. This com-
position is denoted by a vectorC0 = {c1 c2 ... cNc }, whereci
is the concentration (mol kg−1 solution) of theith ofNc con-
stituents. SSW76 is defined to haveSP=35 (exactly), and
constructed to have a chlorinityCl of 19.374 g kg−1 accord-
ing to the definition (Millero et al., 2008) derived from titra-
tion procedures:

Cl/(g kg−1)≡ 0.3285234·MAg ·([Cl−]+[Br−]+[I−]) (5)

with [·] denoting concentrations and MAg =

107.8682 g mol−1 the molar mass of silver. In addi-
tion, the reference salinitySR≡uPSSP (Millero et al., 2008),
will be (exactly) 35.16504 g kg−1.

The recently defined reference composition of standard
seawater (fromMillero et al., 2008, hereafter M08) was taken
as a starting point in specifying SSW76. However, M08 can-
not easily be used directly as a model for seawater in this
study for several reasons.

First, the fixed ratios of carbonate system components in
M08 are not convenient for studying spatial and temporal
variations in seawater composition. Although specification
of the carbonate system in seawater requires (at minimum)
7 species (Millero, 1995), some of which appear in amounts
much less than 1 mg kg−1, their concentrations are not in-
dependent. Rather, they are coupled by constants governing
the chemical equilibria between them. Only two parameters
from the set{TA, pH, f CO2, DIC} are required to fully spec-
ify the carbonate system (with minor corrections arising from
borate and SO2−

4 concentrations). From these parameters, the
equilibrium constants (denoted byKw,K0,K1,K2,KB and
parameterized inDickson et al., 2007) are used to compute
the ionic concentrations.

It is desirable in the model to let the carbonate ions remain
in chemical equilibrium in all conditions as this more closely
models the behavior of real water. Thus instead of using the
M08 ionic concentrations, the carbonate system is defined
using two of the standard parameters. The first parameter
used is Total Alkalinity (TA), set to 2300 µmol kg−1, where
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Table 3. The chemical compositions of model SSW76, NPIW, and their differences. For both water types we show concentrations in molar
units and their contribution to mass-based salinities. The upper 9 species are conservative. Both SSW76 and NPIW have a chlorinity of
19 374 mg kg−1, but chlorinity is not exactly the same as the concentration of Cl− (Millero et al., 2008). The next 7 species form the
carbonate system, followed by the two nutrients. We also list other parameters that can be used to specify the equilibria involved in the
carbonate system.Ssoln

A , κ, SP, andSR are computed according to the formulas discussed in the text. The charge differences in the right-
most column are indicated with two signs. The first represents the net change (increase or decrease), and the second whether these are
positive or negative charges.

SSW76 NPIW NPIW-SSW76
Species mmol kg−1 mg kg−1 mmol kg−1 mg kg−1 mmol kg−1 mg kg−1 µeq kg−1

Na+ 468.96335 10781.35913 468.96335 10781.35913 0.00000 0.00000 0.00
Mg2+ 52.81702 1283.71757 52.81702 1283.71757 0.00000 0.00000 0.00
Ca2+ 10.28205 412.08380 10.37705 415.89129 0.09500 3.80748 + +190.00
K+ 10.20769 399.10324 10.20769 399.10324 0.00000 0.00000 0.00
Sr2+ 0.09066 7.94332 0.09066 7.94332 0.00000 0.00000 0.00
Cl− 545.86954 19352.71293 545.86954 19352.71293 0.00000 0.00000 0.00
SO2−

4 28.23526 2712.35228 28.23526 2712.35228 0.00000 0.00000 0.00
Br− 0.84208 67.28578 0.84208 67.28578 0.00000 0.00000 0.00
F− 0.06832 1.29805 0.06832 1.29805 0.00000 0.00000 0.00

HCO−

3 1.90028 115.94926 2.25090 137.34304 0.35062 21.39378 +−350.62

CO2−

3 0.16285 9.77242 0.08222 4.93414 −0.08063 −4.83828 − −161.25
B(OH)3 0.34579 21.38143 0.38239 23.64422 0.03660 2.26279 0.00
B(OH)−4 0.06923 5.45779 0.03263 2.57262 −0.03660 −2.88517 − −36.60
CO2 0.01687 0.74233 0.04687 2.06284 0.03001 1.32051 0.00
OH− 0.00480 0.08172 0.00205 0.03483 −0.00276 −0.04688 − −2.76
H+ 0.00001 0.00001 0.00002 0.00002 0.00001 0.00001 + +0.01

NO−

3 0.00000 0.00000 0.04000 2.48020 0.04000 2.48020 + -40.00
Si(OH)4 0.00000 0.00000 0.17000 16.33953 0.17000 16.33953 0.00

TA 2300.0 µeq kg−1 2450.0 µeq kg−1 150.0 µeq kg−1

DIC 2080.0 µmol kg−1 2380.0 µmol kg−1 300.0 µmol kg−1

pHTOT 7.89892 7.52859 −0.37033

Ssoln
A 35.17124 g kg−1 35.21108 g kg−1 δSsoln

∗ =0.03983 g kg−1

κ 53064.8 µS cm−1 53073.1 µS cm−1 δκ=8.324 µS cm−1

SP 35.00000 35.00618 δSP=0.00618
SR 35.16504 35.17125

TA ≡ [HCO−

3 ]+2[CO2−

3 ]+[B(OH)−4 ]+[OH−
]−[H+

] (6)

A total borate component is specified by adding together the
B(OH)−4 and B(OH)3 components of M08, and SO2−

4 con-
centrations (required for carbonate system calculations) are
also taken from M08.

Second, although the TA of SSW76 and M08 are the same,
the total dissolved inorganic carbon (DIC) defined as

DIC ≡ [CO2]+[HCO−

3 ]+[CO2−

3 ] (7)

in the two models is different (as are pH andf CO2). The
reason for this is that attempts to matchδSsoln

A observations,

as well as weak independent evidence, suggest that the DIC
content of SSW is somewhat higher than that specified in
M08.

M08 specifies ionic composition after setting the fugacity
f CO2 to 333 µ-atm at a temperature of 25◦C. This f CO2 is
appropriate for an equilibrium with atmospheric levels when
the measurements were made to define PSS-78, and at 25◦C
implies a DIC of 1963 µmol kg−1. Typically, after sampling,
SSW is filtered and sterilized for≈30 days at temperatures of
28◦C before 1991 (batch numbers up to P115), but only 18–
21◦C since then (P. Ridout, OSIL, personal communication,
2009). Since the solubility of CO2 is strongly dependent on
temperature, the choice of temperature is important. At 20◦C
equilibrium levels of DIC would be around 2006 µmol kg−1,
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and at 28◦C they would be 1937 µmol kg−1. The change
in DIC due to increasing atmospheric CO2 levels is slightly
smaller. At a temperature of 25◦C and a present-dayf CO2
of 380 µ-atm, calculated DIC would be 1992 µmol kg−1.

However, there are indications that measured DIC val-
ues in ampoules of SSW are often (but not always) some-
what higher than these predicted equilibriums at bottling
time, and this is generally believed to be caused by the de-
composition of residual organic matter after bottling. Un-
fortunately, although the TA of standard seawater has been
studied (Goyet et al., 1985; Millero et al., 1993), there has
been no systematic attempt to analyze the DIC content of
standard seawater, and its temporal stability.Brewer and
Bradshaw(1975) measured 2238 µmol kg−1 in SSW batch
P61. Recent (September 2009) measurements of DIC in am-
poules of old SSW from batches P79 (from 1977), P111
(1989), and bottled P140 (2000) found values of 2610,
2200, and 1803 µmol kg−1, respectively. The spread between
replicates from different ampoules of the same batch was
10–20 µmol kg−1, larger than measurement uncertainty, but
much smaller than the variations between batches.

In fact, as will be shown later, conductivity is not sensitive
to variations in DIC, althoughSsoln

A (and henceδSsoln
R ) are

greatly affected. A DIC change of 100 µmol kg−1 is equiv-
alent to an absolute salinity variation of≈0.006 g kg−1, but
will changeSP by only 0.0007. Since a primary purpose of
ourδSsoln

R corrections is (eventually) to calculate densities, it
may be more important to choose a model DIC value that will
match that of the water used in the measurements defining
the 1980 equation of state (Millero and Poisson, 1981), relat-
ing salinity and density. This is stated byMillero (2000) to
have been 2226 µmol kg−1. However, density fits to Pacific
ocean data published in that paper also suggest zero density
anomalies occur when DIC=2000 µmol kg−1.

Since ampoules of SSW are sealed, this large range of un-
certainty is ultimately related to the effects of organic mate-
rial and its neglect in the inorganic seawater chemistry model
developed here. This makes it difficult to specify a useful
model value for DIC in advance of any calculations, although
both density measurements and direct observations suggest
concentrations somewhat higher than that of M08. It is
probably desirable that our definition (eventually) imply that
δSsoln

R ≈0 for observations from the surface North Atlantic.
Thus, after some tuning, DIC is set to 2080 µmol kg−1.

An inappropriate value for the DIC of SSW76 will (even-
tually) lead to a near-constant offset in all calculated abso-
lute salinity variations. Although this offset is thus poten-
tially significant, it will apply to all calculations and hence
may have little effect on comparisons between different sea-
waters, or on any computation in which additions rather than
absolute levels of DIC are specified.

The last difference is that non-conservative nutrient
species must be included. Changes in NO−

3 and Si(OH)4 will
exceed 1 mg kg−1 in a seawater withSR≈35 g kg−1 and are

related to the salinity variations we seek to model (Brewer
and Bradshaw, 1975; Millero, 2000). These nutrients are as-
sumed to have a concentration of zero in SSW76.

Following customary practice the mass of Na+ is adjusted
slightly to maintain charge neutrality, once all other ionic
components are specified in SSW76. This may partly ac-
count for the contributions of neglected ionic constituents,
of which the most important are the conservative elements
Li+ (0.18 mg kg−1, Soffyn-Egli and Mackenzie, 1984), Rb+

(0.12 mg kg−1), and the nutrient PO−4 (0–0.23 mg kg−1).
The computed absolute salinitys(C0) is 35.171 g kg−1 for

SSW76. This differs by 0.006 g kg−1 from the defined value
of SR for SSW of 35.16504 g kg−1. The mismatch is within
the uncertainty of±0.007 g kg−1 suggested byMillero et al.
(2008), although much of that error arises from uncertainty
about the amount of SO2−

4 . In contrast, the salinity difference
here largely arises from differences in carbonate parameters.
However, it should be emphasized that SSW76 is a model of
seawater, and not necessarily a better (or worse) description
of actual seawater than M08. This is because the assumed
precision for some of the constituent concentrations is greater
than that of the best observations.

Strictly speaking, the difference betweenγ=35.171/35
anduPS means that the offsets computed in this paper are
is not exactly those required to get the true absolute salin-
ity. Instead they will be in error by a scale factor of
γ /uPS≈1.00017. However, the difference is small enough
that it is not of any practical importance and the difference
will be ignored.

2.2 A model for standard seawater (SP 6=35)

The composition of SSWC∗ at practical salinities other than
35 can be specified in different ways. The simplest is to mul-
tiply all constituent concentrations by a constant fraction (i.e.
C
(3)
∗ =β·C0 for SP*=β·35). This is a so-called type III Ref-

erence Seawater (Millero et al., 2008). However, during the
specification of PSS-78, SSW was evaporated or diluted with
distilled water in order to change its salinity, and again equi-
librated with the atmosphere. This makes it more reason-
able to specify a type II Reference SeawaterC

(2)
∗ , where only

the concentrations of conservative tracers, as well as TA, are
multiplied by the constant fractionβ for SP*=β·35, butf CO2
is kept constant.

Assuming in advance of our later discussion that the con-
ductivity model can predict the effects of perturbations rea-
sonably well, and realizing thatC(2)∗ andC(3)∗ are very sim-
ilar, the differences in conductivity, absolute salinity, and
conductivity-derived practical salinity arising from these two
approximations can be estimated as:

δκ ′
= κPa08(C

(2)
∗ )−κPa08(C

(3)
∗ ) (8)

δS′

A = s(C(2)∗ )−s(C(3)∗ ) (9)

Ocean Sci., 6, 361–378, 2010 www.ocean-sci.net/6/361/2010/
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δS′

P= f78(κPa08(C
(2)
∗ ))−f78(κPa08(C

(3)
∗ )) (10)

whereκPa08is the conductivity estimate computed using the
Pa08 conductivity model and the two absolute salinities in
Eq. (9) are calculated using Eq. (2).

Over the range of 5<SP<40, the conductivity differ-
ences areδκ ′<±0.8 µS cm−1 (Fig. 1a), which in turn implies
δS′

P<±0.0005 (Fig.1b). These uncertainties are negligible.
However, the changes in absolute salinityδS′

A are an order
of magnitude larger, and can approach 0.004 g kg−1 at salin-
ities of about 17 (Fig.1b) although the differences are not
important for typical seawater salinities near 35.

2.3 A perturbation model for observed seawater

As a particular parcel of seawater is advected through the
ocean, biogeochemical processes alter its composition so it
differs from that of SSW. These perturbations are represented
by a vectorδC∗, so that the composition becomesC∗ +δC∗.
Biogeochemical processes will not alter the unreactive com-
ponents of seawater, so these components ofδC∗ are zero.
Changes occur due to variations in non-conservative nutri-
ents and components of the carbonate system. However, cal-
culations appropriate for estuarine waters may also involve
changes in some of the unreactive components as they may
also be components of freshwaters.

Note that a slight simplification has been made. Ac-
tual additions of a particular species to a volume of water
will (slightly) change the concentrations of all other species,
when concentrations are measured per unit mass of solution
(or per unit volume) as is done here. However, modeling this
additional complication is not necessary here as we are not
tracking individual parcels.

Nutrient changes that lie above our threshold of 1 mg kg−1

include nitrate (NO−3 ) and silicate. The latter can appear in
the form of SiO2, Si(OH)4, and SiO(OH)−3 . Typically in
the pH range of seawater all but a few percent appears as
nonconductive Si(OH)4, and it will therefore be assumed that
only a negligible amount appears in the other forms.

Changes to the carbonate system can be determined by
measurements of TA and DIC (or any two equivalent mea-
surements, e.g. pH and TA). With the addition of NO−

3 , and
a change in TA, the number of positive and negative charges
in the composition will probably no longer balance. Other
processes must therefore be present in the real ocean to bal-
ance this excess (or rather, the change in TA arises to com-
pensate for the effects of these other processes). The dissolu-
tion of CaCO3 is likely the predominant mechanism at work
(Sarmiento and Gruber, 2006). The negative charges and car-
bon from CO2−

3 are already accounted for in the increase in
TA and DIC respectively. An increase in Ca2+ is also known
to occur in deep waters (de Villiers, 1998), and we assume
that this will balance the change in total charge. That is, we
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Fig. 1. Comparison between constantf CO2 and constant fraction
models for dilution of seawater.(a) Difference in conductivities.
(b) Differences in practical and absolute salinity.

assume a relationship between the increase in TA and the in-
crease in concentrations of Ca2+ from dissolution and NO−3
from remineralization:

1TA=21[Ca2+
]−1[NO−

3 ] (11)

where1 denotes changes. Thus our perturbations must in-
clude measured concentrations of NO−

3 , Si(OH)4, TA, and
DIC, as well as an inferred change in Ca2+ using Eq. (11).
Carbonate parameters are then recomputed using the equilib-
rium constant formulas described byDickson et al.(2007).

Of course, other processes also occur in the ocean. For ex-
ample, TA also varies with changes in phosphate and organic
substances, although these contributions will fall below our
threshold of importance. A more important process might be
sulfate reduction on continental shelves (Chen, 2002), which
may be responsible for a large part of TA increases in some
areas. In order to model this situation Eq. (11) would be
modified to:

1TA=21[Ca2+
]−21[SO2−

4 ]−1[NO−

3 ] (12)

but now an additional relationship (specifying, e.g., the im-
portance of CaCO3 dissolution relative to SO2−

4 reduction) is
needed to complete the model. Speculation on this relation-
ship is beyond the scope of this paper.

There is also evidence for significant (relative to our
threshold) variations in the concentrations of Mg2+ in the
vicinity of hydrothermal vents (de Villiers and Nelson,
1999). Again, the wider importance of this process, and a
means of parameterizing these variations, is at present un-
known.
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2.4 A model for seawater conductivity

The Pa08 model estimateκPa08of the true electrical conduc-
tivity κ of a dilute multi-component aqueous ionic solution
like seawater is computed using an equation which can be
written in a simplified form as (Pawlowicz, 2008)

κPa08(C)=

Nc∑
i=1

λic
∗

i zi (13)

The in-situ ionic equivalent conductivitiesλi=λ◦

i fiαi are the
product of infinite dilution equivalent conductivitiesλ◦

i for
the different ions (set to zero for nonionic species), and two
reduction factors:fi(I ∗)≤1, accounting for relaxation and
electrophoresis effects, andαi(I ∗,C)≤1, accounting for ion
association effects at finite ionic strengthI ∗. The stoichio-
metric ionic strengthI ∗ is

I ∗
=

1

2

Nc∑
i=1

z2
i c

∗

i (14)

The valence of charge on theith ion iszi and its stoichiomet-
ric concentrationc∗i (mol L−1). This is related toci through
a density equation (Millero and Poisson, 1981):

c∗i = ρ(SP)ci (15)

where we incur an error of at most 1×10−5 by ignoring the
fact that the true density will change slightly with composi-
tion perturbationsδC∗. As I ∗

→0 we havefi→1 andαi→1.
The relaxation/electrophoresis reduction parameterfi for

speciesi depends on the concentrations of other speciesj 6=i

only through their contribution toI ∗. However, the ion as-
sociation parameterαi depends critically on the concentra-
tions and identities of all other ions (i.e. on the total set of
c∗i ,i= 1,...,Nc), as it is a weighted sum of interactions with
all other anions (cations) for a cation (anion). In order to ac-
count for this the internal model structure is somewhat more
complicated than Eq. (13) suggests. Both the infinite dilu-
tion equivalent conductivities, and the in-situ ionic equiva-
lent conductivities determined by Pa08 for SSW76, are listed
in Table2.

The conductivity model used is identical to that described
in Pa08, with the addition of parameters for B(OH)−4 , de-
rived from observations ofCorti et al.(1980). All numerical
parameters are based purely on basic chemical measurements
in binary solutions, without reference to any measurements
made in seawater (or any other natural water).

The accuracy of the computed conductivityκPa08depends
on the accuracy of the measured ionic concentrationsc∗i , as
well as on biases in the calculation of the reduction fac-
tors fi and αi . At salinities< 4 g kg−1 the relative accu-
racy ε=(κPa08− κ)/κ of the model is typically limited to
±0.03 by the accuracy of the chemical analyses used to de-
termine composition (unpublished results). Once this error

is reduced, by, e.g., statistical averaging, the true error is less
than 0.007 over a range of chemical compositions. For sea-
water with salinities of 0.1–1 g kg−1 we find an overestimate
of only 0.002. However, at the higher salinities of concern
here model biases dominate the error, withε smoothly vary-
ing from about−0.01 at a salinity of 4 (κ∼8 mS cm−1) to
about−0.10 at a salinity of 35 orκ∼50 mS cm−1 (Fig. 2b).

2.5 Conductivity perturbations for non-standard
seawaters

A salinity underestimate of order 3 g kg−1 resulting from us-
ing κPa08 in Eq. (1) directly will not allow us to directly in-
vestigate the small compositional variations in typical sea-
water that we have discussed above, which are several or-
ders of magnitude smaller. However, not only is|ε|�1, but
it is relatively insensitive to changes in chemical composi-
tion. A comparison of measured and predicted conductivi-
ties for a variety of saline ocean and lake waters in the range
of 20–50 mS cm−1 (Fig. 2b) shows that the resulting error
is virtually identical for different compositions at the same
conductivity. This is very different from results found when
considering baseline predictions formed by takingfi=αi=1,
or equivalently using infinite dilution equivalent conductivi-
ties for the different components, ignoring all interionic in-
teractions (Fig.2a). Not only are these baseline predictions
greatly in excess of true conductivities (so thatε=O(1)), but
the excess is highly sensitive to the composition. The base-
line ε for Mahoney Lake is almost double that for seawater at
the same conductivity. The model is therefore accounting for
relative chemical composition correctly, but with an overall
bias that depends (weakly) on the salinity.

Thus for model predictions during which only small
changesδC∗ in composition are made, we can take theκPa08
errorε≈ constant.ε is estimated from

κ(C∗)= κPa08(C∗) ·(1+ε)−1 (16)

knowing thatκ(C∗)=f
−1
78 (SP*) for SSW76. Since we as-

sume

κ(C∗ +δC∗)≈ κPa08(C∗ +δC∗) ·(1+ε)−1 (17)

the change in conductivityδκ related to small compositional
changes is:

δκ ≡ κ(C∗ +δC∗)−κ(C∗)

≈ (κPa08(C∗ +δC∗)−κPa08(C∗)) ·(1+ε)−1

= δκPa08·(1+ε)−1 (18)

Thus it appears that we can use Pa08 to usefully predict con-
ductivity perturbations.

We can confirm the relationship postulated in Eq. (18) for
Pa08, which suggests that increments will be modeled to the
same relative accuracyε as conductivities themselves, by di-
rectly comparing numerical estimates from the model of var-
ious derivatives and other parameters related to conductivity
increments with observations made in seawater.
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Fig. 2. Predicted versus measuredκ at 25◦C for saline lakes Ma-
honey (Hall and Northcote, 1986), Mono (Jellison et al., 1999),
and Issyk-Kul (Vollmer et al., 2002), as well as for seawater.(a)
Baseline predictions without ionic interactions.(b) Pa08 predic-
tions that include ionic interactions. Vertical bars show uncertainty
based on the computed charge imbalance in the published chemical
composition used for predictions. Lake Issyk-Kul is a warm deep
lake with roughly equal amounts of NaCl and MgSO4, meromic-
tic Mahoney Lake is dominated by NaSO4, Mono Lake contains a
Na−CO3−Cl−SO4 brine and seawater is primarily composed of
NaCl.

First, direct estimates of the ionic equivalent conductivi-
ties λi=λ◦

i fi in seawater have been made using a radioac-
tive tracer technique (Poisson et al., 1979). These parame-
ters can also be extracted from the Pa08 model. When using
the baseline (i.e. ignoring all modeled ionic interactions) the
parameters are overpredicted with relative errors of 0.34 to
1.5 (Fig.3a). However, when using the full Pa08 model, pre-
dictions are much closer to measured values, and the scatter
is also greatly diminished. The mean relative error is−0.09,
almost identical to that found for conductivity itself.

Note that although the equivalent conductivities are gen-
erally underpredicted, the results for SO2−

4 show a slight
overprediction. This ion associates strongly with most other
cations. This makes it more difficult to model the equivalent
conductivity of the ion, as pairing effects must be subtracted
from measurements, but also tends to reduce the error when
making predictions in actual solutions, as pairing effects are
added back in.

More relevant results can be obtained by comparison with
so-called partial equivalent conductivities31i , defined by

31i =
∂κ

∂Ei

∣∣∣
P,T ,Ej 6=i ,...

(19)

These have been evaluated from laboratory measurements in
which small changes in equivalent concentrationsEi of the
ith of theNs salts (i.e. binary compounds) in seawater are
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Fig. 3. Comparison between different Pa08 model-derived and mea-
sured parameters related to conductivity, for seawater.(a) Ionic
equivalent conductivities in seawater ofSP=38.38 at 25◦C. Orig-
inal data fromPoisson et al.(1979, Table 3). (b) Partial equiv-
alent conductivities for various salts in seawater ofSP=35.13 at
25◦C. Original data fromPoisson et al.(1979, Table 4).(c) Partial
equivalent conductivities for various salts in seawater ofSP=35.04
at 23◦C. Original data fromConners and Weyl(1968, Table 4).
Dashed line shows a relative error of−0.10. Baseline predictions
are made by ignoring all ionic interactions (i.e. using only infi-
nite dilution equivalent conductivities). Pa08 results include relax-
ation/electrophoresis and ion pairing effects, with the former ac-
counting for most of the reductions from baseline.

made by additions to a reference seawater (Park, 1964; Con-
ners and Park, 1967; Conners and Weyl, 1968; Conners and
Kester, 1974; Poisson et al., 1979). The data are corrected
to show the derivatives when all other other conditions, and
concentrations of all other ions, are held fixed. Note that the
31i are not equal to the sum of the corresponding equivalent
conductivities for the anion and cation in Eq. (13) when eval-
uated at the ionic strength of seawater. Differences arise due
to changes in the ionic strength, and in the effects of pairing
(i.e., whenα<1) between the components of the added salt
and all other constituents in seawater. However, the31i can
easily be computed numerically from the Pa08 model.

For the salts studied, baseline predictions overestimate the
partial equivalent conductivities by 0.46 to 3.4 (Fig.3b and
c). When using the full Pa08 model, predictions are much
closer to measured values, and the scatter is also greatly di-
minished (mean relative error−0.12). We also see that added
salts containing SO2−

4 tend to lie close to the mean, show-
ing that the inclusion of pairing effects does reduce possible
problems associated with the ionic equivalent conductivity.
In both cases the relative error of these variations is similar
to that for conductivity itself. Thus the perturbation estimate
Eq. (18) is apparently valid on both theoretical and observa-
tional grounds.
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2.6 Salinities of non-standard seawaters

The change in practical salinity resulting from a perturbation
δC∗ added to an initial compositionC∗ is given by

δSP ≡ SP(C∗ +δC∗)−SP(C∗) (20)

= f78(κ(C∗ +δC∗))−f78(κ(C∗)) (21)

≈ f78(κ(C∗)+δκPa08·(1+ε)−1)−f78(κ(C∗)) (22)

whereε and δκPa08 are as defined in the previous section.
At low salinities whereκPa08 has minimal bias the simpler
approximation

δSP≈ δS∗

P ≡ f78(κPa08(C∗ +δC∗))−f78(κPa08(C∗)) (23)

provides an alternative method of estimating practical salin-
ity changes which does not rely on assumptions about the
magnitude of perturbations. In fact the functionf78(κ) is
smooth enough that the approximation holds to a degree of
accuracy�ε over all salinities (cf. Eq.10), although we con-
tinue to use the computationally more intensive Eq. (22) un-
less otherwise specified. In addition to these changes in prac-
tical salinity, perturbationsδC∗ also lead to changes in abso-
lute salinity according to:

δSsoln
∗ ≡ s(C∗ +δC∗)−s(C∗)= s(δC∗) (24)

(by the linearity of Eq.2).
If we consider a parcel of water with fixed chlorinity, ad-

ditions δC∗ will therefore affect both the measuredSP and
calculated absolute salinity. These changes will generally be
different, giving rise to a salinity correction which can be es-
timated as:

δS
soln(1)
R ≡ Ssoln

A (C∗ +δC∗)−γ SP(C∗ +δC∗) (25)

= δSsoln
∗ −γ δSP (26)

≈ δSsoln
∗ −δSP (27)

This implies thatδSsoln
R is approximately the change in ab-

solute salinity, minus whatever compensating effects arise
from conductivity. If a nonionic substance is added,δSsoln

∗

will dominate the correction. On the other hand, adding very
light but extremely conductive ions could lead to negative
corrections arising mostly from changes inSP.

However, when converting ocean measurements to abso-
lute salinity we are concerned with the corrections that arise
whenSP is held constant, rather than those for fixed chlorin-
ity. For non-standard seawater with a measuredSP we begin
with a compositionCR appropriate for SSW of the sameSP.
However, the actual composition isβCR+δC∗. That is, the
addition of other solids that dissociate into ions which in-
crease conductivity must be matched by a slight dilution of
our initial standard seawater composition in order to keep
conductivity constant. The dilution factorβ for the SSW
composition can be found by solving

κ(βCR+δC∗)= κ(CR) (28)

which can be done iteratively, usingκPa08 in place ofκ on
both sides of the equation. Then from Eqs. (4) and (28) the
true correction is:

δS
soln(2)
R = s(βCR+δC∗)−s(CR)

= δSsoln
∗ −(1−β)s(CR) (29)

Typically β is very close to 1 andδSsoln(1)
R is within a few

percent ofδSsoln(2)
R for the small perturbations of concern

here. Although the latter is technically more correct for deal-
ing with ocean data, the advantage of the former is that we
can separately estimate effects of changing mass and chang-
ing number of electrical charges. We use the notationδSsoln

R
when the distinction is unimportant.

3 Results

To illustrate the effects of compositional changesδC∗ first
consider an extreme, but realistic, scenario. Investigations
of the relationship between salinity and density suggest that
largest salinity anomalies (of order 0.03 g kg−1) occur in the
intermediate North Pacific (McDougall et al., 2009). This
water represents the endpoint of the subsurface branch of the
thermohaline circulation and thus provides an appropriate ex-
treme. For comparative purposes model “North Pacific Inter-
mediate Water” (NPIW) is normalized to have the same chlo-
rinity as SSW76, although actual chlorinities in the North
Pacific are about 0.3 g kg−1 lower. Based on typical observa-
tions, take this water to contain Si(OH)4=170 µmol kg−1 and
NO−

3 =40 µmol kg−1, with TA and DIC larger than in SSW76
by values of 150 µeq kg−1 and 300 µmol kg−1 respectively.
Columns 4–5 of Table3 then contain the model composi-
tion C0+δC∗ representing NPIW, with the perturbationδC∗

in columns 6–8.
Carbonate equilibria are recalculated from the new TA and

DIC. pH on the Total scale drops to about 7.5 (again, all
calculations are at 25◦C). The increases we specify actually
cause concentrations of CO2−

3 and B(OH)−4 to decrease sig-
nificantly. In addition, charge balance considerations require
that the concentration of Ca2+ increase by 0.095 mmol kg−1

or a little less than 1% over its value in SSW76. Measured
increases in Ca2+ at depth in the North Pacific are of this
order (de Villiers, 1998).

Applying the model directly (i.e. under conditions of
fixed chlorinity)δSP≈0.0062 andδSsoln

∗ ≈0.0398 g kg−1, and
hence from Eq. (27) δSsoln(1)

R ≈0.034 g kg−1. The cruder ap-
proximationδS∗

P ≈ 0.0054 underestimatesδSsoln
R with a rela-

tive error of only−0.12. A similar calculation, i.e., one with
the same changes in TA, DIC, NO−

3 , and Si(OH)4, under
conditions of fixed conductivity, results in a dilution factor of
β = 0.9998105, and from Eq. (29) δSsoln(2)

R ≈ 0.033 g kg−1.
The two calculations result in almost exactly the same

answer. From Eq. (27) we can consider the correction as
the difference between changes in absolute and practical
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salinity. The Si(OH)4 component alone contributes about
0.016 g kg−1 to δSsoln

R , or almost half of the correction. Much
of the remainder arises primarily due to increases in HCO−

3 ,
but there are both increases and decreases in other con-
stituents. In fact, the changes in absolute salinity due to the
increase in carbonates outweigh those due to the increase in
Si(OH)4, but some of this carbonate ion increase is compen-
sated by an increase inSP.

In order to better understand these values we investi-
gate the conductivity. Model calculated ionic equivalent
conductivitiesλi within our seawater are all significantly
smaller than the infinite dilution equivalent conductivitiesλ◦

i

(columns 3 and 4 of Table2), but with the exception of H+

and OH− are all of order 30 mS cm−1 (mol L−1)−1. Very
roughly then, conductivity changes will be proportional to
changes in the number of charge pairs present. There are
large changes in the concentrations of individual negative
ions (last column of Table3), but overall the increases and
decreases in negative ions tend to balance out, matching (in
total) the smaller increase in positive charges from Ca2+ pro-
duced by CaCO3 dissolution. Thus changes in absolute salin-
ity are most strongly influenced by changes in Si(OH)4 and
DIC, but changes in practical salinity occur mostly due to
CaCO3 dissolution.

Further insight can be obtained by deriving an approxi-
mate relationship betweenδSsoln

R and δC∗. Seawater con-
ductivity per unit mass of salt at 25◦C in the model
is ψ=κPa08/S

soln
A ≈1.35 mS cm−1 (g kg−1)−1. Combining

Eqs. (2), (4), and (13) and definingψi=λiziρ/Mi as the con-
ductivity per unit mass of theith component:

δSsoln
R ≈

∑
i

Mi(1−
ψi

ψ
)δci (30)

with numerical values appropriate forSP=35 given in Ta-
ble 2. This expression illustrates the way in which the con-
tribution of individual ions toδSsoln

R depends on the degree
by which conductivity per unit massψi differs from the av-
erageψ . The relationship is only approximate because theψ

are not in fact constant, but will also vary withδC∗. In us-
ing this formula it is also important to recall that only charge
balanced perturbations are meaningful, so that any scenario
must involve changes in at least one cation and anion.

Examination of the mass effect coefficients(1−ψi/ψ) for
different ions (listed in column 6 of Table2) shows concen-
tration perturbations in some ions (e.g., Na+, Ca2+, Mg2+,
K+, Cl−, F−) result in little change toδSsoln

R . These ions
contribute to conductivity in an “average” way, withψi≈ψ .
Contrariwise, concentration changes in other ions do not af-
fect conductivity in an average way and hence must be ac-
counted for with a non-zeroδSsoln

R . Some of these (e.g., Sr2+,
Br−) vary with the other conservative ions and hence will
not appear in realistic perturbations that arise from biogeo-
chemical processes. Nonconductive species contribute ex-
actly their added mass. Several ions (H+, OH−) have an

extremely large effect on conductivity, relative to their mass.
However, the actual in-situ mass changes in these ions are so
small that the overall effect on conductivity is minimal.

Sea salt is composed primarily of Na+ and Cl− ions (Ta-
ble 3). These contribute to conductivity in an average way,
and so if there are small perturbations in their mass practi-
cal salinity changes will approximately account for the ab-
solute salinity change. However, when using the full model,
and ignoring nonconductive Si(OH)4, the change in absolute
salinity δSsoln

∗ is ≈0.024, about 4 times larger thanδSP. The
salinity perturbation for modeling NPIW is composed largely
of HCO−

3 , for whichψi is significantly different thanψ . Us-
ing Eq. (30) we expect that an HCO−3 perturbation will give
rise to a conductivity change that (when converted to salin-
ity using the average factorψ) will only account for≈0.3 of
the actual salinity change. The dominance of HCO−

3 changes
in δC∗, and their relatively unconductive nature, explains the
insensitivity of predicted conductivity to variations in our as-
sumptions about how seawater dilution should be modeled
(cf. Sect.2.2).

The choice between Eqs. (11) and (12) to balance TA
changes will also have some consequences. An addition
of Ca2+ will result in a compensating increase in conduc-
tivity, not affecting δSsoln

R , but an equal decrease of SO2−

4
(which has an equivalent effect on TA) will not result in a
fully compensating decrease in conductivity and hence will
result in a smallerδSsoln

R . For a concentration change of or-
der 100 µmol kg−1 (i.e. for NPIW) the difference inδSsoln

R
computed using the different scenarios is 0.005 g kg−1 us-
ing Eq. (30) or 0.008 g kg−1 using the full model. Since
we do not have a good knowledge of the actualδci for all
constituents of seawater, we must rely on assumptions about
biogeochemical processes to parameterize them. However,
our prediction accuracy is then limited by the extent of our
knowledge about these processes.

By considering only those ions both important in typical
biogeochemical perturbations (i.e. large values in column 7
of Table3) and with strong effect onδSsoln

R (i.e., with large
values in the last column of Table2), Eq. (30) can be further
simplified. Only HCO3−, CO2−

3 , CO2, B(OH)3, B(OH)−4 ,
NO−

3 and Si(OH)4 will have significant effects onδSsoln
R .

Since all of the carbonate parameters are related, and rela-
tionships such as Eq. (11) mean that the NO−3 term is not re-
ally independent either, a more sophisticated understanding
of the carbonate system may allow a formula forδSsoln

R to
be written more simply in terms of more general parameters
such as TA and DIC.

However, for accurate calculations the full model is re-
quired. Unfortunately, although our model can be used to
directly computeδSsoln

R in any situation, the computational
process by which these values are derived is complex and
relatively opaque. Previous workers have fitted simple em-
pirical relationships to measurements, and these appear to
be sufficient for practical purposes. Such formulas can also
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Fig. 4. Coefficients of the best fit equationδSsoln
R = aTA +bDIC+

c[NO−

3 ] to model predictions, as a function of salinity.(a) Coeffi-
cienta. Dashed line shows a best fit curve as a functionTA ·SP/35
rather than TA.(b) Coefficientb. (c) Coefficientc.

be fitted to “measurements” calculated by the perturbation
model. This is a simpler way to derive more straightforward
formulas.

First consider perturbations whenSP = 35. The model
is used to calculateδSsoln(2)

R over a grid of δC∗ points
within a range of 0≤1TA ≤ 0.3 mmol kg−1, 0≤1DIC ≤

0.3 mmol kg−1, and 0≤ 1NO−

3 ≤ 0.040 mmol kg−1, with
Ca2+ again varying according to Eq. (11). Inspection of
the results shows thatδSsoln(2)

R varies quasi-linearly with the
components of the perturbation, and by least-squares fitting
the equation

δSsoln
R /(mgkg−1)= (47.111DIC+7.171TA

+36.571[NO−

3 ]
)
/(mmolkg−1) (31)

agrees very well with the full calculations, with a misfit
standard error of±0.07 mg kg−1 and a maximum misfit of
0.3 mg kg−1.

The DIC coefficient is similar to the theoretical coeffi-
cient for HCO−

3 (column 7 Table2), and both the theoreti-
cal and fitted NO−3 coefficients are roughly comparable. The
≈20% difference results from both the biogeochemical rela-
tionships, as well as variations in the interionic interactions
involved in conductivity.

Repeating the above procedure for 25≤SP≤40, we find
that the coefficients in the fit forδSsoln

R vary with salinity
(Fig. 4). The coefficients for1DIC and NO−

3 vary only
weakly (with a change of<10% over the salinity range cho-
sen) and in practical terms the variation can be ignored.
However, the coefficient for1TA varies strongly (>50%
change over the salinity range chosen), and almost linearly
with SP. This suggests that Eq. (31) should be modified for
situations whenSP6=35 by replacing1TA with 1TA·SP/35.
Note that the1 signifies the change from SSW values at the
specified salinity, e.g. the difference between observed TA
and 2.300·SP/35 mmol kg−1. We also add in the total mass
of Si(OH)4 to produce this final prediction formula:

δSsoln
R /(mgkg−1)= (47.111DIC+7.17(SP/35)1TA

+36.571[NO−

3 ]+96.111[Si(OH)4]
)
/(mmolkg−1) (32)

2250 2300 2350 2400 2450 2500

10
1

10
2

10
3

10
4

μeq kg−1

a) TA

de
pt

h 
(m

)

2000 2200 2400 2600

b) DIC

μmol kg−1

7.2 7.4 7.6 7.8 8

10
1

10
2

10
3

10
4  

 

c) pH

P17 stn 34
A24 stn 119
AO94 stn 29
S04 stn 29

0 10 20 30 40 50

10
1

10
2

10
3

10
4

e) NO
3
−

μmol kg−1

0 20 40 60 80 100

d) ΔCa2+

μmol kg−1

0 50 100 150 200

f) Si(OH)
4

μmol kg−1

Fig. 5. Composition perturbations for example stations: North Pa-
cific (WOCE line P17, station 34, 37.5◦ N, 135.0◦ W, 10 August
2001), North Atlantic (WOCE line A24, station 119, 52.73◦ N,
34.71◦ W, 22 June 1997) Arctic (AO94 station 29, 87.16◦ N,
160.71◦ E, 17 August 1994) and Southern Ocean (WOCE line S04,
station 29, 62.02◦ S, 134.18◦ E, 9 January 1995).(a) TA for all pro-
files. (b) DIC. (c) pH on the Total scale.(d) Computed change
1Ca2+ (e) NO−

3 . (f) Si(OH)4. Vertical dashed lines show values
in SSW76.

Note that there may be no easy way to empirically ver-
ify the different coefficients with ocean measurements. An
empirical fit to data has resulted in the following relationship

δSdens
R /(mgkg−1)=

(
50.13(1TA−0.032)+63.101[NO−

3 ]

+96.301[Si(OH)4])/(mmolkg−1) (33)

(Millero, 2000, Eq. (3), rewritten to match the base value for
1TA used here and using a conversion factor of 756 between
density and salinity changes as in that paper) which has a
similar coefficient for Si(OH)4, but otherwise is numerically
somewhat different. However, the different constituents in-
cluded are strongly correlated in the ocean. A least-squares
fit to a restricted set of actual observations may therefore be
rather insensitive in certain directions of the parameter space
of coefficients. Thus it is most appropriate at this stage to
compare these different formulas only by examining their ef-
fect on measured ocean profiles.
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Fig. 6. Predicted corrections for measured water column pro-

files. Shown are the total fixed-conductivity correctionδSsoln(2)
R ,

as well as the components of the fixed-chlorinity correction

δS
soln(1)
R =δSsoln

∗ −δSP (with δSsoln(2)
R ≈δS

soln(1)
R ), and the compo-

nent of the correction due to silicate alone,δSsoln
R (Si). (a) N. Pa-

cific profile. (b) N. Atlantic profile.(c) Arctic profile. (d) Southern
Ocean profile.

The full calculation procedure can easily be applied to
actual ocean profiles, as long as they include observations
of SP, TA, DIC, Si(OH)4 and NO−

3 . These parameters
are now considered to be standard for deep-ocean hydro-
graphic observations so no modification is needed in rou-
tine procedures. The latter 4 are enough to specify the non-
conservative elements, with changes in Ca2+ inferred from
Eq. (11) to maintain charge neutrality.

As an example, consider several recent high-quality hy-
drographic profiles from the North Atlantic, Arctic, and
North Pacific, and Southern Ocean (Figs.5–7). Previous
δSdens

R estimates have been made in all regions except the
Arctic.

Surface nutrients are low in all profiles except in the South-
ern Ocean, and surface pH relatively high, although lower
than in SSW (Fig.5). The Arctic profile has a high surface
TA, which implies higher Ca2+, and DIC, due to cold tem-
peratures. Nutrients, TA, and DIC at depth are much higher
in the North Pacific than in the other profiles. However, deep
pH is much lower. Deep nutrient levels are typically higher
than surface nutrients in all cases. Inferred1Ca2+ is high in
the Arctic and Southern Ocean, and high in the deep North
Pacific.

The computed salinity correctionδSsoln(2)
R is close to zero

in the surface waters of the N. Pacific (Fig.6a) and N. At-
lantic (Fig.6b), but is almost 0.008 in the surface waters of
the Arctic (Fig.6c). On the other hand, the correction is low-
est at depth in the Arctic (only 0.003), but is as high as 0.033
in the deep North Pacific. The surface correction is highest
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Fig. 7. Comparison betweenδSsoln(2)
R computed with the full con-

ductivity model in this paper with the results of empirical formulas
for δSdens

R provided byMillero et al. (2008) andMcDougall et al.
(2009). The latter provides corrections as a function of ocean basin,
latitude, and measured Si(OH)4. Also shown are calculations using
a reduced mass for added Si.(a) North Pacific.(b) North Atlantic.
(c) Arctic. (d) Southern Ocean.

in the Southern Ocean. The correction itself is dominated by
theδSsoln

∗ in all cases withδSsoln(2)
R ≈0.8δSsoln

∗ . The increase
in ionic content does result in a small change in conductivity
which partially compensates for the compositional change,
but as beforeδSP�δSsoln

∗ .

Comparison of calculatedδSsoln(2)
R with δSdens

R produced
by Eq. (33) andMcDougall et al.(2009) for these stations are
relatively good (Fig.7). The general shape of depth profiles
and overall magnitudes are similar, although our estimates
appear to be systematically slightly larger. Correction factors
in the deep Pacific and shallow Arctic are large, but are small
in both Pacific and Atlantic surface waters, and deep Arctic
waters. Our corrections are about 0.005 larger in the deep
Pacific and not very different whenδSsoln(2)

R ≈0. Widest dis-
agreement between the three estimates occurs in the South-
ern Ocean. For all profiles, the modelδSsoln(2)

R is the largest
of the 3 estimates, and the predictions ofMcDougall et al.
(2009) the smallest.

As a final comparison, the model is used to replicate the
measurements in a controlled situation where the chemistry
is more precisely known.Millero (1984) measuredδSdens

R
(Fig. 8) for various mixtures composed of a known fraction
a of SSW and an artificial river water of known composition
CRW (Table4):

Cmixture= aC0+(1−a)CRW (34)

with 0≤a≤1. Here we take the dilutionC∗=aC0 as a base
state (the difference betweenC(2) andC(3) dilutions does not
materially affect the results here), andδC∗=(1−a)CRW as a
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limiting case estimates for pure river water using Pa08.

perturbation in a fixed-chlorinity calculation. The name is
somewhat misleading here because the river water also con-
tains Cl− but this does not affect the mathematical details of
the calculation. Calculations must be modified slightly when
SP<5, since the usual seawater parameterizations of the car-
bonate equilibria are no longer valid in this low-salinity
range. They do not extrapolate correctly to pure-water lim-
its. Instead we use low-salinity parameterizations more suit-
able for river and lake waters (Millero, 1995). The change
of δSsoln

R across the transition between the two regimes is not
smooth, but the size of the step is small enough that it cannot
be seen in Fig.8.

The δSsoln(1)
R arising from perturbation computations al-

most exactly lies within the scatter of the observations
(Fig. 8). As salinity drops and the riverine addition be-
comes a larger fraction of the composition,δSsoln

R increases.

One unexpected result is thatδSsoln(1)
R increases roughly lin-

early with decreases in salinity only at high salinities. When
SR drops below about 10 g kg−1, δSP curves upwards quite
sharply, so that theδSsoln(1)

R curve flattens and even decreases
at very low salinities. The observations do not appear to show
this, although their scatter is large enough that this behavior
cannot be ruled out. However, at low salinities where the
Pa08 model is known to be accurate (unpublished results), it
can be applied directly toCmixtureand the alternative estimate
δS∗

P used in place of the perturbation calculation forδSP. Re-
sults agree almost exactly with the perturbation model, show-
ing the same curvature. Agreement is good at low salinities
because the bias in Pa08 is small, and is good at high salini-
ties because the river water perturbation is very small.

Table 4. CompositionCRW of artificial river water used byMillero
(1984). Numbers have been adjusted to correct for typographical
errors inMillero et al. (1976) and to agree best with stated values
of both molar and mass concentrations in that paper, after rounding.
TA is set by charge balance, with DIC carbonate ion concentrations
computed from TA and pH using the low-salinity carbonate system
parameterizations ofMillero (1995) whenSP<5.

Species Concentration
(mmol kg−1)

Ca2+ 0.3745
Mg2+ 0.1685
Na+ 0.2740
K+ 0.0590
SO2−

4 0.1165
Cl− 0.2200
NO−

3 0.0160
HCO−

3 0.9434

CO2−

3 0.0031
CO2 0.0440
OH− 0.0004

pH 7.60
TA 0.9500 meq kg−1

DIC 0.9905
Ssoln

A 0.1074 g kg−1

Finally, for a=0 Pa08 directly predicts a conductivity of
142 µS cm−1, which can then be used with PSS-78 to com-
puteSP=0.0686 and henceδSsoln

R = 0.0388 g kg−1 indepen-
dently of the seawater perturbation model. The perturbation
model does approach these values in the limit asa→0. Note
however that this limit is not a good indicator of the zero-
salinity intercept of a best-fit line through the observations,
especially those from salinities>5 g kg−1, typical of most
estuarine waters, because of the curvature inδSP. Such a
best fit line would intercept the left axis at rather higher val-
ues. Overall, however, although the particular chemistry of
the oceanic perturbations may result in different errors than
those associated with riverine dilutions, there do not appear
to be any general biases present.

4 Discussion and conclusions

The combination of a chemical model of seawater and a con-
ductivity model allows the effects of compositional pertur-
bations on conductivity-based methods of salinity determi-
nation to be estimated. An immediate result is that conduc-
tivity itself is relatively insensitive to biogeochemical pertur-
bations to the chemical composition of seawater. In fixed
chlorinity calculations,δSP increases by less than 0.007 over
the range of waters investigated in the world ocean, while
Ssoln

A increases by up to 0.04 g kg−1. Numerical values ofSR
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(i.e. the scaledSP) lie somewhere between a chlorinity-based
measure and the true absolute salinity, although much closer
to the former. This also accounts for the stability of con-
ductivity in SSW (Bacon et al., 2007), in spite of the known
variations in DIC that occur within samples.

A second result is that the observedδSsoln
R are almost en-

tirely explained by changes in nutrients and the carbonate
system. Although this fact is already known empirically
and is the basis for existing estimates ofδSdens

R (e.g.,Mc-
Dougall et al., 2009; Millero, 2000) the model calculations
provide a more theoretical confirmation. In addition, the
model shows that variations in Ca2+ and/or SO−4 are as im-
portant as changes in NO−3 , although they are linked via bio-
geochemical relationships.

Another result is that the effects of perturbations at typical
oceanic salinities are approximately linear functions of salin-
ity, but that this linear behavior does not extrapolate well to
behavior at low salinities (SP<5). At low salinities carbon-
ate composition andδSP become much more nonlinear func-
tions of salinity. Thus generalizations based on infinite di-
lution quantities, or river endpoints, are qualitatively useful
but may in practice be less relevant to oceanic situations than
might be otherwise be expected. Conversely, extrapolations
of linear fits to measurements in estuarine waters will not
necessarily agree with observations of river end-members.

However, although the general agreement between calcu-
latedδSsoln

R and density-based estimates likeδSdens
R is good,

differences remain. The differences are not very much larger
than the typical uncertainty arising from density measure-
ments, but are systematic. There are several possible expla-
nations for these differences.

First, the Pa08 conductivity model may be inadequate to
correctly calculate perturbations in this application. The
scatter in comparisons between predictions and observations
in Fig. 3 suggests that the model bias may still depend
to some extent on chemical composition. It is difficult to
fully address this issue without more data for comparison.
However, the good agreement with the dataset on mixtures
of artificial river water and seawater (Fig.8) suggests that
model performance is adequate in at least some cases, even
when the perturbations become very large. Agreement be-
tween the fixed chlorinity calculation forδSsoln(1)

R (Eq. 27)

and the fixed conductivity calculation forδSsoln(2)
R (Eq. 29)

for the case of biogeochemical perturbations is also very
good. The maximum difference between the two is only
0.0007 g kg−1. Since each calculation involves somewhat
different changes to the chemical composition, and differ-
ent assumptions about bias correction, this also suggests that
these composition-dependent model errors are almost an or-
der of magnitude smaller compared to the differences be-
tween model-estimated and density estimated salinity correc-
tions.

Second, the overall comparison between the model and the
other predictions in Fig.7 can (perhaps) be improved by de-
creasing all calculatedδSsoln

R by a small (constant) amount.
Differences between the predictions will then be both pos-
itive and negative, instead of mostly positive. Constant in-
creases or decreases will result from changes in the specified
DIC content of SSW76. As discussed in Sect.2.1 it is not
possible at this time to precisely define the DIC content of
SSW, and the appropriate value may have to be “tuned” to
allow predictions and observations ofδSsoln

R to match. The
value used in this paper results inδSsoln

R ≈0 in the surface
North Atlantic. However, reducing DIC in SSW76 to pro-
vide a better match in the North Pacific would result in a
negativeδSsoln

R in the surface North Atlantic.

A third possibility is that the biogeochemical model
(Eq.11) is in error. Imagine that instead of increasing Ca2+

by ≈100 µmol kg−1 SO2−

4 is decreased by a similar amount
according to Eq. (12). Since these ions have different ef-
fects on conductivity, the change would decreaseδSsoln

R in the
North Pacific by as much as 0.007 g kg−1 from our present
estimates, which would (again) account for much of the dif-
ference. Sulfate reduction may be an important process on
shelves (and in anoxic basins), but its importance in the open
ocean is less easy to determine.

Fourth, it is possible that these differences reflect inade-
quacies in the empirical algorithms ofMillero (2000) and
McDougall et al.(2009) used to calculate the corrections.
The database of density measurements used to determine
these different algorithms may simply not be large enough to
correctly characterize the whole ocean and extrapolations to
unsampled regions may not be completely valid. A more de-
tailed comparison with the existing database of density mea-
surements may help to resolve this issue.

A different and more fundamental explanation for dis-
agreements, especially in the North Pacific, may be that the
true correctionδSsoln

R value calculated from our model might
not be equivalent to the “effective” correctionδSdens

R com-
puted from density measurements, which is merely chosen
to produce the correct density when the equation of state is
applied using salinity as a state variable. Agreement between
the two estimates depends partly on the definition of salinity,
and partly on the haline contraction coefficient being similar
for perturbations with different composition.

The haline contraction coefficient is a measure of the den-
sity change related to a particular salinity change. The work-
ing assumption forMcDougall et al.(2009) is that the den-
sity change arising from a given mass change will be insen-
sitive to the composition of the change. The haline con-
traction coefficient is then calculated from the equation of
state, equivalent to assuming that all constituents change in
the proportions already found in seawater. This assumption
has been shown to be true within practical limits for typ-
ical low-salinity river waters, and for mixtures of artificial
river and seawaters (Millero, 1975). The agreement between
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the perturbation model and density-based measurements for
the case of artificial river water mixtures (Fig.8) also sug-
gests that this is likely not a large factor at least in some
cases. However, this previous work has not considered the
full range of compositional variations, and, in particular, the
biogeochemical perturbations in seawater.

Biogeochemical perturbations involve nutrients, carbon-
ates, and dissolved gases. Perhaps fortuitously, changes in
the concentrations of the dissolved gases (which for O2 in
particular are well above the 1 mg kg−1 threshold) have vir-
tually no effect of density (Watanabe and Iizuka, 1985). Thus
their neglect in the usual definition of salinity has not been
important in the past. However, the haline contraction coef-
ficient for Si(OH)4 at least is slightly less than half of that
for typical ions in natural freshwaters and seawaters (Wüest
et al., 1996). That is, the density change resulting from a
given change in the mass of Si(OH)4 is slightly less than half
that for a change of the same mass of the typical ions in nat-
ural waters. Thus density measurements converted to mass
changes using a haline contraction coefficient derived from
the density equation will underestimate the true salinity vari-
ation arising from silicate addition. Investigation of this issue
should be possible using an appropriate model for density.

An additional issue is that the definition of salinitySsoln
A

(Eq. 2), although apparently straightforward, is not com-
pletely suitable for the purpose of quantifying small com-
positional changes in the ocean. Chemical reactions within
seawater mean that the chemical formulas for ions present
are not identical to the solids added. Si is actually added
to seawater in the form of SiO2 which then dissolves and
combines with H2O, so the appropriate weighting factor for
Si(OH)4, say in Eq. (32), may be the molar mass of SiO2,
(60.08 g mol−1) rather than that of Si(OH)4. That is, the
added 2H2O may be inappropriately included in the estimate
of the mass of dissolved solids. Thus the calculatedδSsoln

R
overestimates the actual salinity change.

Reducing the Si(OH)4 coefficient in Eq. (32) in this way
reducesδSsoln

R by 0.006 g kg−1 in our model NPIW (Table3)
and removes much of the difference in the North Pacific at
depths greater than 2000 m (Fig.7). However, other factors
must also be important because there are only very small
changes in predictions for the Arctic and North Atlantic,
or indeed in any profile at depths shallower than 1000 m.
Changes in the Southern Ocean are larger, but still not suffi-
cient to completely explain the differences.

A similar argument may be made for the mass of NO−

3 ,
which results from the remineralization of organic N and and
is therefore associated with a decrease in O2 already present
in the water column. The dissolved gas O2 is not included
in the definition of salinity, but when these atoms combine
with N their mass then becomes part of the calculated salin-
ity. However, the resulting changes in calculated salinity due
to this inconsistency are only 0.002 g kg−1 for model NPIW,
relatively small compared to those that arise from Si reac-
tions.

Larger corrections arise from consideration of the O2 and
H2O that accompany the dissolution of organic carbon and its
conversion to carbonates. In model NPIW the DIC increase
is 300 µmol kg−1 and the carbonate component ofSsoln

A in-
creases by 0.018 g kg−1 (Table 3) using the definition of
Eq. (2). However, the true added mass of dissolved carbon-
related material, partly remineralized organic C and partly
CO−

3 from dissolved CaCO3, is only 0.008 g kg−1. Rem-
ineralization involves the combination of 0.0025 g kg−1 of
organicC with almost 0.007 g kg−1 of O2 to produce CO2.
The remainder of the discrepancy is due to the dissolution of
H2O in the chemical reactions governing the carbonate equi-
libria.

Thus it is possible that by rewriting the definition for the
absolute salinity of compositional perturbations, to more pre-
cisely reflect the actual addition of dissolved material, the
numerical values forδSsoln

R can be made smaller by as much
as 0.018 g kg−1 for NPIW. This can be accomplished without
any change in the actual composition, conductivity, or den-
sity of the water. Such a variation is more than enough to
account for the observed differences. Again, a more detailed
comparison with measuredδSdens

R would be required to de-
termine whether this would be useful. One drawback of this
approach is that such a redefinition would involve specifying
the biogeochemical processes involved, which would make
the result less general. In addition, including O2 decreases in
the definition of salinity perturbations, but not in the defini-
tion of Ssoln

A itself, could create other inconsistencies.
The differences do not arise because the temperature of

calculations was set at 25◦C, even though in-situ conduc-
tivities used to determine observations ofSP are gener-
ally measured at much lower temperatures. Conductivity
is highly temperature-dependent, and this dependence varies
with composition. For SSW, changes in temperature will not
result in a change inSP because the PSS-78 formula (Eq.1)
accounts for the effects of temperature variations. However,
the temperature effect is slightly different for perturbed com-
positions. The correction factorτ when comparing conduc-
tivities at 25◦ to those at a temperatureθ , defined as:

κ(βC0+δC∗,25◦C)

κ(βC0+δC∗,θ)
=
κ(C0,25◦C)

κ(C0,θ)
·(1+τ) (35)

can be estimated usingκPa08 for κ. For δC∗ representing
model NPIW, andθ=1◦C, τ≈ − 1×10−5, which changes
δSA by less than−0.0004 g kg−1. This is negligible relative
to the other effects discussed above.

Although the temperature effect is not important, we can-
not determine at present which (if any) of the other possible
explanations is most important in resolving the differences.
However, it appears more likely that they result from uncer-
tainties in the chemical model and/or the definition of salinity
rather than from any fundamental problems with the conduc-
tivity calculation. It will be important to model density as
well as conductivity to fully understand the source of these
differences in ocean observations.
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In summary, although conductivity measurements have
been of primary importance to oceanographic studies for
at least a generation our knowledge of the relationship be-
tween conductivity and salinity has been purely empirical.
There remain many uncertainties about the reliability and
predictability of standard procedures. Development of a the-
ory with which variations can be studied is therefore poten-
tially important for studies in many different areas.

For example, it has been shown here that biogeochem-
ical processes have a measurable effect on the conductiv-
ity/salinity relationship. This suggests that comparisons be-
tween more comprehensive datasets of direct density mea-
surements and our predictions may be useful in constrain-
ing future research into these processes. Even in the shal-
low ocean, the changing composition due to changes in at-
mospheric CO2 may affect salinity estimates and this model
provides a way of investigating the effects of such changes.
In coastal and estuarine systems, compositional variations
are known to affect density and other properties (e.g.Millero
et al., 1976). Comparisons of density andSP measurements
may then be useful in estimating the pools (and eventually
residence times) of the constituents of these variations.

In addition to these purely scientific concerns, the avail-
ability of this theory may be useful in solving a number of
technical issues arising in current practices. The extrapola-
tion of δSdens

R estimates into waters for which no density mea-
surements are available (as done byMcDougall et al.(2009)
to provide correction factors in coastal and Arctic regions)
can be confirmed if information is available about composi-
tional perturbations. The effects of pressure, which can lead
to small changes in the chemical equilibria of the carbonate
system, can also be investigated. Finally, there are possible
uncertainties in the reliability of SSW for highest precision
measurements (Kawano et al., 2006), although it is unclear
why these variations arise (Bacon et al., 2007). Again, the
model developed here may be useful in resolving some of
these technical issues.
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