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Abstract. The influence of variability of atmospheric
parameters on short- and long-term changes of spec-
tral UV irradiance measured at the Sonnblick observatory
(47.03◦ N, 12.57◦ E, 3106 m) during the period from 1994
to 2006 is studied. Measurements were performed with
the Brewer #093 single-monochromator spectrophotometer
and with a Bentham DM 150 spectroradiometer (double-
monochromator).

The influence of ozone, albedo, snowline and clouds on
UV variability is evaluated for each parameter separately us-
ing 10-year climatology. It is found that the effect of total
ozone on short-term variability of UV irradiance at 305 nm
can be more than 200% and on average more than 50%.
Clouds can cause variability of 150% or more and on aver-
age 35%. Variability caused by albedo reaches a maximum
of 32% in April (6% on average). In summer and autumn,
total ozone and clouds strongly influence the variability of
UV radiation, whereas in winter and spring ozone has the
more pronounced effect. A decrease in snowline height from
3000 m to 800 m a.s.l. enhances the UV irradiance by a fac-
tor of 1.24 for clear sky conditions and by a factor of 1.7 for
8/8 cloud cover.

Long-term trends are investigated for the time period from
1994 to 2006 based on clear-sky measurements, using the
non-parametric Mann-Kendall trend test. Significant down-
ward trends (99% confidence level) are found for solar zenith
angle 55◦ at wavelengths from 305 nm to 324 nm and ery-
themally weighted irradiance according to CIE, which are
caused by an increase in sunshine duration during periods of
high total column ozone. Significant trends (90% confidence
level) were also found for other combinations of wavelength
and SZA.
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1 Introduction

UV irradiance reaching the earth’s surface is influenced by
the concentration of stratospheric ozone as well as by fur-
ther atmospheric parameters, such as clouds, aerosols, and
surface albedo. Knowledge of spectral UV irradiance and its
dependence on these parameters, which may change in the
future, are prerequisites to quantitatively understand and es-
timate future UV radiation.

Increase of UV radiation during the last decades is re-
ported where a decrease of stratospheric ozone has been ob-
served (Kerr and McElroy, 1993; Zerefos et al., 1997, 2001;
Bartlett and Web, 2000). The magnitude of this change and
their causes are, however, uncertain, calling for more detailed
investigations of the influence of clouds, albedo, and other at-
mospheric parameters on UV radiation (Kerr and Seckmeyer
et al., 2003; Bais and Lubin et al., 2007).

Several publications focus on the detection of long-term
changes in UV doses (Herman et al., 1996; Seckmeyer et al.,
1997; Weatherhead et al., 1997; Lindfors et al., 2003). The
first spectrally resolved routine measurements started in the
1990s, thus studies on long-term changes in spectral UV irra-
diance are hampered by the limited number of years of avail-
able data (Zerefos et al., 1997; Lakkala et al., 2003; Glandorf
et al., 2005).

Clouds can cause strong variability of surface UV radi-
ation (the factor by which incoming surface UV irradiance
is enhanced or diminished due to changes in one of the in-
fluencing parameters) and limit the detectability of ozone-
induced trends in UV radiation (den Outer et al., 2005; Glan-
dorf et al., 2005; Seckmeyer et al., 2008). Change in cloud
cover caused by the global climate change is especially im-
portant for the estimation of future UV radiation. Reuder et
al. (2001) show that reduced cloud cover during summer can
increase UV radiation up to 15%.
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Albedo is of great importance, especially in snow-covered
mountainous regions. UV irradiance is strongly enhanced
with snow covered ground due to multiple reflections be-
tween ground and atmosphere, even more under overcast-
sky conditions because of increased atmospheric backscat-
tering through clouds. McKenzie et al. (1998) showed that,
due to snow, UV-B increased by about 30% under clear sky
and about 70 % under cloudy sky conditions at Lauder, New
Zealand. Kylling and Mayer (2001a) investigated the in-
fluence of snowline on UV irradiance at 340 nm, studying
snow-free conditions and then moving the snowline from
1000 to 0 m. With decreasing snowline, enhancement in UV
of 23–27% for cloudless sky was obtained, while for overcast
conditions the enhancement was around 40–60%.

Different methods are available in literature that separate
the different influencing factors causing short- and long-term
changes in UV radiation (Fioletov et al., 2001; Kylling et
al., 2001b; Arola et al., 2003). Earlier investigations show
the effect of ozone on UV radiation, whereas analyzing the
influence of clouds and albedo is more difficult. Clouds show
strong variability, and measurements of albedo which may be
used as model input data are hardly available.

In this study, the influence of clouds, ozone, and surface
albedo on spectral UV radiation at the Sonnblick observatory
(3106 m) is investigated using continuous spectral UV irra-
diance measurements and model calculations. The influence
of the different factors on short-term UV variability is shown
using the available UV data sets. The method to separate
the effects of clouds, ozone, and surface albedo is adapted
from Arola et al. (2003) who used this method to analyse
measurements at two stations, at Sodankylä, Finland (67◦ N)
and at Thessaloniki, Greece (40◦ N). Spectral UV irradiance
time series are analyzed for possible trends. Measurements at
Sonnblick observatory starting in 1994 represent the longest
time series of spectral UV irradiance data in Austria.

2 Method

Monitoring of spectral UV radiation and total ozone at
Sonnblick observatory in Austria is performed since 1993.
The Sonnblick observatory (47.05◦ N, 12.95◦ E) is in south-
west Austria at the border between Salzburg and Carinthia
on a mountain top at 3106 m altitude. It is surrounded by
rock faces on the northern side and by a glacier on the south-
eastern side. The area shows a very pronounced topography.
The valley adjacent to Sonnblick is 1300 m lower than the
summit. Nearby summits in this region are at approximately
the same altitude. 16% of the surrounding area is covered
with glaciers and in winter 88% of the surface is covered
with snow under the assumption that no snow covers the rock
faces (Weihs et al., 1999).

The Sonnblick observatory is a station of the Austrian
Weather Office that monitors synoptic and climatological
meteorological data. They also record the cloud and ground

surface conditions. The cloud fraction above and below the
observatory as well as the cloud types are visually observed
six times a day. Snowfall and the depth of the snow cover are
measured once a day. Snowline is monitored by the weather
observers. All this data were used in this study.

2.1 Instrumentation and measurements

Spectral UV measurements at Sonnblick observatory have
been performed with a Brewer spectrophotometer (single
monochromator) since 1993 and a Bentham DM 150 spectro-
radiometer (double monochromator) since 1997. The Brewer
spectrophotometer is used to measure global UV irradiance
in the spectral range from 290–325 nm using a step width
of 0.5 nm and to measure total column ozone. Two inde-
pendent calibrations are performed on a regular basis (1–
2 months) with a portable 50 W lamp obtained from SCI-
TEC company and with a self-built portable 1000 W lamp-
assembly which is calibrated to another NIST (National In-
stitute of Standards and Technology) calibrated 1000 W lamp
in our laboratory. The Bentham spectroradiometer is used
to measure global UV irradiance in the spectral range 280–
500 nm with a step width of 0.5 nm. It is calibrated regularly
to the self-built 1000 W lamp-assembly, a NIST calibrated
1000 W lamp and a PTB (Physikalisch-Technische Bunde-
sanstalt, Germany) calibrated 1000 W lamp. Comparisons of
the Brewer #093 with the travelling standard (Brewer #017)
and with a Bentham DM 150 spectrometer are performed
regularly. Comparisons of total ozone measurements with
the standard Brewer-Spectrophotometer #017 are available
since 1993 and show a deviation of less than 1%, and mea-
surements in the UV-B range are within±5%. Measure-
ments in the UV-B range vary by±7% at 305 nm and by
±4% at 320 nm compared to the Bentham spectroradiome-
ter.

The investigations of short and long-term changes were
performed with data of the Brewer only. Additional analysis
like the influence of snowline on UV-irradiance, is based on
Bentham data.

2.2 Short-term changes in UV-B irradiances

The analysis is based on UV irradiance measurements per-
formed with the Brewer spectrophotometer. Radiative trans-
fer model calculations were used for the estimation of effects
of the contributing factors on the observed variability of UV
irradiance. Simulations were carried out with the radiative
transfer model SDISORT developed by Stamnes et al. (1988)
to determine the influences of ozone, surface albedo, aerosols
and clouds on UV variability. In a first step, model calcula-
tions based on the actual input data solar zenith angle, to-
tal column ozone, surface albedo, clouds and aerosols were
performed to reconstruct the actually measured data of the
Brewer.
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Fig. 1. Measured enhancements in UV irradiance at 305 nm due to changes in snowline under clear sky (left) and overcast conditions
(right). Enhancement due to snowline at a specific altitude is the ratio of UV irradiance with snowline at that given altitude compared to UV
irradiance with snowline at 3000 m a.s.l.

These comparative calculations were performed for mea-
surements at a solar zenith angle of 63◦ for the entire pe-
riod from 1994 to 2003. Then model calculations using
climatological and actual input data of the same period were
performed at the same SZA.

The daily climatology of each input variable for each day
is estimated on the basis of the 10-year data. To calculate
the 10-year climatological value of ParameterX on Julian
day Y (JD Y ), the values ofX are summed up through the
years 1994–2003 and then are divided by the number of years
(Arola et al., 2003). The formula is given below:

X (JDY ) =

2003∑
i=1994

X (JDY )i

10
(1)

The influence of a specific parameterX on UV radiation (i.e.
the variability of UV irradiance due to parameterX) is then
estimated as the ratio of the modelled radiation using the ac-
tual value of parameterX and climatological data of the re-
maining variables to the modelled radiation using climatic
data of all variables, including parameterX. The amplitude
of each parameter is calculated using Eq. (2):

A =
max. ratio out of all years−min. ratio out of all years

mean ratio over all years
(2)

With this definition, the amplitudeA can be regarded as
the maximum possible variability in surface UV irradiance
caused by parameterX. This determining quantity is com-
puted for each influencing parameter. The averaging period
was set to one day for short-term and to one month for long-
term variability. Additionally, the standard deviation is cal-
culated and regarded the representative quantity for the mean
variability during the averaging period.

2.2.1 Model input data

Ozone

Daily means of total column ozone from Brewer measure-
ments are the input data to reconstruct the measured UV
data. The daily climatology of ozone is calculated as the
average of the ozone measurements from 1994 to 2003 ac-
cording to Eq. (1). Diurnal variations of total column ozone
can be as high as 30% of the daily mean during late winter
and spring and up to 10% during summer and fall (Simic,
2006). Since these fluctuations do not represent climatologi-
cal changes and make comparison to modelled spectra based
on daily data almost impossible, it was decided to further
reduce the high variability in the daily climatological mean
values of total column ozone by applying a moving-average
filter with 11 day period (Julian dayY±5). This was done
for total column ozone only and not for any other input data.

Albedo

An algorithm is introduced that uses following routine ob-
servations of snow condition: Snow height, time since last
snowfall and snow line (the latter being defined as the lower
altitudinal boundary of the snow-covered area, its altitude is
given in meters above sea level). These data were obtained
from the Austrian Weather Service and were used to estimate
the effective surface albedo in the UV range on a daily basis.

Figure 1 shows the average enhancements of irradiance at
305 nm with decreasing snowline for clear-sky and overcast
conditions. The ordinate shows the ratio of the irradiance
at different snowlines and the mean irradiance at a snow-
line of 3000 m. For clear sky conditions this ratio is 1.24
(±0.04) at snowline of 800 m and 1.14 (±0.03) at snowline
1500 m. Cloudiness enhances the influence of the albedo
due to multiple reflections between the surface and the lower
bond of the clouds. This effect was also studied by Wuttke
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Fig. 2. Calculated daily climatological mean of effective albedo at
Sonnblick observatory, computed with Eq. (1), 10-year period.

and Seckmeyer (2006) for conditions in Antarctica. They
showed that UV zenith sky radiance may increase by more
than a factor of 2, relative to clear sky conditions, due to the
combined effect of clouds and high snow albedo. 600 mea-
surements with 8/8 cloud cover were included in Fig. 1 to
represent overcast conditions. Under 8/8 cloud cover, UV ir-
radiance at 305 nm is enhanced by a factor of 1.7 when the
snowline is 800 m instead of 3000 m.

Following the method of Schwander et al. (1999) the “ef-
fective albedo” that affects the surface UV irradiance, is de-
rived by parameterisation based upon snow height and time
since last snowfall, and by multiple linear regressions be-
tween snow condition and albedo, resulting from a best fit of
modelled and measured UV irradiances at Sonnblick obser-
vatory. This method improves the accuracy of the UV irradi-
ance calculations significantly, compared to a method which
uses an albedo averaged over the area of interest. Regression
analysis delivered parameterisation of the “effective” albedo
A according to Eq. (3):

A=0.659−2.04·10−4
·G+4.97·10−3

·N−3.23·10−3
·T (3)

In Eq. (3),G is the snow line (in m a.s.l.),N is the depth of
the fresh fallen snow (in cm) andT is the time since the last
snowfall (in days). Fresh fallen snow increases the effective
albedo whereas the albedo decreases with increasing snow-
line and days after the snowfall. 500 cases were included for
calculating regression Eq. (3). The explained variance of this
parameterisation is 70%, and the effective albedo varies from
0.02 to 0.89. Figure 2 shows calculated values of the effec-
tive albedo at Sonnblick observatory. Climatological mean
values of the albedo determined for the 10 year period are
0.3–0.6 during winter and spring, and 0.09–0.25 during sum-
mer. Effective albedo of 0.63–0.78 determined for snowline
800 m is comparable to the model calculations presented by

Fig. 3. Monthly means of measurements of aerosol optical depth at
306.3 nm at Sonnblick observatory.

Weihs et al. (2000). Rengarajan et al. (2000) measured the
albedo at the Sonnblick observatory in winter. Their exper-
imentally determined values in the range from 0.73 to 0.78
are well comparable to the albedo values for UVA and visi-
ble wavelengths determined in this study at a low snow line
of 800 m a.s.l.

Aerosols

Observations of direct solar radiation with the Brewer
spectrophotometer at five channels 306.3 nm, 310.1 nm,
313.5 nm, 316.8 nm and 320.1 nm were used for the aerosol
optical depth (AOD) calculation. Figure 3 shows monthly
means of the aerosol optical depth at 306.3 nm in the pe-
riod from 1997 to 2002. Optical depths of aerosols at the
Sonnblick are 0.03–0.08. Using this range, the calculated
variation of UV irradiation is about 3% at 305 nm (Weihs et
al., 1999). These results underline the fact that aerosols have
a small influence on UV irradiance in high mountainous re-
gions.

Clouds

Model calculations in presence of clouds use the actually ob-
served cloud cover. Cloud transmission data measured with
the Bentham DM 150 spectrometer and cloud observations
are used in the analysis. Ratios of measured UV intensities
and modelled clear sky values (i.e. the cloud modification
factor) for the actual zenith angle and ozone amount are used
to analyze the dependence of UV irradiance at several wave-
lengths (305 nm, 315 nm, 370 nm) on cloud amount. The
study delivers dependencies of the cloud modification factor
on total cloud amount, cloud type, wavelength, solar zenith
angle and ground albedo, which are used in the present in-
vestigation (Simic et al., 2006).
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2.2.2 Comparison of measured and calculated absolute UV
levels

Calculations of the UV irradiation are performed to test
whether they can reproduce the actual irradiance measure-
ments under clear sky condition. In Fig. 4 the ratios of
measured and modelled UV irradiances at 305 nm and solar
zenith angle 63◦ are shown for the time period 1994–2003. In
the period from 1994 to 2003, 95% of the calculated UV ir-
radiances deviate less than±8% from the actually measured
ones.

2.3 Long-term changes

Long-term changes are calculated for different wavelengths
(305 nm, 310 nm, 315 nm, 324 nm and erythemally weighted
irradiances according to CIE) and solar zenith angles (45◦,
55◦ and 65◦) from spectra acquired with the Brewer spec-
trophotometer. Time series from the Brewer have been cho-
sen due to their extent back to 1994 and because of the com-
pleteness with no gap longer than three or four weeks appear-
ing throughout the whole period.

The average of the SZAs of the selected measurements
does not significantly change during the investigated period.
It is therefore unlikely to introduce an artificial trend caused
by increasing or decreasing SZAs within the data selection.
Monthly mean values are calculated for each combination of
wavelength and solar zenith angle for the period from Jan-
uary 1994 to December 2006 except for months with too
few data (less than five days per month) or too high cloud
cover (N>3/8). As solar zenith angles as high as 45◦ are not
present from November to February, these months had to be
excluded in the analysis of SZA 45◦. Measurements at solar
zenith angles of 55◦ and 65◦ are available for all months.

The monthly climatological mean values where obtained
by averaging every month over the 13-year period of investi-
gation. The relative departures from the long-term mean val-
ues where computed by comparing monthly mean values to
the climatological mean values of the respective month. The
time series were checked for the existence of trends using
the non-parametric Mann-Kendall (MK) trend-test (Mann,
1945; Kendall, 1975). The results of the MK test were tested
against the hypothesis of no detectable trend, i.e. the data
being normally distributed. This was done at several sig-
nificance levels fromα=0.1 down toα=0.001, whereα is
the probability of rejecting the alternative hypothesis erro-
neously. The magnitudes of the underlying trends were es-
timated using two methods of linear regression: the least-
square method and the non-parametric Theil-Sen slope esti-
mate (Hollander and Wolfe, 1999), the latter being less sen-
sitive to outliers and missing values, which may occur in pe-
riods of instrument maintenance and calibration and harsh
environmental conditions. The results are shown in percent
per decade.

Fig. 4. Ratios of measured to modelled irradiances at 305 nm and
solar zenith angle 63◦ in the period from 1994 to 2003 presented in
a box plot diagram. The boxes are bounded by the 25% and 75%
quartile, whiskers denote the 90% percentile. Calculations are for
cloudless conditions only.

To complement the spectra and to enable data filtering
for various atmospheric parameters and conditions, detailed
3-hourly cloud and snow observations from the Austrian
Weather Service at Sonnblick observatory were included and
appended to the appropriate UV-measurements. All spectra
were checked and corrected with the SHICrivm algorithm by
Slaper (2002). Additionally, the spectra were CIE-weighted
and integrated.

It was decided to check for trends in clear-sky spec-
tra (N≤3/8) only, thus limiting influencing factors on UV-
irradiance to any other than cloud cover. Situations with total
cloud cover greater than three eighths were omitted. Further
reducing the maximum allowed cloud cover (<3/8) would
have considerably lessened the number of available data-sets.
To assure that no artificial trend was introduced by the selec-
tion criteria, the partitioning of 0/8, 1/8, 2/8 and 3/8 cloud
cover was checked for underlying trends over the period 1994
to 2006. No significant change was found using the MK-test.
Due to the decreased variations in time series of clear-sky ir-
radiances as opposed to all-sky conditions, significant trends
are supposed to be more easily detected in relatively short
time series, as proposed by Glandorf et al. (2005).

3 Results and discussion

3.1 Short-term changes

The influences of total column ozone and albedo on 305 nm
irradiance during the period 1994–2003 is shown in Fig. 5 for
April (left column) and August (right column). The ordinate
shows the ratio of actual data to daily climatological data.
All calculations were performed for a constant solar zenith
angle of 63◦ for the whole period from 1994 to 2003. Am-
plitude and standard deviation, as described above, are in-
cluded. The maximum short-term variability of UV-radiation
at 305 nm due to changes in total column ozone is 186% in
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Table 1. The amplitude of the influencing factors total ozone, clouds and albedo on UV irradiance at 305 nm calculated as (maximum-
minimum)/mean on the basis of daily data. Every single measurement during the time period from 1994 to 2003 is included. Standard
deviations are denoted below in italic.

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

ozone 2.11 2.56 1.79 1.86 1.41 1.17 1.10 1.02 1.10 1.27 1.49 1.53
0.38 0.56 0.37 0.33 0.22 0.20 0.17 0.17 0.20 0.20 0.28 0.27

clouds 1.23 1.22 1.19 1.51 1.47 1.24 1.58 1.15 1.46 1.21 1.16 –
0.30 0.31 0.32 0.32 0.31 0.32 0.33 0.29 0.35 0.30 0.33–

albedo 0.27 0.26 0.31 0.32 0.21 0.15 0.12 0.14 0.13 0.18 0.24 0.23
0.04 0.05 0.04 0.06 0.04 0.03 0.03 0.02 0.02 0.04 0.04 0.04

Fig. 5. Box-plot presentation of the influence of total column ozone (top row) and albedo (bottom row) on variability of UV irradiance at
305 nm in April and August, amplitude (A) and standard deviation (σ ) are shown in the respective top left corner. The boxes are bounded by
the 25% and 75% quartile, whiskers denote the 90% percentile. Normalized intensity is the ratio of the daily mean value of UV irradiance to
the 10-year monthly mean value.

April and 102% in August. Maximum albedo-induced vari-
ability is 32% in April and 14% in August. Figure 6 shows
the evaluation for May, additionally considering the effects
of changing cloud cover. On a short time scale, clouds can
alter the surface UV irradiance at 305 nm by a maximum of
147%.

Model calculations were performed for each month. Ta-
ble 1 summarizes the results obtained at 305 nm for the
amplitude (representing maximum variability) and for the
standard deviation (resembling mean variability over the

averaging period): Ozone can affect UV irradiance on a
short time scale by up to 200% (mean variability up to
50%). Clouds can cause variability of surface UV irradi-
ance by up to about 150% (typical mean variability of around
30%). Higher levels of attenuation are found in literature:
Because of Sonnblick being a high altitude mountain site
(3106 m a.s.l.), the layer-thickness of the observed clouds
is smaller, therefore the attenuation of UV-irradiance is re-
duced (Blumthaler et al., 1996). Additionally, the increase
of albedo with altitude compensates for the attenuation by
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Fig. 6. Box-plot presentation of the influence of total column
ozone, clouds and albedo on variability of UV irradiance at 305 nm
for May. The boxes are bounded by the 25% and 75% quartile,
whiskers denote the 90% percentile. Ozone and clouds are the dom-
inating influences whereas the contribution of albedo is small.

Fig. 7. Maximum variation in monthly mean values of 305 nm irra-
diance caused by total column ozone, clouds and albedo.

clouds to some extent. Simic (2006) found, that an increase
in Albedo from 0.18 to 0.4 at Hoher Sonnblick may decrease
attenuation of UV irradiance on average by 21% at eight octa
cloud cover.

Albedo has the greatest influence on the variation of UV
irradiance in April as this is the period of snow-melt, which
causes the snowline (and thus the effective albedo) to change
significantly on a relatively short time-scale. During summer,
clouds contribute the major part of variability whilst ozone
dominates in spring. This is explained by the strong variabil-
ity of total column ozone during winter and spring and the
enhanced cumulus convection during summer.

Figure 7 shows the maximum variability in monthly mean
values of 305 nm irradiance induced by total column ozone,
clouds and albedo. The effect of ozone on short-time vari-
ability of monthly mean irradiance can be more than 50% in
spring whereas the effect of clouds is largest during summer
and early autumn. Variability caused by albedo ranges from
3% to 13%.

Investigations by Arola et al. (2003) for the station So-
dankyl̈a (67◦ N, 191 m a.s.l.) in Finland show that the effect
of total ozone on short-term variability of monthly mean UV
irradiance at 305 nm can be almost 100%, rather than the
50% found at Sonnblick. The greater effect of ozone found
at the arctic station Sodankylä may be explained through the
stronger interannual variation of ozone concentration at high
latitudes. Variability caused by albedo in May in Sodankylä
is 21% (average at monthly level 7%) and 32% (average at
monthly level 6%) is found at the Sonnblick observatory.
Thus variability caused by albedo is in the same range at both
stations.

Clouds can alter incoming UV-irradiance by up to 200%
in Sodankyl̈a compared to a maximum of 147% at Sonnblick
during the summer months: as a consequence of reduced
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Table 2. Linear trends in relative departures of UV radiance
from climatological monthly mean values, wavelengths from 305 to
324 nm and CIE, solar zenith angles of 45◦, 55◦ and 65◦ are eval-
uated for the time period 1994–2006. Trends are calculated with
the Theil-Sen method and are given in percent per decade, symbols
to the right indicate the significance of the trend [−: insignificant
(α>0.1),+: significant (α≤0.1), *: highly significant (α≤0.01)].

SZA 305 nm 310 nm 315 nm 324 nm CIE

45◦
−9.5+

−11.1+
−10.5+

−9.8+
−10.3+

55◦
−23.9 * −19.9 * −15.6 * −14.4 * −19.5 *

65◦
−3.8−

−5.7+
−4.6+

−6.0+
−4.4−

cloud layer thickness at high altitudes, the effect of attenu-
ation is less pronounced at the latter station. At the Mediter-
ranean site of Thessaloniki (40◦), Arola et al. found the vari-
ability due to aerosols to be in the same range as variability
due to clouds, which is quite different at Sonnblick: the very
small values of aerosol optical depth and the changes therein
do not cause more than 3% variation.

3.2 Long-term changes

Figure 8 shows relative departures of UV radiance from
climatological monthly mean values. As stated in chapter
2.3, only clear-sky spectra were included. Wavelengths of
305 nm, 310 nm, 324 nm and erythemally weighted irradi-
ances according to CIE at solar zenith angles of 45◦, 55◦ and
65◦ are shown for the time period from 1994 to 2006. Data
are approximated with linear regression lines and the results
are shown in percent per decade. Trends given in the upper
right corner are calculated with the Theil-Sen method. Sym-
bols in parenthesis indicate the significance of the trend [(−):
insignificant (α>0.1), (+): significant (α≤0.1), (*): highly
significant (α≤0.01)]. In Table 2, the results of the evalua-
tions are summarized. Calculations are also performed with
the least-square method, and the obtained results coincide
well in cases with highly significant trends. In addition to
the MK-test, the series where checked for the minimum time
period necessary to reliably detect underlying trends of the
found magnitude at a significance level of at least 90%, as
proposed by Weatherhead et al. (1998). It was shown, that
the number of years required does not exceed the 13 years of
available data for all of the time series that exhibit a highly
significant trend.

For a wavelength of 305 nm, downward trends of−9%/dec
at solar zenith angle 45◦ (90% confidence level) and
−24%/dec at 55◦ (99% confidence level) are determined for
the period from 1994–2006. The trend is highly signifi-
cant for 55◦ SZA, where the largest data set is available.
Analysis of 310 nm, 315 nm and 324 nm basically delivers
a comparable behaviour, however the trends are somewhat
smaller, i.e. the regression-line slopes becoming less negative

as the wavelength increases. Trends found in CIE integrated
monthly mean values consequently show smaller decreases
than those found at 305 nm but they are steeper than those at
315 nm and 324 nm.

Decrease of UV irradiance at short wavelengths would
suggest an increase in stratospheric ozone during the inves-
tigation period from 1994 to 2006. Total ozone measure-
ments performed with the Brewer spectrophotometer at the
Sonnblick observatory, however, do not show this trend, as
the small decrease of−3.67%/dec in monthly means that
include all ozone measurements, was found not to be sig-
nificant using the Mann-Kendall trend-test. Following the
method of Weatherhead et al. (1998), the series would have to
extend over more than 87 years to exhibit a trend at 90% sig-
nificance level. Thus, further analysis of all other influencing
factors was required to explain those significant downward
trends.

Checking for long term changes in time series of cloud
cover and reconstructed albedo (calculated with Eq. 3) to
possibly account for the changes in UV-irradiance also did
not identify significant linear trends over the period 1994–
2006: The time-series of reconstructed albedo would have
to extend over more than 50 years for the downward trend
of −3.9% per decade to be significant at a level of at least
90%. Likewise, the small downward trend of−0.02%dec
contained in total cloud cover observations during the investi-
gated period is insignificant. There was no significant change
detected in partitioning of octa cloud cover either. On the
contrary, sunshine duration has increased by up to 9.6%/dec
of the 13-year monthly mean values during 1994–2006 at
Hoher Sonnblick. The largest increases were found during
spring and summer. In spring, the highest total column ozone
values of the year are to be found: The 13-year monthly
mean values of total column ozone during the first half-year
were found to be about 14% higher than the respective values
during July to December. This explains the observed highly
significant downward trends, since more UV-irradiance mea-
surements during higher total column ozone concentrations
were included in the latter parts of the investigation period.
At a solar zenith angle of 55◦, a significant increase of al-
most 19%/dec in the number of available clear-sky spectra
is present over the whole period. At the same time, the in-
crease in the number of available clear-sky spectra during
January to June only is almost 45%/dec. This may also ex-
plain the fact that the 13-year monthly mean irradiances at
305 and 310 nm and the CIE integrated irradiances are up to
16% smaller during January to June than during the second
half-year. The same pattern can be recognized at 45◦ and
65◦ SZA. However, at these SZAs fewer data are available
and the trends in sunshine duration are less pronounced.

Additionally, time series containing measurements under
all-sky conditions were analysed for underlying trends. In
general, they show the same behaviour as those containing
clear-sky measurements only, revealing downward trends at
several combinations of SZA and wavelength: At 55◦ SZA,
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Fig. 8. Relative departures of UV irradiance from climatological monthly mean values, wavelengths of 305 nm (first row), 310 nm (second
row), 324 nm (third row) and erythemally weighted irradiance according to CIE (fourth row) are shown for solar zenith angles of 45◦ (first
column), 55◦ (second column) and 65◦ (third column), data from 1994 to 2006 are approximated with linear regression lines using the Theil-
Sen method, symbols in parenthesis indicate trend significance [(−): insignificant (α>0.1), (+): significant (α≤0.1), (*): highly significant
(α≤0.01) ].
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downward trends of down to−23%/dec were found at 90%
significance level for erythemally weighted irradiance as well
as for 310 nm under all-sky conditions. Downward trends
found at 45◦SZA compared well to clear-sky conditions,
the significance level being 90% for wavelengths of 290 nm
and higher. However, caused by the enhanced variation due
to cloud-cover in all-sky data, fewer trends were found as
highly significant compared to the analysis of clear-sky spec-
tra only. This is especially true with all-sky data at 65◦ SZA,
where no significant trend was detected at all. Much longer
time series (longer than 20 years on average) would have
been needed to detect significant long-term changes under
all-sky conditions.

In Sodankyl̈a, Finland, spectral irradiance at 305 nm in
April decreases when the time period from 1993 to 2001 is
investigated whereas it increases considering the period from
1990 to 1997 (Lakkala et al., 2003). Investigations of long-
term variability of monthly mean solar spectral irradiance at
305 nm and 324 nm in Thessaloniki, Greece show positive
trends at both wavelengths for the period 1990–2006 (Bais
et al., 2007). The investigated time period has a strong in-
fluence on the calculated long-term change of spectral UV
irradiance at Sonnblick observatory. When spectra mea-
sured during the time period from 1994 to 2001 are analysed,
mainly positive trends are found for different wavelengths
and solar zenith angles (Simic, 2005). Glandorf et al. (2005)
evaluated several wavelengths and solar zenith angles of the
longest spectral UV irradiance measurements in Europe, in
Thessaloniki and Sodankylä. They conclude that even the
longest series are too short to show distinct trends due to the
large variability of UV irradiance.

4 Summary

The influence of ozone, clouds, and surface albedo on spec-
tral UV radiation at the Sonnblick observatory (3106 m) is in-
vestigated using continuous spectral UV irradiance measure-
ments and model calculations. Measurements at Sonnblick
observatory starting 1994 represent the longest time series of
spectral UV irradiance data in Austria and are used in the
present investigation.

1. UV irradiance at wavelength 305 nm under clear sky
condition is modelled and compared with the ac-
tual measurements. In 95% of the investigated cases
throughout the period from 1994 to 2003, the calcu-
lated UV irradiations are maximum 12% higher and 8%
lower than actually measured irradiations. The determi-
nation of the effective albedo at the observatory is essen-
tial for a good correlation of measurement and model.
The determination of the effective albedo uses the snow
line altitude, the depth of the fresh fallen snow and the
time since last snowfall.

2. Measurements at Sonnblick observatory at 305 nm
show a pronounced influence of snowline height on sur-
face UV irradiance. A decrease in snowline height from
3000 m to 800 m a.s.l. enhances the UV irradiance by a
factor of 1.24 for clear sky conditions and by a factor of
1.7 for 8/8 cloud cover.

3. Short-term variability of UV irradiance at 305 nm be-
cause of changes in ozone can be more than 200% (more
than 50% on average). Clouds can cause variability of
150% or more (average 35%). Maximum variability
caused by albedo is 32% in April (average 6%) and 12–
15% in the summer months (average 3%). In summer
and autumn, total ozone and clouds strongly influence
the variability of UV radiation, whereas in winter and
spring ozone has the more pronounced effect.

4. Spectral UV irradiance at 305 nm, 310 nm, 324 nm and
CIE at solar zenith angles of 45◦, 55◦ and 65◦ from
1994–2006, taken from measurements under clear-
sky conditions, were analyzed for possible trends.
Significant downward trends (99% confidence level)
were found for solar zenith angle 55◦ at all wavelengths.
At solar zenith angles of 45◦ and 65◦, downward trends
of UV irradiance were found for several wavelengths
(90% confidence level). These trends can be explained
through an increase in the number of measurements un-
der the influence of high total column ozone over the
investigated period.
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