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Abstract. A study about measurements of solid precipita-
tion using an optical disdrometer is presented. The optical
disdrometer is an improved version of the ODM 470 dis-
drometer. It allows to measure hydrometeors within a size
range of 0.4 to 22 mm in diameter.

The main advantage of this instrument is its ability to esti-
mate accurately precipitation even under strong wind condi-
tions (Großklaus, 1996). To measure solid precipitation a ge-
ometrical model was developed to determine the mean cross-
sectional area of snow crystals for different predefined shapes
and sizes. It serves to develop an algorithm, which relates
the mean cross sectional area of snow crystals to their max-
imum dimension, liquid water content, and terminal veloc-
ity. The algorithm was applied to disdrometer measurements
during winter 1999/2000 in Uppsala/Sweden. Resulting pre-
cipitation was compared to independent measurements of a
Geonor gauge and to manual measurements. In terms of
daily precipitation the disdrometer shows a reliable perfor-
mance.

1 Introduction

Snow plays an important role in the hydrological cycle and
in the global energy budget. Several studies have been car-
ried out to measure precipitation rate and size distribution of
solid precipitation (Lundberg and Halldin, 2001; Hanesch,
1999). The main problem in measuring snow arises from
wind induced flow distortion (Yang et al., 1999), yielding er-
rors exceeding 100% in terms of precipitation rates at wind
speeds of 10 m/s. The introduction of precipitation radars
has strengthened the interest in using disdrometers because
such remote sensing techniques need to be calibrated in terms
of relations between reflectivityZ and precipitation rateR,
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the so calledZR-relation. A recent study, focused on liq-
uid precipitation, has shown the advantage of the optical dis-
drometer ODM 470 (Fig.1) to measure precipitation even
under strong wind conditions compared to the well known
Joss Waldvogel-disdrometer (Bumke et al, 2004).

Therefore, it seems promising to use this kind of disdrom-
eter also for measurements of solid precipitation. However,
some specific questions need to be addressed. Since rain
drops have a nearly spherical shape and a constant density,
their liquid water content, fall velocity, and thus rain-rate can
be easily parameterized from their cross sectional areas mea-
sured by the disdrometer. In case of solid precipitation par-
ticles with varying complex shapes a relation between ob-
served geometrical cross section and snow rate is not imme-
diately available. Different snow crystals with identical max-
imum dimension have different fall velocities and different
equivalent liquid water contents. Furthermore, the disdrome-
ter measures a cross sectional area depending on size, shape,
and orientation of the snow crystals.

Therefore, a unique snow rate retrieval scheme cannot be
expected. The aim of this paper is to investigate the role of
snow crystal geometries on the ability of the optical disdrom-
eter ODM 470 to measure solid precipitation.

Section2 describes the disdrometer and explains how to
evaluate precipitation from measurements. Section3 gives
details of the geometrical model to derive cross sectional ar-
eas as observed by the disdrometer for several types of snow
crystals. Based on resulting relations between cross sectional
areas and maximum sizes of snow crystals a new algorithm
has been developed and tested. This algorithm is applied to
data of a measurement campaign from winter 1999/2000 in
Uppsala Sweden as explained in Section4 followed by con-
clusions.
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2 The disdrometer

2.1 Technical realisation

The principle of the present disdrometer is light extinction
of precipitation particles passing through a cylindrical sen-
sitive volume of 120 mm length and 22 mm diameter. The
electronic signal caused by a particle is proportional to its
cross-sectional area. The sensitive volume is kept perpendic-
ular to the local flow direction by aid of a wind vane. The
cylindrical form makes the measurement independent from
the incidence angle of the particles. Local up- and down-
drafts do not influence the measurements. The light source
of the ODM 470 is a 150 mW IR-LED (Infra Red Light Emit-
ting Diode), emitting light at 880 nm wavelength. In order to
achieve a homogeneously illuminated sensitive volume, col-
lector lenses and an optical blend are used (Fig.2). This
disdrometer simultaneously measures the size of the cross-
sectional area and the time of flight of the particles through
the volume. The detectable size range covers particles from
0.4 to 22 mm in diameter. Because of this small size range
effects like coincidences (more particles at the same time
within the sensitive volume) and edge-effects (partly scanned
particles) are likely. These effects are already considered for
raindrops and need to be addressed for snowflakes in future
work.

2.2 Evaluation of the precipitation rate

From the available information, the particle-size distribution
densityn(bin) can be calculated either by evaluation of the
residence time(ti) of the particles (Eq.1) or by particle
counting knowing the local wind (Eq.2). Experience in mea-
suring rain shows that using the counted particles(N(bin))

combined with the measured wind(ff ) leads to improved
results (Clemens, 2002).

n(bin) =
1

V · T

∑
i

ti(bin) (1)

n(bin) =
N(bin)

L · D · T ·

√
ff2 + (v∞(bin))2

(2)

The remaining variables in Eq. (1) and Eq. (2) are the mea-
suring time interval (T ), the terminal velocity of the particles
(v∞(bin)), the number of the size-bin (bin), the length (L)
and the diameter (D) of the sensitive Volume (V ). The opti-
cal disdrometer divides the measurements into 129 size-bins
with a logarithmic increasing size to improve resolution at
smaller particle sizes.

Precipitation rates (R) in kg/m2h or mm/h can be deter-
mined from the particle-size distribution density by assum-
ing liquid water content or massm and terminal fall velocity
of the particles depending on their size (Eq.3).

R = 3600·

128∑
bin=0

n(bin) · v∞(bin) · m(bin) (3)

Therefore mass and terminal fall velocity have to be known
to obtain reliable precipitation measurements.

3 Model study of mean shadow areas of snow crystals

Hogan(1994) provides relationships for mass and terminal
fall velocity of different ice crystal types depending on their
maximum dimension (Dmax), which were derived from mea-
surements of single particles, classified in the same way as in
Magono and Lee(1966).

Instead of the maximum dimension the disdrometer mea-
sures the shadow area which is generated by the cross-
sectional area perpendicular to the optical axis of the instru-
ment. It determines the diameterDbin of a sphere with same
area (Fig.3). The disdrometer is not able to measure the
maximum dimension of non-spherical particles. In order to
use the parameterisations ofHogan(1994) it is necessary to
assume that ice crystals fall randomly oriented through the
sensitive volume. Hence, a large amount of randomly ori-
ented crystals of the same type and size have a repeatable
mean cross-sectional area. This allows to develop a trans-
formation function, to derive the maximum dimension of a
certain crystal type from the measured cross-sectional area.

For randomly oriented ice crystals of the same type an im-
plementation of the transformation function of this crystal
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clusions.
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counting knowing the local wind (Eq. 2). Experience in mea-
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Fig. 2. Cross-section of the optical disdrometer ODM 470. From
left to right: electronics (1), light emitting diode (2), lens system (3),
window (4), baffles (5), sensitive volume (6), achromatic collector
lens (7), optical blend (8), ocular (9), photo diode (10), electronics
compartment (11).
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type into the calculation of its liquid water content and ter-
minal fall velocity provided fromHogan(1994) will result in
a reliable precipitation rate.

However, the disdrometer cannot identify the type of a
particle or of an aggregate of single snow crystals. Hence,
the following study can be regarded as a simple theoretical
experiment to infer the sensitivity of the ODM 470 on the
assumed particle geometry and to get an idea to solve the
problem of how to calculate the precipitation rate from mea-
surements of solid precipitation with the optical disdrometer.

A geometrical model based on the IDL ice crystal visu-
alisation code byMacke et al.(1998) has been developed
to simulate different snow crystal types (Fig.4) and to deter-
mine the mean cross-sectional area out of 3000 randomly ori-
ented projections for different sizes. The shape of the crys-
tals was constructed from the graphics inMagono and Lee
(1966). Their thickness is nonlinearly size depended and was
determined from the aspect ratio relations ofAuer and Veal
(1970).

The choice to the six simulated ice crystals was mainly de-
termined by the available information of fall velocity, mass
and thickness for different maximum diameters and the high
variable shapes. It would be also interesting to consider nee-
dles in this study but the required information is not available
for this crystal type.

For each simulated crystal type the diameter (Dbin) of its
mean cross-sectional area is plotted against its maximum di-
mension (Fig.5, squares) within the size range where the
specific crystal type was observed. Linear regressions have
been performed (Fig.5, colored lines) and their coefficients
yield the transformation functions.
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Fig. 3. Dmax and from disdrometer measured Dbin for one orienta-
tion of Crystal P1d. Dbin alters when the crystal orientation will be
changed.
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into the calculation of its liquid water content and terminal
fall velocity provided from Hogan (1994) will result in a re-
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However, the disdrometer cannot identify the type of a parti-
cle or of an aggregate of single snow crystals. Hence, the fol-
lowing study can be regarded as a simple theoretical experi-
ment to infer the sensitivity of the ODM 470 on the assumed
particle geometry and to get an idea to solve the problem of
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this crystal type. For each simulated crystal type the diameter
(Dbin) of its mean cross-sectional area is plotted against its
maximum dimension (Fig. 5, squares) within the size range
where the specific crystal type was observed. Linear regres-
sions have been performed (Fig. 5, colored lines) and their
coefficients yield the transformation functions. Applying
Eq. (3) with a monodisperse particle-size distribution density
to each measurable size of every simulated crystal yields the
precipitation rates depicted in Figure 6(A). Using the trans-
formation functions to convert Dbin to the maximum dimen-
sion of each crystal before determine liquid water content
and fall velocity results in precipitation rates as shown in Fig-
ure 6(B).
Due to the nearly spherical shape of ’Lump Graupel’ (R4B
from Magono and Lee (1966)) no transformation function
from cross-sectional area to maximum dimension is required
for this crystal type and its graphs in Figure 6(A) and Fig-
ure 6(B) are identical.
As expected the precipitation rates of the simulated crystals
without transformation of the diameters (Fig. 6(A)) are much
lower than the precipitation rates determined with an imple-
mentation of the transformation functions (Fig. 6(B)). Sur-
prising, precipitation rates estimated by using transformation
of diameters are close to the precipitation rate derived by us-

Fig. 3. Dmax and from disdrometer measured Dbin for one orienta-
tion of Crystal P1d. Dbin alters when the crystal orientation will be
changed.

Applying Eq. (3) with a monodisperse particle-size dis-
tribution density to each measurable size of every simulated
crystal yields the precipitation rates depicted in Fig.6a. Us-
ing the transformation functions to convertDbin to the max-
imum dimension of each crystal before determine liquid wa-
ter content and fall velocity results in precipitation rates as
shown in Fig.6b.

Due to the nearly spherical shape of “Lump Graupel”
(R4B from Magono and Lee(1966)) no transformation
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function from cross-sectional area to maximum dimension
is required for this crystal type and its graphs in Fig.6a and
b are identical.

As expected the precipitation rates of the simulated crys-
tals without transformation of the diameters (Fig.6a) are
much lower than the precipitation rates determined with an
implementation of the transformation functions (Fig.6b).
Surprising, precipitation rates estimated by using transfor-
mation of diameters are close to the precipitation rate derived
by using parameterisations of “Lump Graupel” (Fig.6b).

A more detailed investigation of the differences between
the precipitation rates of “Lump Graupel” and the simulated
crystals by using transformation of diameters is shown in
Fig.7. Here, the running mean and its standard deviation of a
combination of precipitation rate differences of all simulated
crystal types to “Lump Graupel” were calculated.

Due to the fact that only values within the observed size
range of certain ice crystal types were considered (squares in
Fig. 5) there are not more than 6 values of precipitation rate
differences per scanned size. To get at least 40 data points of
precipitation differences for the calculation of running mean
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Fig. 6. Simulated precipitation rates with n(bin)=1 for simulated
crystal types and ’Lump Graupel’ (R4b, Magono and Lee (1966)),
A: without applying the transformations to the diameters of the
mean cross-sectional areas, B: including transformation of diame-
ters before determine fall mass and velocity. The results were plot-
ted in the defined size range of the crystals.

Fig. 7. Running mean and standard deviation of the R-differences
between ’Lump Graupel’-R4b and all simulated crystal types.

ing parameterisations of ’Lump Graupel’ (Fig. 6(B)).
A more detailed investigation of the differences between the
precipitation rates of ’Lump Graupel’ and the simulated crys-
tals by using transformation of diameters is shown in Fig-
ure 7. Here, the running mean and its standard deviation of a
combination of precipitation rate differences of all simulated
crystal types to ’Lump Graupel’ were calculated.
Due to the fact that only values within the observed size
range of certain ice crystal types were considered (squares
in Figure 5) there are not more than 6 values of precipita-
tion rate differences per scanned size. To get at least 40 data
points of precipitation differences for the calculation of run-
ning mean and standard deviation adjacent bins were merged
into intervals. The differences according to the interval with
the smallest size ranges and the interval with the largest size
ranges are shown as green symbols. For a comparison the

absolute value of the precipitation rate of ’Lump Graupel’ is
plotted as black line. The running mean of the differences
(red line) remains close to the zero line. With respect to the
standard deviation of the interval with the largest bins the
precipitation rate derived from the ’Lump Graupel’ parame-
terisation yields an uncertainty of less than 40 % to the pre-
cipitation rates of all simulated crystal types by using trans-
formation functions from cross-sectional area to maximum
dimension.
Given the preconditions of the present theoretical experi-
ment, it follows that the products of terminal velocity and
liquid water content as a function of the cross sectional area
of different types of snow crystals are in the same order of
magnitude and allow to use one common parameterization,
in this case the parameterization of ’Lump Graupel’.

4 The data analysis

As a first test of this hypothesis the parameterization of
’Lump Graupel’ has been applied to disdrometer measure-
ments from winter 1999/2000. The disdrometer was installed
at the Meteorologisk Institut Uppsala/Sweden. A Geonor
gauge was situated close to it and during the disdrometer
measurements most of the time manual measurements were
taken.
Caused by technical problems the Geonor data are incor-
rect on some days but mostly the data agree with the man-
ually measured precipitation indicating that the Geonor had
worked well at these specific days. Additionally, the temper-
ature from the measuring station and synoptical data from the
airport about 20 km away from the station were considered
to identify the type of precipitation.

4.1 Precipitation phase identification considering size
spectra

Most important for the calculation of the precipitation rate
from disdrometer data is the precipitation phase. The shape
of the size spectra might be useful to identify rain, snow or
sleet. Therefore, with an integration time of one hour, the
number of counted particles per bin were normalised with the
size of their bin and the precipitation rate of the entire spec-
trum calculated with the parameterisation of ’Lump Graupel’
(Fig. 8).
In Figure 8A a typical rain spectrum is shown, the slope of
the linear regression is steep (a=-1,26), the absolute value of
the correlation coefficient is larger than 0,97 and the maxi-
mum measured particle size is smaller than 5 mm.
Figure 8B shows a typical snow spectrum. The slope of the
linear regression is flat (a=-0,38), the absolute value of the
correlation coefficient is larger than 0,98 and the maximum
measured particle size is larger than 11 mm.
Figure 8C shows a typical sleet spectrum. The slope of the
linear regression is almost the same as the slope of the snow
spectrum but the absolute value of the correlation coefficient
is noticeably smaller. The most interesting point in the sleet

Fig. 6. Simulated precipitation rates withn(bin)=1 for simulated
crystal types and “Lump Graupel” (R4b,Magono and Lee(1966)),
(A): without applying the transformations to the diameters of the
mean cross-sectional areas,(B): including transformation of diame-
ters before determine mass and fall velocity. The results were plot-
ted in the defined size range of the crystals.

4 G. E. Lempio and K. Bumke and A. Macke: Measurement of solid precipitation with an optical disdrometer.

Fig. 6. Simulated precipitation rates with n(bin)=1 for simulated
crystal types and ’Lump Graupel’ (R4b, Magono and Lee (1966)),
A: without applying the transformations to the diameters of the
mean cross-sectional areas, B: including transformation of diame-
ters before determine fall mass and velocity. The results were plot-
ted in the defined size range of the crystals.

Fig. 7. Running mean and standard deviation of the R-differences
between ’Lump Graupel’-R4b and all simulated crystal types.

ing parameterisations of ’Lump Graupel’ (Fig. 6(B)).
A more detailed investigation of the differences between the
precipitation rates of ’Lump Graupel’ and the simulated crys-
tals by using transformation of diameters is shown in Fig-
ure 7. Here, the running mean and its standard deviation of a
combination of precipitation rate differences of all simulated
crystal types to ’Lump Graupel’ were calculated.
Due to the fact that only values within the observed size
range of certain ice crystal types were considered (squares
in Figure 5) there are not more than 6 values of precipita-
tion rate differences per scanned size. To get at least 40 data
points of precipitation differences for the calculation of run-
ning mean and standard deviation adjacent bins were merged
into intervals. The differences according to the interval with
the smallest size ranges and the interval with the largest size
ranges are shown as green symbols. For a comparison the

absolute value of the precipitation rate of ’Lump Graupel’ is
plotted as black line. The running mean of the differences
(red line) remains close to the zero line. With respect to the
standard deviation of the interval with the largest bins the
precipitation rate derived from the ’Lump Graupel’ parame-
terisation yields an uncertainty of less than 40 % to the pre-
cipitation rates of all simulated crystal types by using trans-
formation functions from cross-sectional area to maximum
dimension.
Given the preconditions of the present theoretical experi-
ment, it follows that the products of terminal velocity and
liquid water content as a function of the cross sectional area
of different types of snow crystals are in the same order of
magnitude and allow to use one common parameterization,
in this case the parameterization of ’Lump Graupel’.

4 The data analysis

As a first test of this hypothesis the parameterization of
’Lump Graupel’ has been applied to disdrometer measure-
ments from winter 1999/2000. The disdrometer was installed
at the Meteorologisk Institut Uppsala/Sweden. A Geonor
gauge was situated close to it and during the disdrometer
measurements most of the time manual measurements were
taken.
Caused by technical problems the Geonor data are incor-
rect on some days but mostly the data agree with the man-
ually measured precipitation indicating that the Geonor had
worked well at these specific days. Additionally, the temper-
ature from the measuring station and synoptical data from the
airport about 20 km away from the station were considered
to identify the type of precipitation.

4.1 Precipitation phase identification considering size
spectra

Most important for the calculation of the precipitation rate
from disdrometer data is the precipitation phase. The shape
of the size spectra might be useful to identify rain, snow or
sleet. Therefore, with an integration time of one hour, the
number of counted particles per bin were normalised with the
size of their bin and the precipitation rate of the entire spec-
trum calculated with the parameterisation of ’Lump Graupel’
(Fig. 8).
In Figure 8A a typical rain spectrum is shown, the slope of
the linear regression is steep (a=-1,26), the absolute value of
the correlation coefficient is larger than 0,97 and the maxi-
mum measured particle size is smaller than 5 mm.
Figure 8B shows a typical snow spectrum. The slope of the
linear regression is flat (a=-0,38), the absolute value of the
correlation coefficient is larger than 0,98 and the maximum
measured particle size is larger than 11 mm.
Figure 8C shows a typical sleet spectrum. The slope of the
linear regression is almost the same as the slope of the snow
spectrum but the absolute value of the correlation coefficient
is noticeably smaller. The most interesting point in the sleet

Fig. 7. Running mean and standard deviation of the R-differences
between “Lump Graupel”-R4b and all simulated crystal types.

and standard deviation adjacent bins were merged into inter-
vals. The differences according to the interval with the small-
est size ranges and the interval with the largest size ranges
are shown as green symbols. For a comparison the absolute
value of the precipitation rate of “Lump Graupel” is plotted
as black line. The running mean of the differences (red line)
remains close to the zero line.

With respect to the standard deviation of the interval with
the largest bins the precipitation rate derived from the “Lump
Graupel” parameterisation yields an uncertainty of less than
40% to the precipitation rates of all simulated crystal types
by using transformation functions from cross-sectional area
to maximum dimension.
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Fig. 8. Comparison of different precipitation spectra (1h integration time). A: rain spectrum, B: snow spectrum, C: sleet spectrum,
D: snow spectrum. N(bin) - number of counted particles per bin, ∆Dbin(bin) - size of bin, R - precipitation rate of the entire spectrum,
r - correlation coefficient, a - slope of linear regression line, c - zero-crossing, N - number of particles per spectrum.

spectrum is the increasing slope at particle sizes smaller than
2 mm, which may result from a mixture of two populations,
for example snow and rain. The slope of a snow spectrum
can also be very steep as seen in Figure 8D. In this case the
maximum measured particle size is smaller than 4 mm and
the temperature is lower than -5,2 ◦C.
Hence, it could be possible to infer the type of precipitation
from the regression slope and the correlation coefficient in
combination with the temperature. To validate this hypoth-
esis additional measurements together with comprehensive
synoptic observations have to be performed in future.

4.2 Solid precipitation rate results

The daily accumulated precipitation sums during the mea-
suring period of the disdrometer, the Geonor and the manual
measurements are shown in Figure 9. The integration time
was from 6 a.m. at the present day to 6 a.m. of the next day.
The temperature (blue line) is shown with a time resolution
of 10 minutes.
To identify the type of precipitation the synoptical informa-
tion was used, because the method to estimate precipita-
tion type from precipitation spectra (section 4.1) was gained
from the present data set and has not been sufficiently tested
against independent data yet.
It is recognizable that on many days with high amounts
of precipitation the disdrometer indicates more precipitation
than the other methods. In particular at the 3rd of December
and the 1st, 2nd and 3rd of March the overestimation of pre-
cipitation by the disdrometer exceeds more than 100 %. Be-
sides the errors by indicating the phase of precipitation and
the here not answered question if the above theoretical ex-
periments preconditions are generally valid for all winterly
precipitation events, two other factors could be accountable
for this overestimation.
Firstly, the disdrometer measures also under strong wind
conditions without underestimating the precipitation rate
caused by the wind induced flow distortion. Secondly, the
parameterisation of ’Lump Graupel’ for the liquid water con-

Fig. 9. Daily precipitation from disdrometer, Geonor and manual
measurements in comparison to the temperature with a time resolu-
tion of 10 minutes.

tent and the terminal fall velocity fits only particles within a
size range from 0,4 mm up to 9 mm (Hogan, 1994). Dur-
ing the analyzed period there have been several precipitation
events with observed particles with a cross-sectional area of
more than 9 mm in diameter. Snowflakes can reach maxi-
mum dimensions of up to 30 mm under average snow condi-
tions or in extreme events even more (Lawson et al., 1998).
Giant Snowflakes cause cross-sectional areas of up to 22 mm
in diameter. Hogan’s parameterisation of ’Lump Graupel’ is
not valid to determine the liquid water content and the ter-
minal fall velocity of such large measured solid precipitation
particles (Hogan, 1994). An adjustment of the parameterisa-
tion for large particles is needed. As a first attempt to cal-
culate precipitation rates from the presented data set the pa-
rameterisation of ’Lump Graupel’ was extrapolated for mea-
surements larger as 9 mm. On some days with large amounts
of precipitation the agreement of disdrometer measurements
with the other methods is satisfactory, e.g. at 25th Decem-

Fig. 8. Comparison of different precipitation spectra (1 h integration time).(A) rain spectrum,(B) snow spectrum,(C) sleet spectrum,(D)
snow spectrum.
N(bin) – number of counted particles per bin,1Dbin(bin) – size of bin,R – precipitation rate of the entire spectrum,r – correlation
coefficient,a – slope of linear regression line,c – zero-crossing,N – number of particles per spectrum.

Given the preconditions of the present theoretical exper-
iment, it follows that the products of terminal velocity and
liquid water content as a function of the cross sectional area
of different types of snow crystals are in the same order of
magnitude and allow to use one common parameterization,
in this case the parameterization of “Lump Graupel”.

4 The data analysis

As a first test of this hypothesis the parameterization of
“Lump Graupel” has been applied to disdrometer measure-
ments from winter 1999/2000. The disdrometer was installed
at the Meteorologisk Institut Uppsala/Sweden. A Geonor
gauge was situated close to it and during the disdrometer
measurements most of the time manual measurements were
taken.

Caused by technical problems the Geonor data are incor-
rect on some days but mostly the data agree with the man-
ually measured precipitation indicating that the Geonor had
worked well at these specific days. Additionally, the temper-
ature from the measuring station and synoptical data from the
airport about 20 km away from the station were considered to
identify the type of precipitation.

4.1 Precipitation phase identification considering size
spectra

Most important for the calculation of the precipitation rate
from disdrometer data is the precipitation phase. The shape
of the size spectra might be useful to identify rain, snow or
sleet.

Therefore, with an integration time of one hour, the num-
ber of counted particles per bin were normalised with the
size of their bin and the precipitation rate of the entire spec-
trum calculated with the parameterisation of “Lump Grau-
pel” (Fig. 8).

In Fig. 8a a typical rain spectrum is shown, the slope of
the linear regression is steep (a=−1.26), the absolute value
of the correlation coefficient is larger than 0.97 and the max-
imum measured particle size is smaller than 5 mm.

Figure8b shows a typical snow spectrum. The slope of the
linear regression is flat (a=−0.38), the absolute value of the
correlation coefficient is larger than 0.98 and the maximum
measured particle size is larger than 11 mm.

Figure8c shows a typical sleet spectrum. The slope of the
linear regression is almost the same as the slope of the snow
spectrum but the absolute value of the correlation coefficient
is noticeably smaller. The most interesting point in the sleet
spectrum is the increasing slope at particle sizes smaller than
2 mm, which may result from a mixture of two populations,
for example snow and rain. The slope of a snow spectrum
can also be very steep as seen in Fig.8d. In this case the
maximum measured particle size is smaller than 4 mm and
the temperature is lower than−5.2◦C.

Hence, it could be possible to infer the type of precipita-
tion from the regression slope and the correlation coefficient
in combination with the temperature. To validate this hypoth-
esis additional measurements together with comprehensive
synoptic observations have to be performed in future.

4.2 Solid precipitation rate results

The daily accumulated precipitation sums during the mea-
suring period of the disdrometer, the Geonor and the manual
measurements are shown in Fig.9. The integration time was
from 6 a.m. at the present day to 6 a.m. of the next day. The
temperature (blue line) is shown with a time resolution of
10 min.

To identify the type of precipitation the synoptical
information was used, because the method to estimate
precipitation type from precipitation spectra (Sect.4.1) was
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Fig. 8. Comparison of different precipitation spectra (1h integration time). A: rain spectrum, B: snow spectrum, C: sleet spectrum,
D: snow spectrum. N(bin) - number of counted particles per bin, ∆Dbin(bin) - size of bin, R - precipitation rate of the entire spectrum,
r - correlation coefficient, a - slope of linear regression line, c - zero-crossing, N - number of particles per spectrum.

spectrum is the increasing slope at particle sizes smaller than
2 mm, which may result from a mixture of two populations,
for example snow and rain. The slope of a snow spectrum
can also be very steep as seen in Figure 8D. In this case the
maximum measured particle size is smaller than 4 mm and
the temperature is lower than -5,2 ◦C.
Hence, it could be possible to infer the type of precipitation
from the regression slope and the correlation coefficient in
combination with the temperature. To validate this hypoth-
esis additional measurements together with comprehensive
synoptic observations have to be performed in future.

4.2 Solid precipitation rate results

The daily accumulated precipitation sums during the mea-
suring period of the disdrometer, the Geonor and the manual
measurements are shown in Figure 9. The integration time
was from 6 a.m. at the present day to 6 a.m. of the next day.
The temperature (blue line) is shown with a time resolution
of 10 minutes.
To identify the type of precipitation the synoptical informa-
tion was used, because the method to estimate precipita-
tion type from precipitation spectra (section 4.1) was gained
from the present data set and has not been sufficiently tested
against independent data yet.
It is recognizable that on many days with high amounts
of precipitation the disdrometer indicates more precipitation
than the other methods. In particular at the 3rd of December
and the 1st, 2nd and 3rd of March the overestimation of pre-
cipitation by the disdrometer exceeds more than 100 %. Be-
sides the errors by indicating the phase of precipitation and
the here not answered question if the above theoretical ex-
periments preconditions are generally valid for all winterly
precipitation events, two other factors could be accountable
for this overestimation.
Firstly, the disdrometer measures also under strong wind
conditions without underestimating the precipitation rate
caused by the wind induced flow distortion. Secondly, the
parameterisation of ’Lump Graupel’ for the liquid water con-

Fig. 9. Daily precipitation from disdrometer, Geonor and manual
measurements in comparison to the temperature with a time resolu-
tion of 10 minutes.

tent and the terminal fall velocity fits only particles within a
size range from 0,4 mm up to 9 mm (Hogan, 1994). Dur-
ing the analyzed period there have been several precipitation
events with observed particles with a cross-sectional area of
more than 9 mm in diameter. Snowflakes can reach maxi-
mum dimensions of up to 30 mm under average snow condi-
tions or in extreme events even more (Lawson et al., 1998).
Giant Snowflakes cause cross-sectional areas of up to 22 mm
in diameter. Hogan’s parameterisation of ’Lump Graupel’ is
not valid to determine the liquid water content and the ter-
minal fall velocity of such large measured solid precipitation
particles (Hogan, 1994). An adjustment of the parameterisa-
tion for large particles is needed. As a first attempt to cal-
culate precipitation rates from the presented data set the pa-
rameterisation of ’Lump Graupel’ was extrapolated for mea-
surements larger as 9 mm. On some days with large amounts
of precipitation the agreement of disdrometer measurements
with the other methods is satisfactory, e.g. at 25th Decem-

Fig. 9. Daily precipitation from disdrometer, Geonor and manual measurements in comparison to the temperature with a time resolution of
10 min.
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Fig. 10. Comparison of daily disdrometer and manual measure-
ments.

ber, 1st January, 11th January, 1st February and 7th Febru-
ary. A more detailed investigation of the differences between
the daily precipitation of the disdrometer and the manual
measurements is given in Figure 10. A normal and inverse
linear regression (red lines) and the mean regression (blue
line) were made. A number of 56 events were considered.
The correlation coefficient is r=0,794. The mean regression
shows that at events with more than 1 mm/d precipitation the
disdrometer indicates more than the manual measurements
and at events with less than 1 mm/d the manual measure-
ments are larger than the disdrometer measurements. The
large scatter in Figure 10 is partly explained by the varying
conditions of type of precipitation, wind speed and temper-
ature. Because of the limited number of observations it was
not possible to differentiate these conditions in the present
comparison.

5 Conclusions

The present sensitivity study concerning the transforma-
tion between the maximum dimension and the mean cross-
sectional area of snow crystals is based on a theoretical ex-
periment considering six exemplary snow crystal types. Un-
der these preconditions it is shown that only one parameteri-
sation of terminal fall velocity and liquid water content is re-
quired to calculate the precipitation rate from measurements
of the optical disdrometer ODM 470.
In a first attempt the algorithm was applied to solid precipita-
tion measurements from winter 1999/2000 in Uppsala. The
results indicate a general overestimation of precipitation rates
from disdrometer measurements compared to other methods.
Future validation and improvements of the algorithm shall
include:

– Validation of Lump Graupel parameterisation for parti-
cle sizes beyond 9 mm in diameter, if necessary adjusted
also for different winterly precipitation events,

– More measurements for a statistically relevant evalua-
tion of the method,

– Further comparisons with relevant instruments like
video- disdrometers, particle mass measurements, etc.,

Precipitation phase may be identified in real time via spec-
trum shapes. Applying the algorithm to solid precipitation
then yields an unique system: an instrument based on a sim-
ple hardware principle is enabled to solve a complex mea-
surement task (water equivalent of solid precip), which is
urgently needed in a wide field of applications like remote
sensing etc..
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ments.

gained from the present data set and has not been sufficiently
tested against independent data yet.

It is recognizable that on many days with high amounts
of precipitation the disdrometer indicates more precipitation
than the other methods. In particular at the 3 December and
the 1, 2 and 3 March the overestimation of precipitation by
the disdrometer exceeds more than 100%. Besides the er-
rors by indicating the phase of precipitation and the here not
answered question if the above theoretical experiments pre-
conditions are generally valid for all winterly precipitation

events, two other factors could be accountable for this over-
estimation.

Firstly, the disdrometer measures also under strong wind
conditions without underestimating the precipitation rate
caused by the wind induced flow distortion. Secondly, the pa-
rameterisation of “Lump Graupel” for the liquid water con-
tent and the terminal fall velocity fits only particles within
a size range from 0.4 mm up to 9 mm (Hogan, 1994). Dur-
ing the analyzed period there have been several precipitation
events with observed particles with a cross-sectional area of
more than 9 mm in diameter. Snowflakes can reach maxi-
mum dimensions of up to 30 mm under average snow condi-
tions or in extreme events even more (Lawson et al., 1998).

Giant Snowflakes cause cross-sectional areas of up to
22 mm in diameter. Hogan’s parameterisation of “Lump
Graupel” is not valid to determine the liquid water content
and the terminal fall velocity of such large measured solid
precipitation particles (Hogan, 1994). An adjustment of the
parameterisation for large particles is needed. As a first at-
tempt to calculate precipitation rates from the presented data
set the parameterisation of “Lump Graupel” was extrapolated
for measurements larger as 9 mm.

On some days with large amounts of precipitation the
agreement of disdrometer measurements with the other
methods is satisfactory, e.g. at 25 December, 1 January, 11
January, 1 February and 7 February. A more detailed in-
vestigation of the differences between the daily precipitation
of the disdrometer and the manual measurements is given in
Fig. 10. A normal and inverse linear regression (red lines)
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and the mean regression (blue line) were made. A number
of 56 events were considered. The correlation coefficient
is r=0.794. The mean regression shows that at events with
more than 1 mm/d precipitation the disdrometer indicates
more than the manual measurements and at events with less
than 1 mm/d the manual measurements are larger than the
disdrometer measurements. The large scatter in Fig.10 is
partly explained by the varying conditions of type of precip-
itation, wind speed and temperature. Because of the limited
number of observations it was not possible to differentiate
these conditions in the present comparison.

5 Conclusions

The present sensitivity study concerning the transforma-
tion between the maximum dimension and the mean cross-
sectional area of snow crystals is based on a theoretical ex-
periment considering six exemplary snow crystal types. Un-
der these preconditions it is shown that only one parameteri-
sation of terminal fall velocity and liquid water content is re-
quired to calculate the precipitation rate from measurements
of the optical disdrometer ODM 470.

In a first attempt the algorithm was applied to solid precipi-
tation measurements from winter 1999/2000 in Uppsala. The
results indicate a general overestimation of precipitation rates
from disdrometer measurements compared to other methods.

Future validation and improvements of the algorithm shall
include:

– Validation of “Lump Graupel” parameterisation for par-
ticle sizes beyond 9 mm in diameter, if necessary ad-
justed also for different winterly precipitation events,

– More measurements for a statistically relevant evalua-
tion of the method,

– Further comparisons with relevant instruments like
video- disdrometers, particle mass measurements, etc.,

Precipitation phase may be identified in real time via spec-
trum shapes. Applying the algorithm to solid precipitation
then yields an unique system: an instrument based on a sim-
ple hardware principle is enabled to solve a complex mea-
surement task (water equivalent of solid precip), which is
urgently needed in a wide field of applications like remote
sensing etc.
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