Mostafa Blidia, Mustapha Chellali

A NOTE ON VIZING'S GENERALIZED CONJECTURE

Abstract

In this note we give a generalized version of Vizing's conjecture concerning the distance domination number for the cartesian product of two graphs.

Keywords: graph, dominating sets, Vizing's conjecture.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

Let $G=(V, E)$ be a simple and finite graph. A set $D \subseteq V$ is a dominating set of G if each vertex in $V-D$ is adjacent to at least one vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. For further details on domination in graphs, see the monographs by Haynes, Hedetniemi, and Slater [4,5].

The cartesian product $G \times H$ of two graphs G, H is the graph with $V(G \times H)=$ $V(G) \times V(H)$ and two vertices (u, v) and (w, t) being adjacent in $G \times H$ if either $u=w$ and $v t \in E(H)$ or $u w \in E(G)$ and $v=t$. In [11] Vizing conjectured that for any graphs G and $H, \gamma(G \times H) \geq \gamma(G) \times \gamma(H)$. No positive or negative answer to Vizing's conjecture has been given yet. Jacobson and Kinch [6, 7] gave important results to support the conjecture.

The distance between two vertices x and y, denoted by $d_{G}(x, y)$, is the length of a shortest path from x to y. If S is a set of vertices of G and v is a vertex of G, then the distance from v to S, denoted by $d_{G}(v, S)$, is the minimum distance from v to a vertex of S. The open k-neighborhood $N_{k}(x)$ of a vertex x of G is defined as $N_{k}(x)=\left\{y \in V: d_{G}(x, y) \leq k, x \neq y\right\}$ and the closed k-neighborhood $N_{k}[x]$ of x is $N_{k}(x) \cup\{x\}$. The maximum k-degree of G is given by $\Delta_{k}(G)=\max \left\{\left|N_{k}(v)\right|: v \in V\right\}$.

Meir and Moon [10] introduced distance k concepts, i.e., the k-domination and the k-packing concepts. Let $k \geq 1$ be an integer, a set $D_{k} \subseteq V$ is said to be k-dominating (resp. k-packing) set of G if for every vertex v of $G, d_{G}\left(v, D_{k}\right) \leq k$ (resp. $d_{G}(x, y)>k$ for all pairs of distinct vertices x and y in D_{k}). The k-dominating number $\gamma_{k}(G)$ (resp. the k-packing number $\rho_{k}(G)$) is the size of a smallest k-dominating (resp. a largest
k-packing) set of G. Note that $\gamma_{1}(G)=\gamma(G)$, also every k-packing set of G is a k-dominating set of G, therefore $\rho_{k}(G) \geq \gamma_{k}(G)$.

Let $k \geq 1$ be an integer. For any graph G, the k-th power of G is the graph denoted G^{k} with $V\left(G^{k}\right)=V(G)$ and two vertices u and v are adjacent if $1 \leq d_{G}(u, v) \leq k$.

Remark 1. It is easy to show that for an arbitrary graph $G, \gamma\left(G^{k}\right)=\gamma_{k}(G)$ and $\rho_{2}\left(G^{k}\right)=\rho_{2 k}(G)$.

2. GENERALIZATION OF VIZING'S CONJECTURE

Consider two graphs G and H. Since $G^{k} \times H^{k}$ is a spanning graph of $(G \times H)^{k}$, there is $\gamma\left(G^{k} \times H^{k}\right) \geq \gamma\left((G \times H)^{k}\right)$.
a)

b)

Fig. 1. $P_{4}^{2} \times P_{3}^{2}(\mathrm{a}) ;\left(P_{4} \times P_{3}\right)^{2}(\mathrm{~b})$

To see that the above inequality may be strict, consider the graphs shown in Figures 1 a and 1 b , where the domination numbers are 3 and 2, respectively.

Therefore, even if we suppose that Vizing's conjecture is verified for any graphs G and H, we cannot conclude directly that also the k-domination number of the product of any two graphs is equal to at least the product of the k-domination numbers of these graphs. Hence, we state below a conjecture which generalizes Vizing's.

Vizing's Generalized Conjecture (VGC): for any graphs G and H,

$$
\gamma_{k}(G \times H) \geq \gamma_{k}(G) \gamma_{k}(H)
$$

An immediate consequence of this conjecture is the following result.
Proposition 1. Let $k \geq 1$ be an integer. If $V G C$ is true for the product of G and H, then Vizing's conjecture is also true for the product of G^{k} and H^{k}.
Proof. Since $G^{k} \times H^{k}$ is a spanning graph of $(G \times H)^{k}$, it follows that $\gamma\left(G^{k} \times H^{k}\right) \geq$ $\gamma\left((G \times H)^{k}\right)=\gamma_{k}(G \times H) \geq \gamma_{k}(G) \gamma_{k}(H)=\gamma\left(G^{k}\right) \gamma\left(H^{k}\right)$.

The next proposition is easy to prove.

Proposition 2. Let $k \geq 1$ be an integer. For any graphs G and H with $\min \left\{\gamma_{k}(G), \gamma_{k}(H)\right\}=1, \gamma_{k}(G \times H) \geq \gamma_{k}(G) \gamma_{k}(H)$.
Proposition 3. Let $k \geq 1$ be an integer. For any graph G and its complement \bar{G},

$$
\gamma_{k}(G \times \bar{G}) \geq \gamma_{k}(G) \gamma_{k}(\bar{G})
$$

Proof. The case $k=1$ has been proved by Jaeger and Payan [8] as well as El-Zahar and Pareek [2]. Assume that $k \geq 2$, and let S be a maximum k-packing set of G. If $|S|=1$, then $\gamma_{k}(G)=1$, and by Proposition 2, we obtain the result. If $|S| \geq 2$, then every vertex v of $V(G)$ is at a distance not longer than two from S in \bar{G}. Thus, each vertex of $S k$-dominates \bar{G}. Hence, $\gamma_{k}(\bar{G})=1$, and by Proposition 2, we obtain the result.

Our next results extend those of [6] and [7].
Proposition 4. Let $k \geq 1$ be an integer. For any graphs G and H,

$$
\gamma_{k}(G \times H) \geq \max \left(\frac{|V(H)|}{1+\Delta_{k}(H)} \gamma_{k}(G), \frac{|V(G)|}{1+\Delta_{k}(G)} \gamma_{k}(H)\right) .
$$

Proof. Let D be a minimum k-dominating set of $G \times H$ and let i be a vertex of $V(H)$. We put:
$G_{i}=G \times\{i\}$,
$D_{i}=D \cap G_{i}$ for $i=1, \ldots,|V(H)|$, and
$F_{i}=\left\{t \in V\left(G_{i}\right): d_{G \times H}\left(t, D_{i}\right)>k\right\}$.
Since the graphs G_{i} and G are isomorphic, $\gamma_{k}\left(G_{i}\right)=\gamma_{k}(G)$. Then for every i, $\left|F_{i}\right| \geq \gamma_{k}(G)-\left|D_{i}\right|$, as otherwise $F_{i} \cup D_{i}$ is a k-dominating set of G_{i} of a size less than $\gamma_{k}(G)$, a contradiction. Consequently,

$$
\begin{gathered}
\Delta_{k}(H)|D| \geq \sum_{i=1}^{|V(H)|}\left|F_{i}\right| \geq \sum_{i=1}^{|V(H)|}\left(\gamma_{k}(G)-\left|D_{i}\right|\right)=|V(H)| \gamma_{k}(G)-|D|, \text { and hence } \\
\gamma_{k}(G \times H) \geq \frac{|V(H)|}{1+\Delta_{k}(H)} \gamma_{k}(G) .
\end{gathered}
$$

The second part is obtained similarly.
Proposition 5. Let $k \geq 1$ be an integer. For any graphs G and H,

$$
\gamma_{k}(G \times H) \geq \max \left\{\gamma_{k}(G) \rho_{2 k}(H), \gamma_{k}(H) \rho_{2 k}(G)\right\}
$$

Proof. Let D be a minimum k-dominating set of $G \times H$. Clearly, for any vertex $i \in V(H)$, there is $\left|\left(V(G) \times N_{k}[i]\right) \cap D\right| \geq \gamma_{k}(G)$.

Now let W be the maximum $2 k$-packing set of H. Then for any pair of vertices i and j in $W, N_{k}[i] \cap N_{k}[j]=\emptyset$. It follows that $\left(V(G) \times N_{k}[i]\right) \cap\left(V(G) \times N_{k}[j]\right)=\emptyset$, implying that

$$
|D| \geq \sum_{i \in W}\left|\left(V(G) \times N_{k}[i]\right) \cap D\right| \geq \sum_{i \in W} \gamma_{k}(G)=\gamma_{k}(G) \rho_{2 k}(H)
$$

Likewise, $\gamma_{k}(G \times H) \geq \gamma_{k}(H) \rho_{2 k}(G)$.

In [10], Meir and Moon showed that every tree T satisfies $\gamma_{k}(T)=\rho_{2 k}(T)$. This equality is also true for strongly chordal graphs (which contain trees). Indeed, it is enough to combine the results of Lubiw and Farber with Remark 1. Lubiw [9] has proved that if G is a strongly chordal graph, then for any positive integer k, G^{k} is strongly chordal graph, while Farber [3] has established that $\gamma(G)=\rho_{2}(G)$. We note that Domke, Hedetniemi and Laskar [1] have proved the equality between γ_{k} and $\rho_{2 k}$ for block graphs which are contained in strongly chordal class.

According to Proposition 5, the following holds true.
Proposition 6. Let $k \geq 1$ be an integer. If G is a strongly chordal graph, then for any graph H,

$$
\gamma_{k}(G \times H) \geq \gamma_{k}(H) \gamma_{k}(G)
$$

REFERENCES

[1] G.S. Domke, S.T. Hedetniemi, R. Laskar, Generalized packings and coverings of graphs, Congr. Numer. 62 (1988), 258-270.
[2] M. El-Zahar, C.M. Pareek, Domination number of products of graphs, Ars Combin. 31 (1991), 223-227.
[3] M. Farber, Domination, independant domination and duality in strongly chordal graphs, Discrete Appl. Math. 7 (1984), 115-130.
[4] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[6] M.S. Jacobson, L.F. Kinch, On domination of the products of graphs (I), Ars Combin. 18 (1983), 34-44.
[7] M.S. Jacobson, L.F. Kinch, On domination of the products of graphs (II), J. Graph Theory 10 (1986), 97-106.
[8] F. Jaeger, C. Payan, Relation de type Nordhauss-Gaddum pour le nombre d'absorption d'un graphe simple, C.R. acad. SC. Paris, Serie A, 274 (1972), 728-730.
[9] A. Lubiw, Г-Free matrices, Master thesis, Univ of Waterloo, Antario 1982.
[10] A. Meir, J.W. Moon, Relations between packing and covering numbers of trees, Pacific J. Math. 61 (1975) 1.
[11] V.G. Vizing, The cartesian product of graphs, Vyc. Sis 9 (1963), 30-43.

Mostafa Blidia
mblidia@hotmail.com

University of Blida
Department of Mathematics
B.P. 270, Blida, Algeria

Mustapha Chellali
m_chellali@yahoo.com

University of Blida
Department of Mathematics
B.P. 270, Blida, Algeria

Received: September 19, 2006.

