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Abstract. Long-range forecasting of intermittent streamflow
in semi-arid Australia poses a number of major challenges.
One of the challenges relates to modelling zero, skewed, non-
stationary, and non-linear data. To address this, a statistical
model to forecast streamflow up to 12 months ahead is ap-
plied to five semi-arid catchments in South Western Queens-
land. The model uses logistic regression through Generalised
Additive Models for Location, Scale and Shape (GAMLSS)
to determine the probability of flow occurring in any of the
systems. We then use the same regression framework in
combination with a right-skewed distribution, the Box-Cox
t distribution, to model the intensity (depth) of the non-zero
streamflows. Time, seasonality and climate indices, describ-
ing the Pacific and Indian Ocean sea surface temperatures,
are tested as covariates in the GAMLSS model to make prob-
abilistic 6 and 12-month forecasts of the occurrence and in-
tensity of streamflow. The output reveals that in the study
region the occurrence and variability of flow is driven by
sea surface temperatures and therefore forecasts can be made
with some skill.

1 Introduction

Predictions of rainfall and river flows over long time scales
can provide many benefits to agricultural producers (Abawi
et al., 2005; Brown et al., 1986; Mjelde et al., 1988; Wilks
and Murphy, 1986; White, 2000). Predicting these variables
in semi-arid regions is especially difficult because of extreme
spatial and temporal variability of both climate and stream-
flow (Chiew et al., 2003). In addition, data are often scarce,
possibly due to many semi-arid regions supporting low hu-
man populations. Previous models to predict rainfall and
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streamflow in semi-arid areas have had low accuracy, which
has led to criticism by farmers, who are the key users of this
information (Hayman et al., 2007). The challenge is thus to
develop accurate forecasts for highly variable systems with
minimal data requirements.

Forecasting streamflow in semi-arid regions poses a num-
ber of further hurdles. A model of semi-arid stream-
flow needs to be able to cope with extensive zeroes, ex-
tremely skewed, locally non-stationary, and non-linear data
(Yakowitz, 1973; Milly et al., 2008). However, on a posi-
tive note, modelling data with a positive density at zero can
be achieved by dealing with the zero and non-zero data sep-
arately. Examples of such two-part models can be found in
the modelling of species abundance (Barry and Welsh, 2002),
rainfall (Hyndman and Grunwald, 2000), medicine (Lachen-
bruch, 2001) and insurance claims (De Jong and Heller,
2008). Furthermore, generalised additive models (GAM)
can model non-normal (skewed) data and non-linear rela-
tionships between the streamflow and potential predictors
(Hastie and Tibshirani, 1986; Wood, 2006). Trends, or non-
stationarity, in the data can be accounted for by adding syn-
thetic variables as covariates in such models (Hyndman and
Grunwald, 2000; Heller et al., 2009; Grunwald and Jones,
2000).

Forecasting streamflow directly from climate indices has
shown promise, as the relation between streamflow and cli-
mate tends to be stronger than for rainfall (Wooldridge et
al., 2001). One of the key climatological parameters driv-
ing streamflow throughout Australia is the El Niño Southern
Oscillation (ENSO) which describes variations in sea sur-
face temperatures (SST) in the Pacific Ocean (Chiew et al.,
1998, 2003; Dettinger and Diaz, 2000; Dutta et al., 2006;
Piechota et al., 1998). More recently, effects of the Indian
Ocean SST on South Eastern Australian rainfall have been
suggested (Cai et al., 2009; Ummenhofer et al., 2009; Verdon
and Franks, 2005a,b), and recent research suggests that the
Indian Ocean is an important driver of streamflow in Victoria,
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Australia (Kiem and Verdon-Kidd, 2009). As a result, both
the Pacific and Indian Ocean sea surface temperatures are
considered essential in understanding the full variability of
weather patterns and streamflow associated with each ENSO
phase (Wang and Hendon, 2007; Kiem and Verdon-Kidd,
2009).

In the past, several researchers have used data-driven ap-
proaches to model the relationship between either rainfall or
streamflow, and climate indices at various time scales and
lags (Table 1). There have been few comparative studies
of the techniques listed in Table 1. However, the perfor-
mance of Generalised Additive Modeling (GAM) compared
favourably with Neural Networks (NN) for modelling pre-
cipitation (Guisan et al., 2002). Furthermore, in contrast to
NN, GAM allows identification of the influence of the in-
dividual covariates, which assists in comprehending the un-
derlying physical processes being modelled (Schwarzer et
al., 2000; Faraway and Chatfield, 1998). Similarly, GAM
has been shown to outperform discriminant analysis (Berg,
2007) which has been used previously to model climate
streamflow relationships (Piechota et al., 2001; Piechota and
Dracup, 1999). Generalised models for location scale and
shape (GAMLSS) (Rigby and Stasinopoulos, 2005) poten-
tially perform better than GAM because a broader selection
of distributions is available, which can capture the skewness
of streamflow data in semi-arid regions (Heller et al., 2009).

Aside from studies by Sharma et al. (2000) in a more
coastal environment and our preliminary study, Heller et
al. (2009), there appear to be no other studies that apply
GAM or GAMLSS to explore relationships between climate
indices and streamflow.

The aim of this study therefore is to test the general abil-
ity of GAMLSS to produce 6 and 12 month ahead monthly
streamflow forecasts in several large semi-arid river systems.
An advantage is that the results can be expressed as a cu-
mulative distribution function, which gives the probability
of exceeding threshold flow volumes. This is also known
as the flow duration curve. Furthermore, the model uncer-
tainty is intrinsically incorporated in the probabilistic output
(Krzysztofowicz, , 19832001; Jolliffe and Stephenson, 2003;
Buizza, 2008; Pappenberger and Beven, 2006; Hamill and
Wilks, 1995). Finally, a statistical approach is more suit-
able for modelling streamflow in these regions, as limited
biophysical data and understanding would thwart the use of
a more mechanistic modelling approach.

2 Data and methods

2.1 Data

This study considers five river systems in south-western
Queensland (SWQ), Australia (Table 2, Fig. 1). All of the
river systems are similar, being terminal inland river sys-
tems and intermittent in nature. Roughly, the average annual

Fig. 1. Location of river gauging stations and surrounding basins,
South Western Queensland.

rainfall decreases in a south westerly direction. With the ex-
ception of the Balonne, all of the river systems are unregu-
lated. Streamflow in the Balonne River has been altered as a
result of water extraction (Thoms and Parsons, 2003; Thoms,
2003) with most of the change occurring in flows with an av-
erage occurrence interval of less than 2 years (Thoms, 2003).
Hence, an unimpaired dataset for this river was also used,
which was provided by the Department of Environment and
Resources Management in Queensland Australia and was
created using the Integrated Quality Quantity Model (IQQM)
(Hameed and Podger, 2001; Simons et al., 1996). There is no
doubt that the validity of this model and the results might be
questioned. However, due to the often controversial nature of
streamflow data, this data is the only accessible data which
accounts for water extractions in the region. A double mass
analysis on the modelled versus measured data indicates an
almost perfect agreement between the periods of 1922 and
1950. Thereafter, and coinciding with post second world
war urban and rural development, the measured streamflow
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Table 1. Summary of statistical models used for forecasting rainfall and streamflow.

Model type Region Rainfall/ Time Max Indices Author
Streamflow scale Lag

Artificial Neural California, Rainfall Annual 1 ENSO, Silverman and
Networks USA 700-mb height Dracup (2000)

anomaly

Self Organising Murray Rainfall Monthly 12 ENSO Barros and
Linear Output Darling Bowden (2008)
map Basin

Linear Suwanee Streamflow Monthly 9 ENSO Tootle and
Correlation/ River Piechota (2004)
continuous USA
exceedance
probability curve

Linear North Streamflow Monthly 6 SST, 500 mb Soukup et al.
Correlation/ Platte height (2009)
continuous River anomaly
exceedance USA
probability curve

Linear Australia Streamflow Monthly 6–12 Indo-Pacific Ruiz et al. (2007)
regression Thermocline

Linear Columbia Streamflow Monthly 7 ENSO Piechota and
discriminant River Basin, Dracup (1999)
analysis USA

Generalised Melbourne, Rainfall Daily 0 Only SOI Hyndman and
Additive Models Australia Grunwald (2000)

Generalized Mauritius Rainfall Daily 0 None Underwood (2009)
Additive Models

Generalised Warragamba Streamflow Monthly 15 ENSO Sharma et al.
Additive Models Dam, NSW, (2000)

Australia

Generalised Balonne River, Streamflow Monthly 0 ENSO Heller et al.
Additive Model QLD, (2009)

Australia

Nonparametric Warragamba Rainfall Seasonal 6 ENSO Sharma (2000)
Kernel dam, Sydney,

Australia

Bayesian joint Murrumbidgee Streamflow Seasonal 2 ENSO Wang et al. (2009)
probability River,

Australia

Categorical Williams Streamflow Monthly 9 ENSO Kiem and Franks
composites River, NSW, (2001)

Australia

Partitioning Eastern Rainfall Seasonal 1 SOI, GpH∗ Cordery (1999)
Australia

∗ GpH = Geopotential Height
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Table 2. Flow statistics for south western Queensland Rivers.

River Station Approx. total Median Mean flow Standard Coef. of % Cease
number catchment m3 s−1 m3 s−1 deviation variation flow

area km2 m3 s−1 σµ

Thomson 003202a 266 469 0.02 40.47 208.49 5.15 47
Bulloo 011202a 69 244 1.4 22.8 78.5 3.45 16
Paroo 424201a 68 589 0.80 16.20 52.30 3.23 27
Warrego 423203a 57 176 0.26 16.99 74.87 4.41 33
Balonne 422201d,e 148 777 1.85 34.50 109.59 3.18 12
Balonne Naturalised NA 148 777 3.76 46.88 134.68 2.87 6
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Figure 1. Location of river gauging stations and surrounding basins, South Western 1 

Queensland. 2 
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Figure 2. Locations of average sea surface temperature locations for Niño 1, 2, 3, 3.4 and 4 4 

(source: Bureau of Meteorology, Australia). 5 
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Figure 3. Locations of average sea surface temperature locations for IOD (source: Bureau of 7 

Meteorology, Australia). 8 

Fig. 2. Locations of average sea surface temperature locations for
Niño 1, 2, 3, 3.4 and 4 (source: Bureau of Meteorology, Australia).

decreases relative to the modelled streamflow. Throughout
this study, streamflow is given as cubic meters per second
(m3 s−1).

Sea surface temperature (SST) data can be readily ob-
tained from several organisations (Table 3). These datasets
are usually a combination of spatially averaged monthly tem-
perature in degrees Celsius for various regions of the ocean
(Fig. 2) (Wang et al., 1999). For ease of reading the re-
gression formulas, Niño1 + 2 is referred to as Niño1.2. The
IOD is the difference between SST in the western and eastern
equatorial Indian Ocean (Fig. 3).

Climate datasets prior to 1959 were not considered due to
recognised poor data quality (Saji and Yamagata, 2003). Fur-
thermore, the time span of the monthly dataset was reduced
to the years 1970 to 2005, which is the maximum length of
the monthly flow records for the Bulloo River.

2.2 Models

Modelling zero and non-zero data separately is equivalent to
modelling streamflow using a zero-adjusted distribution of
the type:

f (y; θ, π) =

{
(1 − π) if y = 0
πfT (y, θ) if y > 0

(1)

whereπ is the probability of the occurrence of non-zero flow
andfT (y, θ) is the distribution of the non-zero flow. Hence,
initially the occurrence of monthly flow was modelled, for
which the results are discussed in Sect. 3.1. As the outcome
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Fig. 3. Locations of average sea surface temperature locations for
IOD (source: Bureau of Meteorology, Australia).

is binary, a binomial distribution was used (Hyndman and
Grunwald, 2000). As a second step, the intensities (volumes)
of the non-zero flows are modelled and the results are dis-
cussed in Sect. 3.2.

For the binomial model of the occurrence of flow, the
following generalized linear model (GLM) can be initially
specified

g(π) = log

(
π

1 − π

)
= x′ β (2)

whereπ is the probability of occurrence of non-zero flow,
x′ is a vector of covariates,g(π) is the logit link function
andβ is a vector of coefficients forx. For comparison, the
following GAMLSS was specified (because GAMLSS is an
extension of GLM; Rigby and Stasinopoulos, 2001):

g(π) = log

(
π

1 − π

)
= x′β +

J∑
j=1

sj
(
wj

)
(3)

wherex′β is a combination of linear estimators as in Eq. (2),
wj for j = 1, 2, ...,J are covariates andsj for j = 1, 2, ...,J
are smoothing (spline) terms. The addition of smoothing
terms in GAMLSS has many advantages, such as identify-
ing non-linear covariate effects in otherwise noisy data sets
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Table 3. Summary of data used and availability.

Index Description Source References

Streamflow Monthly Streamflow Department of Natural Resources and
(ML/month) Water, Queensland

http://www.derm.qld.gov.au/water/monitoring/currentdata/mapqld.php

Niño1+2, Nĩno3, Nĩno: Averaged Eastern, National Oceanic & Atmospheric Trenberth and
Niño3.4, Nĩno4 Central and Western Administration, USA Stepaniak (2001);

Pacific SST http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices Wang et al. (1999)

IOD Relationship between SST Frontier Research Centre for Global Ummenhofer et
in the eastern equatorial Change, Japan al. (2009);
and western equatorial http://www.jamstec.go.jp/frsgc/research/d1/iod/ Cai et al. (2009)
Indian Ocean. Derived
from HadISST dataset

(Hastie and Tibshirani, 1986). In this study the smoothing is
based on penalised B-splines which have been shown to be
robust to boundary effects common to other smoothing meth-
ods (Eilers and Marx, 1996). The degree of smoothing is se-
lected automatically using penalized maximum likelihood in
the gamlss package (Rigby and Stasinopoulos, 2005). The
GAMLSS models were implemented using the gamlss func-
tion in the gamlss package within the open source program R
(R Development Core Team, 2011; Rigby and Stasinopoulos,
2005).

For the intensity model, streamflow data was subset to
non-zero flow values. The Box-Cox t distribution (BCT)
was used to model non-zero streamflow. This four-parameter
flexible distribution (Rigby and Stasinopoulos, 2006), has
been shown to be a good fit for non-zero flow data from the
Balonne River (Heller et al., 2009) and a number of gaug-
ing stations located west of the Australian Capital Territory
(Wang et al., 2009). In the BCT distribution̂µ is the median,
σ̂ is the scale parameter (approximately the coefficient of
variation),ν̂ is the skewness and̂τ is the kurtosis of the non-
zero flows. The probability for flows above a flow thresholdc

can be subsequently calculated as:

p̂(flowi > c) = π̂i p(Z > zi) (4)

wherezi = 1
σ̂i ν̂

[(
c
µ̂i

)ν̂

−1

]
, if ν̂ 6= 0 andZ ∼ tτ̂ has a t distri-

bution with τ̂ degrees of freedom and whereπ̂i is the fitted
probability of flow occurring in theith month (Eq. 4) and
µ̂i , σ̂i , ν̂ and τ̂ are the parameters of the fitted BCT distri-
bution. The probability (Eq. 4) can be calculated readily in
the gamlss package aŝπi [1 − pBCT(c, µ̂, σ̂ , ν̂, τ̂ )] where
pBCT is the cumulative distribution function for the BCT
distribution (Rigby and Stasinopoulos, 2006). The results of
the probability of exceeding a flow threshold are discussed in
Sect. 3.3.

2.3 Covariates

Because our interest is in a 1 year ahead forecast, this study
focuses on the 12-month lagged covariates as predictors (this
means forecasts are based on SST 12 months prior). Water
users in the regions expressed most interest in a 12-month
ahead forecast as this was perceived to be most beneficial
for agricultural planning. Different lag times or combina-
tions of different lag times may also be considered, as point
of comparison, 6 month ahead forecasts are also considered.
Short and medium range forecasts require additional param-
eters and a modification to the model type and this is a topic
of ongoing research.

A synthetic temporal covariate Time, a sequence of con-
secutive numbers 1, ...,n, where n is the length of the
dataset can be included to account for known but unmea-
surable or unknown non-stationarity in the data. An exam-
ple of this could be non-stationarity due to water extrac-
tion or as a result of climate change in Eastern Australia
(McAlpine et al., 2007; Pitman and Perkins, 2008; Cai and
Cowan, 2008; Chiew et al., 2009). A Kwiatkowski-Phillips-
Schmidt-Shin test for trend stationarity on the five stream-
flow datasets (Kwiatkowski et al., 1992) revealed that only
the raw Balonne river is non-stationary (p = 0.03). Hence,
Time was included to account for non-stationarity due to wa-
ter extractions for this dataset. A problem with covariates
such as Time in forecasts is that the future relationship be-
tween the response variable and the covariate is unknown
and that the relationship is strictly empirical. We can only
assume that the observed trend in the data continues for the
next 12 months to be used in the forecast. However, the same
is somewhat true for all relationships in a statistical model,
but in contrast, for the SST covariates, we can assume that
there is some underlying physical process which is captured
by the statistical model. For a slowly varying smooth covari-
ate the lack of knowledge about future trends might also not
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be a concern, but for a rapidly changing covariate (or jump
changes) it could be problematic.

The synthetic variable sine is a harmonic covariate in-
cluded to account for seasonal fluctuations in the data (Hyn-
dman and Grunwald, 2000):

sine = sin

(
2 π Sm

12

)
(5)

whereSm is m (mod 12) where m is the month. The sine term
was included in each model outside the stepwise procedure.
This ensured that strongly seasonal nature of these river sys-
tems was accounted for in each model and that the relation-
ship between the SST and streamflow is not due to the fact
that both datasets are seasonal. Fitting higher order harmon-
ics was not deemed necessary due to the added flexibility
of fitting the harmonic covariate with a penalised B-spline.
Dominance of this covariate indicates strong seasonality in
the streamflow and thus this term captures seasonal climatic
or within catchment processes.

In essence the overall structure means we assume a lay-
ered catchment scale model to explain the variation in the
streamflow. The first layer consists of the within catchment
processes and seasonal variations (what would normally be
the main focus of catchment hydrology) captured in the har-
monic term. The second layer represents the influence of
SSTs and thus it is assumed the influx of moisture from
oceanic sources. The final layer consists of a long term trends
or periodicities such as caused by water extractions, natural
cycles or climate change.

In all cases, the models were assumed to be additive
(Sharma et al., 2000). Initial explorative testing of incor-
porating interaction terms in the form of smoothing surfaces
using locally weighted scatterplot smoothing (loess) revealed
no improvement in the models.

2.4 Goodness of fit

To determine the most parsimonious model (the best model
with the least number of covariates), a stepwise fitting
method, the stepGAIC function, is used. This is based on the
Generalized Akaike Information Criterion (GAIC), which is
a model selection criterion where GAIC =−2L + kN, L is the
log likelihood,k is the penalty parameter andN is the num-
ber of parameters in the fitted model (Akaike, 1974). A value
of k = 2 was used as this gave good skill in most models se-
lected and retained more of the SST covariates compared to
using higher values ofk. The stepGAIC process also selects
whether or not B-splines are fitted to the covariates. Hence, it
is quite possible that the most parsimonious model is simply
a GLM. Forward backward selection gave superior results
to only backward selection and using the full model. The
model residuals were checked for independence and identi-
cal distribution.

Validation of the models was conducted using a leave 12
month out cross validation routine (Chowdhury and Sharma,

2009; Wilks, 2005). Essentially, this involved leaving one
year (12 months) of data out in each model run and then us-
ing the left out data for the final forecast. Forecast skill was
then calculated based on the combined forecasts of the cross
validated results.

The Brier Skill Score (BSS) and Relative Operating Char-
acteristic (ROC) are the most common means for verifying
probabilistic forecasts (Jolliffe and Stephenson, 2003; Wilks,
2006). These were implemented in the verification package
in R (NCAR, 2010). The BSS ranges from 0 to 1 where
0 indicates no skill and 1 indicates a perfect forecast and the
ROC is presented as a p-value which test the null-hypothesis
that there is no forecast skill (Mason and Graham, 2002).
Any value less than 0.01 is taken to be significant. Typical
BSS values for forecasts of daily streamflow in a temperate
climate lie between 0.6 and 0.8 at day one and decrease to
between 0 and 0.2 at day 10 (Roulin and Vannitsem, 2005).
Similarly, BSS values of between 0 and 0.5 were found in
Iowa (USA) using monthly ensemble streamflow prediction
(Hashino et al., 2006).

3 Results and discussion

3.1 Occurrence model

Typical examples of the fitted models for the occurrence of
non-zero flows for SWQ Rivers are given in Table 4.

The Pacific Ocean SST affects the strength of the northern
Australian monsoon and cyclonic activity over a year (Evans
and Allan, 1992). Local knowledge suggest that cyclonic
activity close to, or crossing, the coast in north eastern Aus-
tralia is often indicative of significant streamflow in the study
region with a delay of up to two months. From Table 4, it is
clear that the Pacific Ocean SSTs are drivers of the proba-
bility of occurrence of zero streamflow in all of the rivers.
The relationship between the eastern Niño1.2 and the central
and western Pacific Niño3 and Nĩno4 are of opposite sign.
This may be explained by the fact that changes in SST in
the central and western pacific and the eastern Pacific are
phase shifted to varying degrees (Wang et al., 2010). Finally,
streamflow in the Balonne River, which has one of its two
major sources further south east than the other catchments, is
significantly affected by IOD. It has been shown that IOD is
linked with the development of northwest cloudbands (Ver-
don and Franks, 2005a) which in turn can bring winter rain-
fall to central and Eastern Australia (Braganza, 2008; Court-
ney, 1998; Collins, 1999).

The inclusion of a Time covariate for the raw Balonne
River model allows investigation of whether we can account
for water extraction occurring upstream of the gauging sta-
tion. The model indicates that post 1980, the probability of
observed flow occurring in the Balonne is decreasing in time
(Fig. 4). This would suggest that increased water extraction
occurred post 1980 upstream of the gauging station (Thoms,
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Table 4. Occurrence models (1 year forecast) for river systems in
south western Queensland. In these formulasπ̂ is the fitted proba-
bility of occurrence of flow, Time is a sequence 1, 2, 3, ...,n ands()

is a penalised B-spline smooth function. The other covariates are as
described in Table 3.

River Occurrence model

Thomson 7.07 +s(sine) + 0.73 Nĩno1.2− s(Niño3) +s (Niño3.4)
− s(Niño4)

Bulloo 6.10 +s(sine) + 0.35 Nĩno1.2− s(Niño4)
Paroo −1.48 +s(sine) +s(Niño1.2)− 1.59 Nĩno3 +s(Niño3.4)
Warrego −1.77 +s(sine) + 0.70 Nĩno1.2− 2.09 Nĩno3
Balonne 24.80 +s(sine) +s(Time)− s(Niño4) + 0.45 IOD
Balonne 52.27 +s(sine) + 0.54 Nĩno1.2− s(Niño4) +s(IOD)
Naturalised

2003; Thoms and Parsons, 2003). Rather than using a Time
variable it may be possible to include actual extraction vol-
umes or at least a function representing extraction rules as a
covariate. The skill scores for the combined model are re-
ported later in Table 6.

3.2 Intensity model

The intensity model gives the probability of the level of non-
zero monthly flow above a threshold. It therefore predicts the
distribution of monthly flow values (Table 5).

From Table 5, it appears that the entire Pacific has a
stronger influence in the 6 month forecast and the eastern
and central Pacific in the 12 month forecast. Theµ̂ models
selected are reasonably homogenous for all rivers. Further-
more, the direction of influence (sign) is consistent for all
models. This shows the potential of a stepwise approach for
understanding what climate drivers influence which region
as suggested by Wang et al. (2009). However, there is some
spatial heterogeneity in the relationships between SST and
streamflow particularly for the 6 month forecasts andσ̂ for
both the 6 and 12 month forecasts. Furthermore, the covari-
ates selected in the occurrence model (Table 4) are not con-
sistent with those selected for the intensity model. This is
the result of the forward backward stepwise covariate selec-
tion approach which could select a number of equally plau-
sible models (Whittingham et al., 2006), which makes infer-
ence from the output tentative at best. This would give cause
for including all parameters in the model rather than using
stepwise selection. However, there are also problems asso-
ciated with using a full model. Importantly for this study
is that incorporating non-significant parameters may cause
excess noise in the model predictions and thus less skilful
forecasts (Whittingham et al., 2006). The trade off between
model complexity and skill is a topic for future research.
One further important result is that the forecast for the raw
Balonne data shows significant skill. This suggests that the
Time term adequately accounts for the non-stationarity due
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Figure 4. The fitted B-spline and 95% confidence intervals (dotted lines) for the Time 2 

covariate non-naturalised Balonne river data.  3 

Fig. 4. The fitted B-spline and 95 % confidence intervals (dotted
lines) for the Time covariate non-naturalised Balonne river data.

to water extraction and that the naturalisation of the data may
not be required. The advantage of this is that uncertainties in-
troduced in the naturalisation process and political sensitivi-
ties associated with irrigation water extraction are bypassed.

3.3 Probabilistic forecast of streamflow

Using Eq. (5), the probability of getting at least the median
flow was calculated for each river. The forecasts for all of the
gauging stations show significant skill (Table 6). Essentially,
in both cases, the forecasts perform better than only using
the median values. The forecast for the Thomson gauging
station shows the greatest skill. Using the Thomson gauging
station as an example, this result suggests that a 35 % im-
provement is expected over a decision based on the median
flow of each month. Again using the Thomson as an exam-
ple, Fig. 5 shows the forecast probability of flow exceeding
median flow and the number of forecast successes and fail-
ures. The number of forecast successes and failures was cal-
culated by comparing the outcome of Eq. (6) with whether
the observed flow exceeded median flow or not.

forecast flowi =

{
1 if p(flowi > c) > 0.5
0 if p(flowi > c) ≤ 0.5

(6)

Also shown in Fig. 5. in gray are the cross-validation results
for each of the 36 models. Importantly this shows that the
cross-validation results are similar for each model.

A further important observation is that as the flow thresh-
old increases, the value for BSS decreases (not shown)
suggesting that as the flow threshold increases the system
becomes less easy to forecast. A logical reason for this
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Figure 5. Shows the probability of exceeding median flow for the Thomson River at 2 

Longreach. The circles indicate where the forecast has either succeeded (S) or failed (F). In 3 

this case 74% of the forecasts were successful. The grey lines are the outputs from each of the 4 

cross-validated models. 5 

Fig. 5. Shows the probability of exceeding median flow for the
Thomson River at Longreach. The circles indicate where the fore-
cast has either succeeded (S) or failed (F ). In this case 74 % of the
forecasts were successful. The grey lines are the outputs from each
of the cross-validated models.

observation is that at the higher flow thresholds the number
of observed flows decreases, adding to the decrease in the
forecast skill. In general, it appears that it is not possible to
forecast the larger (extreme) flow events 12 months ahead.
Rather, it is possible to predict wetter or dryer than average
periods. Forecast skill tends to be higher for the 12 month
ahead forecast as compared to the 6 month ahead forecast.
This suggests the importance of the seasonal term in the fore-
cast. Given that forecasts of streamflow are generally bet-
ter than rainfall, our findings support findings of Westra and
Sharma (2010) who show that global SST explain to explain
a small percentage of rainfall variability at lags of 12 months.

From Table 6 and Eq. (5) it is possible to derive a forecast
monthly flow duration curve 12 months ahead in time by gen-
erating regularly spaced flow threshold values up to a max-
imum threshold, say the maximum recorded flow (Fig. 6).
The advantage of presenting forecasts as a flow duration
curve is that they are already used by water managers to de-
termine water extraction rates, irrigators for irrigation plan-
ning and by biologists to determine environmental flows
(Acreman, 2005; Cigizoglu and Bayazit, 2000). Aside from
the Thomson River, the forecast probability of flow is sys-
tematically overestimated for the other river systems. One
reason for this is that the Box-Cox t distribution is not cap-
turing all the skewness in these datasets and thus cannot
generate the full range of probabilities. One potential solu-
tion is to use mixture distributions for the streamflow inten-
sity (Stasinopoulos and Rigby, 2007) but this is not explored
further.
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Figure 6. Average monthly forecast and observed flow duration curve, Thomson River (Top 2 

left), Bulloo River (Top right), Paroo River (Bottom left), and the Warrego River (Bottom 3 
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Fig. 6. Average monthly forecast and observed flow duration curve,
Thomson River (top left panel), Bulloo River (top right panel), Pa-
roo River (bottom left panel), and the Warrego River (bottom right
panel).

4 General discussion

This study has demonstrated the ability of flexible statistical
models to make skilful forecasts of intermittent streamflow
in large catchments in inland Australia. In the absence of de-
tailed understanding of complex large semi-arid catchments,
statistical approaches, such as the demonstrated GAMLSS
framework offer advantages over deterministic and concep-
tual catchment models for forecasts. From an explanatory
view, the work has highlighted the influence of the Pacific
Ocean SST of monthly flows in these catchments, increas-
ing our understanding of these climatic drivers on Eastern
Australian streamflow. It is also clear, however, that a single
flexible sinusoidal term representing seasonality represent-
ing unknown periodicities explains much of the variability
in these river systems. Additionally, the temporal covariate
Time gives important explanations of long term trends such
as the decrease in the observed Balonne flows due to water
extraction for irrigation.

As this study is primarily a demonstration of a method,
there is great scope for future work building on this approach
for forecasting both streamflow and rainfall. For example, we
have not considered antecedent soil moisture as a covariate in
the model (Timbal et al., 2002) as this is relatively unwork-
able for the long range forecasts considered here. However,
for shorter range forecasts, this could easily be introduced
in the catchment process layer by incorporating a covariate
based on the number of days or months from the start of
a dry spell derived from local daily flow or rainfall records
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Table 5. Intensity models for river systems in south western Queensland. The models forµ̂ (median),σ̂ (scale parameter; approximately the
coefficient of variation) are given.̂ν (skewness) and̂τ (kurtosis) are constants and are not given.

River Lag Intensity Model
(months)

Thomson 6 µ̂ = 14.54− s(sine)− s(Niño4) +s(IOD)
σ̂ = 2.00− s(Niño1.2)

12 µ̂ = 10.89 +s(sine) + 0.40 Nĩno1.2− s(Niño3.4)
σ̂ =−0.94− 0.14 Nĩno1.2 + 0.52 Nĩno3− 0.70 Nĩno3.4

Bulloo 6 µ̂ = 0.14− s(sine)− s(Niño1.2) + 0.91 Nĩno3− s(Niño4)
σ̂ = 3.29 +s(Niño3)− 0.09 Nĩno3.4

12 µ̂ =−4.36 +s(sine) + 0.59 Nĩno1.2− s(Niño3) +s(Niño3.4)
σ̂ =−0.22 +s(Niño3)− 0.08 IOD

Paroo 6 µ̂ =−1.22− s(sine)− s(Niño1.2) +s(Niño3)− s(Niño4)
σ̂ = 2.51 +s(Niño3)

12 µ̂ =−1.48 +s(sine) +s(Niño1.2)− 1.59 Nĩno3 +s(Niño3.4)
σ̂ = 0.96 +s(sine)

Warrego 6 µ̂ =−3.15− s(sine)− s(Niño1.2) + 1.97 Nĩno3− 1.24 Nĩno3.4
σ̂ = 2.83 +s(Niño3)

12 µ̂ =−1.95 +s(sine) + 0.70 Nĩno1.2− 2.09 Nĩno3 +s(Niño3.4)
σ̂ = 0.96

Balonne 6 µ̂ =−17.62− s(sine)− s(Time) + 0.77 Nĩno3− 0.48 IOD
σ̂ =−1.74 +s(Time)− s(Niño1.2)

12 µ̂ =−4.22− s(sine)− s(Time) + 1.18 Nĩno1.2− 1.74 Nĩno3 +s(Niño3.4) +s(Niño4)
σ̂ = 0.60 + 0.001 Time

Balonne Naturalised 6 µ̂ = 9.59 +s(sine) + 1.05 Nĩno3− 1.24 Nĩno4− s(IOD)
σ̂ = 2.38− s(Niño3)

12 µ̂ =−5.17− s(sine) + 1.14 Nĩno1.2− s(Niño3) +s(Niño3.4)
σ̂ =−3.34− 0.03 Nĩno1.2 + 0.17 Nĩno4

Table 6. Skill of forecasting median flow at the five gauging stations and naturalised data.

Lag (months) Score Thomson Bulloo Paroo Warrego Balonne Balonne naturalised

6 BSS 0.27 0.14 0.08 0.14 0.22 0.18
ROC <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
p-value

12 BSS 0.36 0.14 0.12 0.17 0.22 0.18
ROC <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
p-value

(Sharma and Lall, 1998). Furthermore, we have only used a
small selection of available climate indices and we have only
considered single lags of 6 and 12 months which could be ex-
tended to incorporate multiple lags or shorter lags for shorter
range or seasonal forecasts. Examples of other indices which
have been shown to be useful for forecasting precipitation or
streamflow in Australia are the Tropical Indo-Pacific ther-
mocline (Ruiz et al., 2007) and the Southern Annular Mode
(Meneghini et al., 2007). The methodology can also be used

to identify temporal and spatial patterns in teleconnections
between SST and precipitation or streamflow (Piechota et
al., 1998; Wang et al., 2009). Similarly, the analysis could
be extended to incorporate data from the entire global SST
dataset (Sharma, 2000; Westra and Sharma, 2010). How-
ever, this will require a combination of balancing the degrees
of freedom of the fitted splines and the number of covariates
fitted, the use of a pre-selection methods for the covariates
and an increase in the length of the datasets used. As an
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extension, the proposed methodology can be used congru-
ously with global climate models to translate forecast SST
such as produced by POAMA (Alves et al., 2002) to local
precipitation or streamflow. This application would also al-
low the inclusion of derived covariates which account for
warming and thus potentially model the effect of warming
on future streamflow data. Finally, only the binomial and
Box-Cox t distributions have been considered in this study
and it is expected that forecast will improve if other distribu-
tions are considered. In particular, it would be expected that
using mixture distributions (Stasinopoulos and Rigby, 2007)
for the intensity of streamflow will improve forecast skill.
This is part of our ongoing research.

5 Conclusions

Using a GAMLSS regression framework it is possible to
make a skilful forecast of the probability of monthly stream-
flow occurring 6 and 12 months ahead in highly variable
intermittent streams in the inland regions of eastern Aus-
tralia where only streamflow data is available. The GAMLSS
framework is able to cope with non-linearity in the relation-
ships between SST and monthly streamflow, which leads to
superior model performance compared with more traditional
linear models. Furthermore, in the absence of more detailed
data and using synthetic covariates, it is possible to account
for non-stationarity and seasonality in the data in an explana-
tory framework. The model output is probabilistic and hence
the results can be presented a probability of exceedance. This
output can be used by irrigators, graziers and natural resource
management staff to aid in decision making in these highly
variable environments.
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