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Time correlation functions of equilibrium and nonequilibrium Langevin dynamics:
Derivations and numerics using random numbers∗

Xiaocheng Shang† and Martin Kröger‡

Abstract. We study the time correlation functions of coupled linear Langevin dynamics without and with inertia
effects, both analytically and numerically. The model equation represents the physical behavior of
a harmonic oscillator in two or three dimensions in the presence of friction, additive noise, and
an external field with both rotational and deformational components. This simple model plays
pivotal roles in understanding more complicated processes. The presented analytical solution serves
as a test of numerical integration schemes, its derivation is presented in a fashion that allows to
be repeated directly in a classroom. While the results in the absence of fields (equilibrium) or
confinement (free particle) are omnipresent in the literature, we write down, apparently for the first
time, the full nonequilibrium results that may correspond, e.g., to a Hookean dumbbell embedded in
a macroscopically homogeneous shear or mixed flow field. We demonstrate how the inertia results
reduce to their noninertia counterparts in the nontrivial limit of vanishing mass. While the results
are derived using basic integrations over Dirac delta distributions, we mention its relationship with
alternative approaches involving (i) Fourier transforms, that seems advantageous only if the measured
quantities also reside in Fourier space, and (ii) a Fokker–Planck equation and the moments of the
probability distribution. The results, verified by numerical experiments, provide additional means
of measuring the performance of numerical methods for such systems. It should be emphasized that
this manuscript provides specific details regarding the derivations of the time correlation functions
as well as the implementations of various numerical methods, so that it can serve as a standalone
piece as part of education in the framework of Itô stochastic differential equations and calculus.

Key words. time correlation functions, stochastic differential equations, Brownian/Langevin dynamics, har-
monic oscillator, nonequilibrium, numerical integration
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1. Introduction. The efficiency and accuracy of numerical solvers for Itô stochastic dif-
ferential equations (SDEs), including those that are equivalent to diffusion-type partial differ-
ential equations, is difficult to assess without analytical reference solutions at hand. Only for
the simplest linear cases, can transient moments and time correlation functions be calculated
analytically. For nonlinear SDEs, analytical solutions are generally not available, nevertheless
convergence and stability issues have been discussed [9, 23, 55]. Here we propose an essen-
tially two–dimensional nontrivial, still linear benchmark problem [Langevin dynamics (2.13)],
inspired by the challenging problem of the dynamics of macromolecules, that is still exactly
solvable. It includes inertia effects, which are usually neglected as they pose extra problems
and because their physical significance is a priori unclear, or any possible related effects are
considered “small”.

The benchmark equation we are going to consider arises in several different contexts, where
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linear restoring forces are competing with stochastic additive noise, in the presence of an exter-
nal field, while both the absence of either the restoring force or the external field are popular
special cases that include, for example, the random walk [10,50], diffusion [19,25,62], charged
atom in an electric field [27], motion of atoms in the presence of gravitational, centrifugal,
chemical potential etc., gradients [45], RNA unfolding via laser tweezers [46], nanomagnets
subjected to magnetic fields and superparamegnetization [11], Brownian oscillators [11], di-
electric and magnetic permittivity in dilute solutions of macromolecules [8] or ferrofluids [16],
phoretic forces [31], vibration and photodesorption of diatomic gases [44], and rotational re-
laxation of molecules trapped in a 3D crystal [13]. Including inertia effects into Brownian
dynamics (i.e., the overdamped limit of the Langevin dynamics), where they are usually ne-
glected, can help understand origins of departures from the expected behavior, especially
at short times, for tracer nanoparticles experiencing both inertia and stochastic forces, in
microrheology, or to explain the occurrence of negative storage moduli [4, 5, 49,67].

Let us introduce one explicit example from the world of polymer physics, dealing with
macromolecules, DNA, actin filaments and the alike, as well as materials, biochemical- and
engineering sciences, that is captured by our benchmark problem. The dynamics of a sin-
gle flexible polymer dissolved in Newtonian solvent, and flexible polymers confined in melts
are both, to a first approximation, well captured by the Brownian motion of a linear chain
consisting of a number of identical mass points (or beads), permanently interconnected by
harmonic springs, and interacting with the surrounding via Gaussian white noise [14, 53]. In
that case the harmonic spring results are based upon assumptions, that each partial chain,
thought to reside between and terminate at the mass points, behaves as an ideal chain, that
can be mapped using Kuhn’s approach to a random walk. Assuming Stokes’ friction hindering
the free motion of the mass points due to frequent collisions with the surrounding medium,
the strength of the additive noise is related to the bead friction coefficient via a fluctuation-
dissipation relation. The rheological, viscoelastic properties of polymers are very different
from those of simple liquids, and can be studied upon considering a polymer dissolved in a
solution that is not at rest, but subjected to a flow gradient. While the precise trajectory
of the polymer is unavailable because of the stochastic noise, measurable time correlation
functions can be calculated analytically in the weak sense (see more discussions in subsec-
tion 4.1). Since polymeric systems are often overdamped, the inertia, which is quantified by
the mass, is thus typically neglected, which is known as the Rouse model [7, 56] (i.e., in the
form of the Brownian dynamics). However, as pointed out in [57], the inertia of the chains
may be expected to be more important for samples in solvents of extremely low viscosity, e.g.,
“supercritical solvents”, due to the fact that the dimensionless mass depends inversely upon
the solvent viscosity squared. Upon introducing normal coordinates [14, 15], the differential
equations that need to be solved to treat the complete polymer problem with masses [29],
and for polymers subjected to a macroscopic homogeneous flow field [32], are identical to the
equations of motion of a harmonic oscillator with a single mass, connected with the origin by
a spring.

Inertia effects in the context of microbead rheology [26], where the spring coefficient k is
due to an optical trap, appear to improve the agreement with data for dynamical viscosities
at high frequencies [66]. The inertia effects are known to be quite irrelevant under most
common conditions, but should increase with an increasing size of the microbead and softness
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of the surrounding material [63]. It has also been demonstrated in [24] that the necessity of
including the inertial effects for the study of fluid suspensions. Furthermore, in the context
of molecular dynamics, the inclusion of the inertia effects leads to possibilities of designing
various thermostats, which are powerful tools for sampling the invariant measure [3, 18,36].

This manuscript is organized as follows. We present the model Langevin dynamics, its
noninertia special (Brownian) case, and introduce dimensionless quantities in section 2 to
come up with a dimensionless Langevin dynamics suitable for benchmark tests. In section 3,
we derive the stationary time correlation functions of this equation both without and with
inertia effects. In addition to demonstrating that the inertia results reduce to their noninertia
counterparts in the limit of vanishing mass, we provide two alternative approaches based on
(i) the Fourier transform and (ii) the Fokker–Planck equation to obtain the stationary time
correlation functions. We review, in section 4, various numerical methods used to solve either
Brownian dynamics or Langevin dynamics. The available correlation functions are important
measures of dynamical fidelity that numerical integrators should be able to reproduce. Sec-
tion 5 presents numerical experiments in both cases, not only verifying the analytical results
but also comparing the performance of those numerical methods. A summary and outlook is
given in section 6.

2. The model equation. Consider the linear Langevin dynamics with a single harmonic
oscillator of mass m in the presence of a streaming background medium with velocity field u,
whose equations of motion for its extension, or end-to-end vector q(t) is given by1

(2.1) mq̈ = −kq− γ (q̇− u) + ση(t) ,

where a dot denotes a derivative with respect to time t, k represents a spring coefficient, and
the positive friction coefficient γ and noise strength σ are related via a fluctuation-dissipation
relation

(2.2) σ2 = 2γkBT ,

where kB and T denote the Boltzmann constant and absolute temperature, respectively. The
components of the time-dependent vector η(t) represent a “white noise” or “Brownian motion”
term, usually modeled by the mutually independent increments of a continuous time-stochastic
Wiener process [6]. The η(t) thus has a Gaussian probability distribution whose average and
correlation function are given by

(2.3) 〈η(t)〉 = 0 ,
〈
η(t)η(t′)

〉
= I δ(t− t′) ,

where 〈·〉 denotes an ensemble average and I is the unity matrix. The δ-distribution form of
the correlations in time means that the force ση(t) at a time t is assumed to be completely
uncorrelated with it at any other time; η has units of s−1/2. For the purposes of this review,
the properties (2.3) fully characterize the noise, the additional requirement of a Gaussian
probability is nowhere essential. When solving (2.1) we impose the initial conditions q(−∞) =

1Here we use the standard notation used in modern textbooks for physicists [14] or on wikipedia, while
mathematics literature might prefer dηt instead of η(t).
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limt→−∞ q(t) = 0 and q̇(−∞) = 0 as long as we are interested in stationary time correlation
functions such as 〈q(t) · q(0)〉 that are unaffected by the precise initial conditions and thus
symmetric in t in the absence of the assumed homogeneous streaming velocity field u =
κ ·q. The matrix κ (transposed macroscopic homogeneous velocity gradient) is arbitrary, and
traceless for the case of incompressible flow. It can be generally decomposed into a symmetric
and antisymmetric part, representing the pure deformational and pure rotational part of the
flow field. If we furthermore choose a suitable coordinate system, the still arbitrary κ can be
considered to have nonvanishing components only on its diagonal, and one of the non-diagonal
components,

(2.4) κ =

 κxx κxy 0
0 κyy 0
0 0 κzz

 .

The rotational part of the flow field is thus solely specified by so-called shear rate κxy, while the
deformational component carries all components of κ, i.e., both shear and three elongational
rates. In the absence of u or for a diagonal (irrotational) κ tensor characterizing elongational
flow, (2.1) is identical to three uncoupled equations for three scalar components, each of
which describes a one-dimensional linear Langevin dynamics with inertia. In what follows we
consider a more general case in which the system is subjected to a mixed flow with shear rate
κxy. In this case, the equations of (2.1) for the components do not decouple anymore, and
instead read, with q = (x, y, z),

mẍ = −kxx− γ (ẋ− κxyy) + σ ηx ,(2.5a)

mÿ = −kyy − γẏ + σ ηy ,(2.5b)

and there is no need to write down an extra equation for the z-component, as it remains
coupled to neither x- nor y-components. We have also introduced effective spring coefficients
kµ ≡ k − γκµµ, µ ∈ {x, y}, to incorporate potential contributions from the diagonal of the κ
tensor. To improve the neatness of the presentation, we are going to introduce appropriate ab-
breviations below. It also turns out that it would be useful to introduce different abbreviations
for both noninertia and inertia cases.

For the noninertia (m = 0) case, associated with Brownian or overdamped Langevin
dynamics, we can rewrite (2.5) as

ẋ = κxyy − ωxx+
√

2Dηx ,(2.6a)

ẏ = −ωyy +
√

2Dηy ,(2.6b)

having introduced (no summation convention unless otherwise stated) two characteristic fre-
quencies ωµ and a diffusion coefficient D

(2.7) ωµ ≡
kµ
γ

=
k − γκµµ

γ
, D ≡ σ2

2γ2
=
kBT

γ
.
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2.1. Connections with the dumbbell model. The so called dumbbell model, where two
masses m are connected by a spring with a spring coefficient k, is the simplest model to
describe the behavior of a drastically coarse-grained polymer molecule, whose equations of
motion (subjected to shear with rate κxy and/or elongational flow whose rates are captured
by anisotropic spring coefficients kx and ky) read

mẍ1 = −kx (x1 − x2)− γ (ẋ1 − κxyy1) + σηx1 ,(2.8a)

mẍ2 = −kx (x2 − x1)− γ (ẋ2 − κxyy2) + σηx2 ,(2.8b)

mÿ1 = −ky (y1 − y2)− γẏ1 + σηy1 ,(2.8c)

mÿ2 = −ky (y2 − y1)− γẏ2 + σηy2 .(2.8d)

Introducing relative (end-to-end) vector components X = x2−x1, Y = y2−y1, center of mass
coordinates Cx = (x1 + x2)/2, Cy = (y1 + y2)/2, and noting that

√
2 ηx = ηx1 ± ηx2 (2.8)

becomes

mC̈x = −γ
(
Ċx − κxyCy

)
+

σ√
2
ηx ,(2.9a)

mC̈y = −γĊy +
σ√
2
ηy ,(2.9b)

mẌ = −2kxX − γ
(
Ẋ − κxyY

)
+
√

2σηx ,(2.9c)

mŸ = −2kyY − γẎ +
√

2σηy .(2.9d)

These two uncoupled sets of equations for X,Y and Cx, Cy are of the form studied in subsec-
tions 3.3 and 3.4, respectively. With the new 1-variables k1µ = 2kµ, γ1 = γ, and σ21 = 2σ2 =
4γkBT = 2γ1kBT1 the end-to-end vector of the elastic dumbbell behaves like a harmonic oscil-
lator with mass m, unchanged friction coefficient γ, but modified spring coefficient k1µ = 2kµ
and temperature T1 = 2T . Therefore, the stationary time correlation functions for the end-
to-end vector q of the dumbbell model are identical with those obtained for the nonideal cases
upon replacing T by 2T and kµ by 2kµ. Similarly, the dynamics of the center of mass of the
dumbbell is captured by the results for the ideal (springless) cases upon replacing T by T/2.
The overdamped (noninertia) cases of the dumbbell are thus also treated in subsections 3.1
and 3.2.

2.2. Nondimensionalization. In fact, we could have eliminated one more parameter by
switching to dimensionless time. However, in order to prevent any confusion with the nota-
tions, we introduce dimensionless units only for the more advanced inertia case, where dimen-
sionless units pay off more significantly. To this end we introduce dimensionless position and
time for the inertia (m > 0) case via

(2.10) x∗ ≡
x

qref
, y∗ ≡

y

qref
, t∗ ≡

t

tref
.

where reference quantities qref and tref are chosen as

(2.11) qref ≡
σ
√
m

(γ/2)3/2
=

4
√
mkBT

γ
, tref ≡

2m

γ
.
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Figure 1. Schematic descriptions of a variety of possible conditions associated with the Langevin
dynamics (2.1) in the presence of an external flow field (the shown arrows correspond to the case of
pure shear). (a) free, massless, ideal Brownian (b) spring-connected, massless, nonideal Brownian,
(c) free, inertial, ideal Langevin, and (d) spring-connected, inertial, nonideal Langevin cases.

Upon further introducing dimensionless spring coefficients sµ and a dimensionless shear rate
r as follows

(2.12) sµ ≡
4mkµ
γ2

=
4mωµ
γ

, r ≡ 2mκxy
γ

,

the equations of the Langevin dynamics (2.5) take the simpler and final form (details in Ap-
pendix A), which is our “benchmark” problem suitable for analytical and numerical inspections

ẍ = −sxx− 2 (ẋ− ry) + ηx ,(2.13a)

ÿ = −syy − 2ẏ + ηy ,(2.13b)

with unaltered (2.3) and with only three dimensionless parameters sx, sy, and r, representing
the strengths of the effective springs (in x and y directions) and the shear rate, respectively.
We have omitted all asterisks from (2.13), and a dot here denotes a derivative with respect
to the reduced time t∗ = t/tref (2.10). All results obtained for the reduced quantities can be
converted, according to (2.10), to dimensional results involving all six parameters in (2.5) by
multiplying each x, y, and t by qref, qref, and tref, respectively. In what follows we derive time
correlation functions and other quantities of the linear Langevin dynamics (2.1) with (2.4)
under various possible conditions as illustrated in Figure 1.

3. Derivation of time correlation functions. In this section, we analytically derive time
correlation functions of the coupled linear Langevin dynamics (2.1) without and with inertia
effects. While stationary time correlation functions exist for the case of non-purely irrota-
tional flow, as proven in subsection 3.7, non-stationary correlation functions for the case of
irrotational flow occur in subsections 3.1 and 3.3.
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3.1. Ideal Brownian dynamics: m = 0, kx = ky = 0. We first consider the ideal Brownian
dynamics case where both the inertia and effective springs are absent (i.e., m = 0 and kx =
ky = 0). In this case, the system (2.6) describes a freely diffusing massless particle in the
presence of a shear flow field and includes classical Brownian motion of a particle in a quiescent
background medium as a special case for κxy = 0. Since the zero’th mode in the normal
coordinates [14, 15] corresponds to the center of mass of a chain, we indeed need results of
the springless case treated here, which are essential for transferring the results of a single
harmonic oscillator to those of a bead-spring chain [29,32], or a dumbbell (see subsection 2.1).
To be more precise, the equations of motion of (2.6) in this case reduce to

ẋ = κxyy +
√

2Dηx ,(3.1a)

ẏ =
√

2Dηy ,(3.1b)

where D is a diffusion coefficient as confirmed by (3.4) below. Since 〈ηµ〉 = 0, we have 〈ẏ〉 = 0
and 〈ẋ〉 = κxy 〈y〉 on average. Unless otherwise stated, we assume t ≥ 0 throughout this article,
since results associated with t < 0 can be read off by symmetry arguments. Subjecting to
initial conditions of x(0) = x0 and y(0) = y0, (3.1) are solved by

x(t)− x(0) =

∫ t

0
ẋ(t′) dt′ =

∫ t

0

[
κxyy(t′) +

√
2Dηx(t′)

]
dt′ ,(3.2a)

y(t)− y(0) =

∫ t

0
ẏ(t′) dt′ =

√
2D

∫ t

0
ηy(t

′) dt′ .(3.2b)

Making use of the properties of the Wiener noise (2.3), we obtain the following two-point
non-stationary time correlation function

〈[y(t1)− y0][y(t2)− y0]〉 = 2D

〈∫ t1

0
ηy(t

′
1) dt′1

∫ t2

0
ηy(t

′
2) dt′2

〉
= 2D

∫ t1

0

∫ t2

0

〈
ηy(t

′
1) ηy(t

′
2)
〉

dt′2 dt′1

= 2D

∫ t1

0

∫ t2

0
δ(t′1 − t′2) dt′2 dt′1

= 2D

∫ min(t1,t2)

0

∫ min(t1,t2)

0
δ(t′1 − t′2) dt′2 dt′1

= 2D

∫ min(t1,t2)

0
dt′1 = 2Dmin(t1, t2) .(3.3)

Note that this result above (3.3) may alternatively be obtained without making use of the
properties of Dirac delta distributions, but via Itô isometry [51]. The famous mean squared
displacement emerges as a special case of (3.3) with t ≡ t1 = t2:

(3.4)
〈
[y(t)− y(0)]2

〉
= 2Dt ,

which actually confirms D to be a diffusion coefficient, as it is usually defined by (3.4). We can
further proceed calculating the remaining mean squared displacements (see Appendices B.1
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and B.2 for proofs)

(3.5) 〈[x(t)− x(0)][y(t)− y(0)]〉 = Dκxyt
2 ,

and

(3.6)
〈

[x(t)− x(0)]2
〉

= 2Dt

[
1 +

1

3
(κxyt)

2

]
+ (κxyy0t)

2 ,

which reduces to the equilibrium result (3.4) in the absence of shear (i.e., κxy = 0). Note
that the appearance of the t3 term in (3.6) reflects anomalous diffusion that is caused by a
velocity change along the flow direction (the x–direction) due to the Brownian motion of a
particle along the velocity gradient (the y–direction), and had been confirmed experimentally
in [52,61].

3.2. Nonideal Brownian dynamics: m = 0, kx, ky > 0. We next consider the nonideal
Brownian dynamics case of the oscillator with effective springs (i.e., m = 0 and kx, ky > 0),
subjected to boundary conditions x(−∞) = y(−∞) = 0. In this case, the system (2.6) is
formally solved by

x(t) =

∫ t

−∞

[
κxyy(t′) +

√
2Dηx(t′)

]
e−ωx(t−t′) dt′ ,(3.7a)

y(t) =
√

2D

∫ t

−∞
ηy(t

′)e−ωy(t−t′) dt′ ,(3.7b)

which may be verified by direct insertion. One has 〈x〉 = 〈y〉 = 0 on average. The stationary
time correlation function 〈y(t1)y(t2)〉 can be obtained as (see Appendix C.1 for a proof)

〈y(t1)y(t2)〉 =
D

ωy
e−ωy |t1−t2| ,(3.8)

implying special cases of

(3.9) 〈y(t)y(0)〉 =
D

ωy
e−ωyt ,

〈
y2
〉

=
D

ωy
.

The remaining stationary time cross-correlation functions are derived in Appendices C.2
and C.3

〈x(t)y(0)〉 = Dκxy
(ωx + ωy)e

−ωyt − 2ωye
−ωxt

(ω2
x − ω2

y)ωy
,(3.10a)

〈y(t)x(0)〉 =
Dκxye

−ωyt

(ωx + ωy)ωy
.(3.10b)

For the stationary mixed moment we thus obtain

(3.11) 〈xy〉 =
Dκxy

(ωx + ωy)ωy
.
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and the stationary autocorrelation in flow x–direction becomes, according to Appendix C.4,

(3.12) 〈x(t)x(0)〉 =
De−ωxt

ωx
+
Dκ2xy

(
ωxe

−ωyt − ωye−ωxt
)

(ω2
x − ω2

y)ωxωy
,

with the stationary second moment

(3.13)
〈
x2
〉

=
D

ωx
+

Dκ2xy
(ωx + ωy)ωxωy

.

In the case of a vanishing shear rate (i.e., κxy = 0), the system (2.6) decouples: both station-
ary cross-correlations 〈x(t)y(0)〉 (3.10a) and 〈y(t)x(0)〉 (3.10b) vanish, and 〈x(t)x(0)〉 (3.12)
reduces to 〈y(t)y(0)〉 (3.9). Finally, we list the stationary time correlation functions in the
special case of pure shear, ω ≡ ωx = ωy (i.e., for an oscillator in the absence of elongational
flow components), in which neither (3.10a) nor (3.12) diverge:

〈y(t)y(0)〉 =
De−ωt

ω
=
kBT

k
e−kt/γ ,(3.14a)

〈x(t)y(0)〉 =
Dκxy (1 + 2ωt) e−ωt

2ω2
=
kBTκxy

2k2
(γ + 2kt) e−kt/γ = 〈y(−t)x(0)〉 ,(3.14b)

〈y(t)x(0)〉 =
Dκxye

−ωt

2ω2
=
kBTγκxy

2k2
e−kt/γ = 〈x(−t)y(0)〉 ,(3.14c)

〈x(t)x(0)〉 =
De−ωt

ω
+
Dκ2xy (1 + ωt) e−ωt

2ω3
=
kBT

2k3
(
2k2 + γ2κ2xy + γκ2xykt

)
e−kt/γ .(3.14d)

More specifically, the stationary moments are read off at t = 0,
(3.15)〈
y2
〉

=
D

ω
=
kBT

k
, 〈xy〉 =

Dκxy
2ω2

=
kBTγκxy

2k2
,
〈
x2
〉

=
D

ω
+
Dκ2xy
2ω3

=
kBT

k
+
kBTγ

2κ2xy
2k3

.

We can furthermore derive the mean squared displacement in flow gradient y–direction

(3.16)
〈
[y(t)− y(0)]2

〉
= 2

〈
y2
〉
− 2 〈y(t)y(0)〉 = 2Dt+O(t2) ,

which indicates that the mean squared displacement is linear in t only at small times, which
qualitatively differs from what we have derived for the noninertia case, (3.4), in subsection 3.1.
In the limit of vanishing effective springs, however, the mean squared displacement (3.16)
reduces to (3.4), since k−1[1− exp(−αk)] = α+O(k).

3.3. Ideal Langevin dynamics: m > 0, kx = ky = 0. We next consider the ideal Langevin
dynamics case of a free particle, an oscillator without effective springs (i.e., m > 0 and
kx = ky = 0) [17]. In this case, the dimensionless (2.13) takes the form

ẍ = −2(ẋ− ry) + ηx ,(3.17a)

ÿ = −2ẏ + ηy ,(3.17b)
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for which one is mostly interested in mean squared displacements rather than time correlation
functions, as the latter depend on the initial conditions. In the absence of shear, both com-
ponents are independent with each other, and only velocities rather than coordinates appear
in the equations of motion. By comparing (3.17) with (2.6) and (3.7), we have

ẋ(t) =

∫ t

−∞

[
2ry(t′) + ηx(t′)

]
e−2(t−t

′) dt′ ,(3.18a)

ẏ(t) =

∫ t

−∞
ηy(t

′)e−2(t−t
′) dt′ ,(3.18b)

where ẋ and ẏ have the interpretation of the velocities. We can read off the stationary velocity
autocorrelation function and the mean squared displacement, respectively, from (3.8)–(3.9)
upon inspecting the case of D = 1/2 and ωy = 2 in (3.7b). This yields

(3.19) 〈ẏ(t)ẏ(0)〉 =
1

4
e−2t ,

and, as shown in Appendix D.1,

(3.20)
〈
[y(t)− y(0)]2

〉
=

1

8

(
2t+ e−2t − 1

)
.

Re-dimensionalizing (3.19) the more familiar version of the dimensional velocity autocorrela-
tion function arises

(3.21) 〈ẏ(t)ẏ(0)〉 =
kBT

m
e−γt/m .

In this ideal (free, springless, k = 0) case, the integrated velocity autocorrelation function
turns out to be the diffusion coefficient,

(3.22)

∫ ∞
0
〈ẏ(t)ẏ(0)〉 dt = D ≡ kBT

γ
.

Similarly, re-dimensionalizing (3.20) yields the dimensional mean squared displacement,

(3.23)
〈
[y(t)− y(0)]2

〉
=

2mkBT

γ2

(
γt/m+ e−γt/m − 1

)
=
kBT

m
t2 +O(t3) .

While this expression is quadratic in t at small times, it reaches 2Dt (the diffusive regime) for
large times (i.e., γt/m� 1). A similar calculation, where the boundary condition plays a role
as in subsection 3.1, can be performed to obtain the mean squared displacement in x–direction.
The mean squared velocity 〈ẏ2〉 = kBT/m (3.21) is in agreement with the equipartition
theorem here, in sharp contrast with Brownian dynamics, for which 〈ẏ2〉 = 2Dδ(0) involves
the diverging Dirac delta distribution.
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3.4. Nonideal Langevin dynamics: m > 0, k ≡ kx = ky > 0. We finally consider the
most general nonideal Langevin dynamics case with both inertia and effective springs (i.e.,
m > 0 and k ≡ kx = ky > 0). For the sake of simplicity we assume s ≡ sx = sy in this case,
and the equations of motion of the dimensionless system (2.13) read,

ẍ = −sx− 2(ẋ− ry) + ηx ,(3.24a)

ÿ = −sy − 2ẏ + ηy .(3.24b)

As demonstrated in Appendix E.1, the solution of (3.24b) subjected to initial conditions of
y(−∞) = 0 and ẏ(−∞) = 0 appropriate for the calculation of correlation functions is given
by

(3.25) y(t) =
1

2
√

1− s
[Gy(t, s−)−Gy(t, s+)] ,

where

(3.26) Gy(t, s
′) ≡

∫ t

−∞
e−s

′(t−t′) ηy(t
′) dt′ ,

with the abbreviation

(3.27) s± = 1±
√

1− s .

Similarly, we can also obtain the solution of (3.24a) as

(3.28) x(t) =
1

2
√

1− s
[Gx(t, s−)−Gx(t, s+)] ,

where

(3.29) Gx(t, s′) ≡
∫ t

−∞
e−s

′(t−t′) [2ry(t′) + ηx(t′)
]

dt′ .

Subsequently, we can derive a variety of dimensionless, stationary time correlation functions
as in subsection 3.2 (details of derivations in Appendices E.2 to E.5):

〈y(t)y(0)〉 =
C+
1 + C−1

8s
√

1− s
,(3.30a)

〈x(t)y(0)〉 =
r (A+ −A−)

8s2(1− s)3/2
= 〈y(−t)x(0)〉 ,(3.30b)

〈y(t)x(0)〉 =
r
(
C−2 − C

+
2

)
16s2
√

1− s
= 〈x(−t)y(0)〉 ,(3.30c)

〈x(t)x(0)〉 =
C+
1 + C−1

8s
√

1− s
+
r2 (B+ +B−)

16s3(1− s)3/2
,(3.30d)



LANGEVIN DYNAMICS: ANALYTIC TREATMENT AND NUMERICS 13

with the dimensionless, reduced time-dependent coefficients

A± =

[
1 +

(
1

2
+ t

)
(1− s)± (2 + t)

√
1− s

]
C±2 ,(3.31a)

B± =
[√

1− s (st+ s+ 1)± (2s− 1)
]
C±2 ,(3.31b)

C±n =
(√

1− s∓ 1
)n

exp
[
−
(
1±
√

1− s
)
t
]
.(3.31c)

More specifically, for t = 0, (3.30) become

(3.32)
〈
y2
〉

=
1

4s
, 〈xy〉 =

r

4s2
,
〈
x2
〉

=
1

4s
+
r2(s+ 4)

8s3
.

As in subsection 3.2, in the case of a vanishing shear rate (i.e., κxy = 0 and subsequently r = 0),
the system (3.24) decouples: both cross correlations 〈x(t)y(0)〉 (3.30b) and 〈y(t)x(0)〉 (3.30c)
vanish, and 〈x(t)x(0)〉 (3.30d) reduces to 〈y(t)y(0)〉 (3.30a), which can be rewritten as

(3.33) 〈y(t)y(0)〉 =
1

4s

[
cosh(t

√
1− s) +

sinh(t
√

1− s)√
1− s

]
e−t .

Re-dimensionalizing (3.33) yields the dimensional, stationary time correlation function

(3.34) 〈y(t)y(0)〉 =
kBT

k

[
cosh (νt) +

γ

2mν
sinh (νt)

]
e−γt/2m ,

where

(3.35) ν =
√
γ2/4m2 − k/m ,

which is in perfect agreement with the dimensional result of [65]. More specifically,
〈
y2
〉

can
be alternatively obtained via the Gibbs–Boltzmann distribution, given U(y) = ky2/2 for the
harmonic oscillator,

(3.36)
〈
y2
〉

=

∫∞
−∞ y

2 exp[−U(y)/kBT ] dy∫∞
−∞ exp[−U(y)/kBT ] dy

=
kBT

k
.

We can furthermore derive the mean squared displacement of

(3.37)
〈
[y(t)− y(0)]2

〉
= 2

〈
y2
〉
− 2 〈y(t)y(0)〉 =

kBT

m

(
1− γ2

4mk

)
t2 +O(t3) ,

which indicates that the mean squared displacement is quadratic in t at small times.

3.5. Connection between noninertia and inertia results. To demonstrate that the non-
inertia results of the stationary time correlation functions in subsection 3.2 are special cases
(i.e., in the limit of vanishing mass) of the results with inertia in subsection 3.4, we have to
first write down the time correlation functions (3.30) using dimensional quantities. To this end
we reintroducing the original dimensional variables m, k, γ, σ, kBT , κxy, and t. This is done
by multiplying each time correlation function by q2ref, and subsequently replacing t → t/tref
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and expanding s and r using the definitions in (2.12). Throughout this subsection → stands
for “going from dimensionless to dimensional”. By performing Taylor series expansions in m
around m = 0, we obtain some helpful intermediate results:

q2ref
8s
√

1− s
→ kBT

2k
√

1− 4mk/γ2
=
kBT

2k
+O(m) ,(3.38a)

rq2ref
8s2(1− s)3/2

→ kBTγκxy
4k2

+O(m) ,(3.38b)

rq2ref
16s2
√

1− s
→ kBTγκxy

8k2
+O(m) ,(3.38c)

r2q2ref
16s3(1− s)3/2

→
kBTγ

2κ2xy
16k3

+O(m) ,(3.38d)

as well as

(∓s∓)n → (1∓ 1)n − 2n(1∓ 1)n−1

γ2/mk
± 2n(1∓ 1)n−2[1± (n−2)]

(γ2/mk)2
+O(m3) ,(3.39a)

s±t→
γt

2m

(
1±

√
1− 4mk/γ2

)
= ∓kt

γ

(
1 +

mk

γ2

)
+ (1± 1)

γt

2m
+O(m2),(3.39b)

where t on the left-hand side in (3.39b) is the dimensionless time, whereas t on the right-hand
side denotes the dimensional time. For small m (and n > 0), (3.39) implies

(+s+)n → 2n +O(m) ,(3.40a)

(−s−)n → O(mn) ,(3.40b)

e−s+t → e−γt/m ,(3.40c)

e−s−t → e−kt/γ +O(m)(3.40d)

where we kept exp(−γt/m) as it cannot be Taylor expanded; it asymptotically vanishes in the
limit m → 0 as long as γt > 0. We recall from (3.31c) that the coefficients C±n are given by
C±n = (∓s∓)ne−s±t. With the help of (3.40) we find

C+
n = (−s−)ne−s+t → O(mn)e−γt/m ,(3.41a)

C−n = (+s+)ne−s−t → 2ne−kt/γ +O(m) ,(3.41b)

and thus only the coefficients C−n survive in the limit of vanishing m,

lim
m→0

〈y(t)y(0)〉 → lim
m→0

q2ref(C
+
1 + C−1 )

8s
√

1− s
=
kBT

k
e−kt/γ ,(3.42a)

lim
m→0

〈y(t)x(0)〉 → lim
m→0

q2refr(C
−
2 − C

+
2 )

16s2
√

1− s
=
kBTγκxy

2k2
e−kt/γ ,(3.42b)

where (3.38a) and (3.38c) have been used. Equations (3.42a) and (3.42b) coincide with the
results (3.14a) and (3.14c) obtained by a direct calculation with m = 0. To calculate the re-
maining two correlations, we begin with two intermediate results that both follow from (3.31),
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A±

C±2
→ 1 +

(
1

2
+

γt

2m

)(
1− 4mk

γ2

)
±
(

2 +
γt

2m

)√
1− 4mk

γ2

= (1± 1)
γt

2m
+

3

2
± 2− (2± 1)

kt

γ
+O(m) ,(3.43a)

B±

C±2
→

√
1− 4mk

γ2

(
2kt

γ
+

4mk

γ2
+ 1

)
±
(

8mk

γ2
− 1

)
= (1∓ 1) +

2kt

γ
+O(m) .(3.43b)

Since m−1C+
n vanishes according to (3.41a) as O(mn−1)e−γt/m, both A+ and B+ vanish in

the limit of vanishing mass, and the remaining A− and B− are

A− →
(

3

2
− 2− kt

γ

)
22e−kt/γ +O(m) ,(3.44a)

B− →
(

2 +
2kt

γ

)
22e−kt/γ +O(m) ,(3.44b)

such that we find ourselves, with the help of (3.38b), (3.38d), (3.43a), and (3.43b),

lim
m→0

〈x(t)y(0)〉 → lim
m→0

q2refr (A+ −A−)

8s2(1− s)3/2
=
kBTκxy

2k2
(γ + 2kt) e−kt/γ ,(3.45a)

lim
m→0

〈x(t)x(0)〉 → lim
m→0

〈y(t)y(0)〉+ lim
m→0

q2refr
2 (B+ +B−)

16s3(1− s)3/2

=
kBT

2k3
(
2k2 + γ2κ2xy + γκ2xykt

)
e−kt/γ ,(3.45b)

in complete agreement with the results obtained by the direct calculation with m = 0, (3.14b)
and (3.14d), respectively.

3.6. Alternative approach via Fourier transform. We have demonstrated in subsec-
tion 3.4 how the time correlation functions for the most general nonideal Langevin dynamics
case can be derived via a direct approach, where the Dirac delta distribution is eliminated by
integrating over it. In this section, we outline an alternative approach utilizing Fourier trans-
forms, which relates to the Wiener–Khinchin theorem. In this case, we eliminate the Dirac
delta distribution by noting that δ(t) is the inverse Fourier-transformed “one” (see (3.49) be-
low). In what follows, we only demonstrate how this alternative approach works in an example
of the stationary time correlation function of 〈y(t)y(0)〉 (3.30a). Upon substituting t − t′ by
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t1, we can rewrite (3.25) more conveniently as

y(t) =
1√

1− s

∫ t

−∞
sinh

[
(t− t′)

√
1− s

]
e−(t−t

′) ηy(t
′) dt′

=
1√

1− s

∫ ∞
0

sinh
[
t1
√

1− s
]
e−t1 ηy(t− t1) dt1

=

∫ ∞
0

Ωt1 ηy(t− t1) dt1 ,(3.46)

with a weighting function Ω defined as

Ων ≡
e−ν sinh(ν

√
1− s)√

1− s
=

{
(1− s)−1/2e−ν sinh(ν

√
1− s) , s ≤ 1 ;

(s− 1)−1/2e−ν sin(ν
√
s− 1) , s > 1 ,

(3.47)

where we have also mentioned the purely real-valued version for s > 1. Now making use of
the Fourier transform

(3.48) FT{f(p)}(t) =
1√
2π

∫ ∞
−∞

f(p)eipt dp ,

as well as a basic identity, which should be regarded as an equality in the sense of tempered
distributions,

(3.49) δ(t) =
1

2π

∫ ∞
−∞

eipt dp =
1√
2π

FT {1} (t) ,

the stationary time correlation function of 〈y(t)y(0)〉 (3.30a) can be recalculated as follows:

〈y(t)y(0)〉 =

∫ ∞
0

∫ ∞
0

Ωt1Ωt2 〈ηy(t− t1)ηy(0− t2)〉dt2 dt1

=

∫ ∞
0

∫ ∞
0

Ωt1Ωt2δ(t− t1 + t2) dt2 dt1

=
1

2π

∫ ∞
−∞

[∫ ∞
0

∫ ∞
0

Ωt1Ωt2e
ip(t−t1+t2) dt2 dt1

]
dp

=
1

2π

∫ ∞
−∞

eipt

p4 − 2p2(s− 2) + s2
dp

=
1√
2π

FT

{
1

p4 − 2p2(s− 2) + s2

}
(t)

=
1

4s

[
cosh(t

√
1− s) +

sinh(t
√

1− s)√
1− s

]
e−t =

C+
1 + C−1

8s
√

1− s
.(3.50)

The remaining stationary time correlation functions in subsection 3.4 can be similarly ob-
tained, although the calculations are more involved.
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3.7. Alternative approach via Fokker–Planck equation. A complementary approach
to the moments and stationary correlation functions is based on the equivalence between
the Langevin dynamics for stochastic variables Q(t) and a Fokker–Planck equation for the
probability distribution function f(Q, t). The Fokker–Planck equation corresponding to the
Langevin dynamics in its rather general form

(3.51) Q̇ = a +
1

2
∇ ·D + B · η , ∇ =

∂

∂Q
,

with Q- and t-dependent vector a, matrices B and D = B · BT , fulfills the Fokker–Planck
equation

(3.52)
∂f

∂t
= −∇ · (af) +

1

2
∇ · (D · ∇f) .

In view of (4.6) the benchmark Langevin dynamics (2.13) is of the form (3.51) with a = −A·Q
and constant matrices A and B,

(3.53) A =


0 0 −1 0
0 0 0 −1
sx −2r 2 0
0 sy 0 2

 , B =

(
0 0
0 I

)
,

while Q is the four-dimensional vector (q,p = mq̇). With Y(t) = exp[−At] the time evolution
of the mean value is 〈Q〉(t) = Y ·Q0 and the variance Σ = 〈QQ〉 − 〈Q〉〈Q〉 fulfills [25]

(3.54) Σ̇ = −
[
A ·Σ + Σ ·AT

]
+ D .

With Σ(t) at hand the solution of the Fokker–Planck equation (3.52) subject to the initial
condition p(Q, 0) = δ(Q−Q0) reads

(3.55) p(Q, t) =
1

2π
√
|Σ(t)|

exp

{
−1

2
[Q− 〈Q〉(t)]T ·Σ−1(t) · [Q− 〈Q〉(t)]

}
,

and a stationary solution exists if (3.54) has a solution for Σ̇ = 0, denoted by Σ∞. From the
spectrum of the Fokker–Planck operator, the operator on the right hand side of (3.52), one
can conclude convergence of arbitrary initial conditions to a unique equilibrium probability
distribution. For the special case s ≡ sx = sy considered earlier in subsection 3.4, the
eigenvalues of A are s± (both twice degenerated), and the eigenvectors are (−s+/s, 0, 1, 0),
0, (−s−/s, 0, 1, 0), and 0, respectively. The eigenvalues are real-valued and semipositive for
s ∈ [0, 1], and become complex-valued for s > 1, recalling s± = 1±

√
1− s. Solving the linear

system of equations (3.54) (with Σ̇ = 0) for Σ∞ we then obtain

(3.56) Σ∞ =


2s2+(4+s)r2

8s3
r

4s2
0 − r

8s
r

4s2
1
4s

r
8s 0

0 r
8s

1
8

(
2 + r2

s

)
0

− r
8s 0 0 1

4
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Since a stationary Σ exists for s 6= 0, the stationary distribution function is given by (3.55)
with Σ(t) being replaced by Σ∞, implying stationary moments and a stationary correlation
function to exist for s 6= 0. The analogous calculation for the more general case of sx 6= sy
yields that Σ∞ exists as long as all sµ do not vanish. For t > 0, this stationary correlation
function is given by

〈Q(t)Q(0)〉stat = e−At ·Σ∞ ,(3.57a)

〈Q(0)Q(t)〉stat = Σ∞ · e−A
Tt .(3.57b)

For the spectral density [20]

(3.58) S(ω) =

∫ ∞
−∞
〈Q(t+ τ)Q(t)〉state−iωt dτ = (A + iωI)−1 ·D ·

(
AT − iωI

)−1
,

the situation is particularly simple, as it involves only A and D, but not Σ∞. With the help
of the mentioned eigensystem of A we have verified that (3.57a) agrees with (3.30a).

4. Numerical methods. In this section, we first briefly introduce the concept of the or-
der of convergence associated with numerical methods for SDEs, followed by descriptions of
numerical methods used to simulate the linear Langevin dynamics (2.1) in both noninertia
and inertia cases. Interested readers are referred to standard textbooks [28,36,48] for a more
thorough discussion of mathematical issues (e.g., ergodicity) of SDEs.

4.1. Order of convergence. Numerical analysis of SDEs is typically based on the concept
of strong and weak error. We denote the stochastic solution of an SDE as X(τ) and its
associated numerical approximation, with an integration timestep of h, in the form of a discrete
stochastic process as Xn+1 = Φ(Xn, h), n = 0, 1, . . . , N − 1, with Nh = T being fixed. A
method is then said to have strong order of p if there exists a constant C1 such that

(4.1) Errstrongh = E|Xn −X(τ)| ≤ C1h
p ,

for any fixed τ = nh ∈ [0, T ] with h being sufficiently small. The strong order of conver-
gence (4.1) measures the rate of decay of the “mean of the error” [22], whose type of conver-
gence is path dependent. Alternatively, one could measure the rate of decay of the “error of
the means”, which is related to the (weak) convergence in distribution (i.e., in approximating
the expectations of the Itô process). Thus, a method is said to have weak order of p if there
exists a constant C2 such that for all suitable test functions (observables) φ

(4.2) Errweakh = |Eφ(Xn)− Eφ(X(τ))| ≤ C2h
p ,

for any fixed τ = nh ∈ [0, T ] with h being sufficiently small. It should be noted that methods
with high strong order would lead to high weak order, however the converse is in general
false [36]. Since the focus of this article is on the computation of averages, the concept of
weak order renders more appropriate.
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4.2. Brownian dynamics. We consider the linear Langevin dynamics with effective springs
but without inertia described in subsection 3.2 (i.e., (2.6)), which is also known as Brownian
dynamics.

(4.3) q̇ = −kq/γ + u +
√

2D η ,

where u = κ · q is the streaming velocity field with κ being defined in (2.4).

4.2.1. The Euler–Maruyama (EM) method. A simple and popular numerical method
for a system of Itô SDEs is the Euler–Maruyama (EM) method, which reads

(4.4) qn+1 = qn − hkqn/γ + hun +
√

2DhRn ,

where Rn, resampled at each step n, is a dimensionless vector whose components are drawn
randomly and independently from a Gaussian probability distribution function with zero mean
and unit variance, 〈RnRm〉 = Iδn,m; thus Rn/

√
h replaces the continuous η in a time-discrete

implementation.

4.2.2. The limit method. A simple modification of the Euler–Maruyama method (4.4)
leads to the limit method [34]:

(4.5) qn+1 = qn − hkqn/γ + hun +
√
Dh/2

(
Rn + Rn+1

)
,

where Rn and Rn+1 are vectors of independent Gaussian white noise with zero mean and unit
variance, and it should be noted that Rn+1 will become Rn in the subsequent step. It has been
showed that such a simple modification could lead to an extra order of weak convergence [38]
as well as substantial improvements in sampling accuracy [34]. Note that although the limit
method was first derived from the BAOAB method introduced in subsection 4.3.2 in the large
friction limit [34], it can also be obtained using postprocessed integrators [64].

4.3. Langevin dynamics. We also consider the most general case of the linear Langevin
dynamics with both inertia and effective springs described in subsection 3.4. Rewriting (3.24)
in a more general and first order form yields

q̇ = p ,(4.6a)

ṗ = −sq− 2 (p− u) + η ,(4.6b)

where p has the interpretation of the momentum, and (4.6) can be considered as the adi-
mensional version of (2.1), using the reference quantities (2.11) and dimensionless parame-
ters (2.12).

4.3.1. The stochastic velocity Verlet (SVV) method. Building on the popular Verlet
method in molecular dynamics and also due to its ease of implementation, the stochastic ve-
locity Verlet (SVV) method [47] is a popular scheme for Langevin dynamics, whose integration
steps read

pn+1/2 = pn − hsqn/2− h (pn − un) +
√
h/2Rn ,(4.7a)

qn+1 = qn + hpn+1/2 ,(4.7b)

pn+1 = pn+1/2 − hsqn+1/2− h
(
pn+1/2 − un+1

)
+
√
h/2Rn+1/2 ,(4.7c)
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where Rn and Rn+1/2, resampled at each step, are vectors of independent Gaussian white
noise with zero mean and unit variance. Note that a useful alternative for SVV is the ve-
locity Verlet implementation of Shardlow’s splitting scheme [43,59] that outperforms SVV in
constant energy and constant enthalpy ensembles, while in the cases of constant pressure and
temperature we are considering here, the SVV has a very comparable performance [33,42].

4.3.2. The BAOAB method. Numerical integration methods, particularly the so-called
“splitting methods”, for Langevin dynamics have been studied systematically in terms of the
long term sampling performance by Leimkuhler and coworkers [34–38]. It has been demon-
strated that, in terms of sampling configurational quantities, a particular choice of splitting
methods, i.e., the “BAOAB” method, relying on a Trotter factorization of the stochastic vec-
tor field of the original (whole) system into exactly solvable subsystems, is far advantageous
to alternative schemes. Subsequently, the optimal design of splitting methods on stochastic
dynamics has been studied in a variety of applications [39–41, 58]. We point out that the
framework of long-time Talay–Tubaro expansion [1, 2, 12, 34–37, 40, 60] can be trivially per-
formed in order to analyse the accuracy of ergodic averages (i.e., averages with respect to the
invariant measure) in those systems. We separate the vector field of the Langevin dynamics
as

(4.8) d

[
q
p

]
=

[
p
0

]
dt︸ ︷︷ ︸

A

+

[
0
−sq

]
dt︸ ︷︷ ︸

B

+

[
0

−2 (p− u) + η

]
︸ ︷︷ ︸

O

,

where we can solve each piece “exactly”. That is, both “A” and “B” pieces can be straightfor-
wardly solved, while it is also possible to derive the exact solution to the Ornstein–Uhlenbeck
(“O”) part (solutions in [58] for more general settings),

(4.9) dp = 2udt− 2pdt+ η ,

as

(4.10) p(t) = u + (p(0)− u) e−2t +
(√

1− e−4t/2
)

R .

The BAOAB method then can be defined as

(4.11) ehL̂BAOAB = e(h/2)LBe(h/2)LAehLOe(h/2)LAe(h/2)LB ,

where exp (hLf ) represents the phase space propagator associated with the corresponding
vector field f . More precisely, the integration steps of the BAOAB method, including the
streaming velocity, reads:

pn+1/2 = pn − hsqn/2 ,(4.12a)

qn+1/2 = qn + hpn+1/2/2 ,(4.12b)

p̃n+1/2 = un+1/2 +
(
pn+1/2 − un+1/2

)
e−2h +

(√
1− e−4h/2

)
Rn ,(4.12c)

qn+1 = qn+1/2 + hp̃n+1/2/2 ,(4.12d)

pn+1 = p̃n+1/2 − hsqn+1/2 .(4.12e)
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Figure 2. (Color online) Comparison of various computed (and normalized) stationary time corre-
lation functions of Langevin dynamics without inertia, (i.e., Brownian dynamics), by using the limit
method with a stepsize of h = 0.01 against the analytical solutions derived in subsection 3.2 in solid
black lines. The system was simulated for 1000 reduced time units in each case but only the last 80%
of the snapshots were collected to calculate the correlations. Furthermore, 1000 different runs were
averaged to reduce the sampling errors.

Note that only one force calculation is required at each step for the BAOAB method (i.e., the
force computed at the end of each step will be reused at the start of the subsequent step),
which is the same as for alternative schemes, including the SVV method.

5. Numerical experiments. In this section, we conduct a variety of numerical experi-
ments to compare the performance of various methods introduced in section 4 in noninertia
(Brownian) and inertia (Langevin) cases, respectively.

5.1. Simulation details. As described at the beginning of section 3, we restrict our at-
tention to a single harmonic oscillator of mass m in the presence of a streaming background
medium with velocity field u. For the sake of simplicity, we excluded the diagonal contri-
butions from the matrix κ (2.4) in our numerical experiments. In both cases, the following
parameter set was used: k = 2, kBT = 0.25, γ = 2, κxy = 1, resulting in ω = k/γ = 1
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Figure 3. (Color online) Comparison of various computed (and normalized) stationary time cor-
relation functions of Langevin dynamics with inertia by using the BAOAB method with a stepsize of
h = 0.01 against the analytical solutions derived in subsection 3.4 in solid black lines. The format of
the plots is the same as in Figure 2.

and D = kBT/γ = 0.125 in the Brownian case. The mass was set as unity in the Langevin
case, thereby leading to s = 2 and r = 1. For this choice of parameters the reference tref
of the Langevin dynamics coincides with the characteristic relaxation time of the inertia-free
Brownian case. The initial position of the particle was set at the origin in both cases while
the initial momentum in the Langevin case was zero. Unless otherwise stated, the system was
simulated for 1000 reduced time units in both cases but only the last 80% of the data were
collected to calculate various quantities derived in section 3.

5.2. Results. In order to verify the derivations of the stationary time correlation func-
tions in both noninertia (subsection 3.2) and inertia (subsection 3.4) cases, we plot the com-
puted (and normalized) time correlation functions against the analytical solutions in Figures 2
and 3, respectively. It appears that in both cases the numerical solutions are indistinguish-
able from the analytical ones with a small stepsize of h = 0.01. However, as stepsize in-
creases, the time correlation functions do start deviating from the analytical solutions, which
leads to the investigation of the accuracy control of average quantities in subsequent fig-
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Figure 4. (Color online) Double logarithmic plot of the computed absolute error in averages 〈y2〉
(left) and 〈x2〉 (right) derived in subsection 3.2 (Brownian dynamics) against stepsize by using the
Euler–Maruyama (EM) and limit methods with ω = 1 and D = 0.125. The system was simulated for
1000 reduced time units in each case but only the last 80% of the snapshots were collected to calculate
the static quantities. Furthermore, 100,000 different runs were averaged to reduce the sampling errors.
The stepsizes tested began at h = 0.106 and were increased incrementally by 30% until substantial
errors in correlations were observed. Error bars for the EM and Limit methods are comparable to
symbol sizes and thus not presented.

ures. We also want to point out that with the same stepsize of h = 0.01 but a smaller
shear rate, say κxy = 0.1, visible deviations were observed in both cross-correlation func-
tions, i.e., 〈x(t)y(0)〉 / 〈xy〉 and 〈y(t)x(0)〉 / 〈yx〉, while both autocorrelation functions, i.e.,
〈y(t)y(0)〉 /

〈
y2
〉

and 〈x(t)x(0)〉 /
〈
x2
〉
, were still indistinguishable from the analytical solu-

tions. Moreover, the deviations became even stronger if the shear rate was further reduced.
This indicates that both cross-correlation functions are more sensitive to the strength of the
shear rate.

The accuracy control of average quantities is often used to measure the performance of
the numerical methods. To this end, the computed absolute error in averages 〈y2〉 and 〈x2〉
were plotted in Figures 4 and 5 for both Brownian and Langevin cases, respectively. (We did
not observe significant difference between the methods in both cases in terms of the errors on
time correlation functions.) Note that the average 〈y2〉 is actually proportional to the so-called
configurational temperature (more discussions in [39, 41]), in this case k〈y2〉 = kBT , which
is an important quantity that numerical methods should preserve. The results of 〈xy〉 were
not included due to its sensitivity to sampling errors. To be more specific, in the Brownian
case in Figure 4, the limit method is orders of magnitude more accurate than the Euler-
Maruyama method in 〈y2〉 while the former still outperforms the latter in 〈x2〉. Although the
limit method does not seem to display a second order convergence to the invariant measure
as expected in the equilibrium case of 〈y2〉, we point out that it might be very challenging to
overcome the impact of sampling errors at such a high level of accuracy with the reference
value being 〈y2〉 = 0.125.

In the case of Langevin dynamics as can be seen in Figure 5, the BAOAB method is
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Figure 5. (Color online) Double logarithmic plot of the computed absolute error in averages 〈y2〉
(left) and 〈x2〉 (right) derived in subsection 3.4 (Langevin dynamics) against stepsize by using the
stochastic velocity Verlet (SVV) and BAOAB methods with s = 2 and r = 1. The format of the plots
is the same as in Figure 4. Error bars for the SVV and BAOAB methods are comparable to symbol
sizes and thus not presented.

also orders of magnitude more accurate than the stochastic velocity Verlet (SVV) method in
〈y2〉 while the former slightly outperforms the latter in 〈x2〉. Interestingly, in the equilibrium
case of 〈y2〉, the accuracy of the BAOAB method does not seem to depend on the stepsize
(although it still seems to slightly fluctuate due to the sampling errors at such a high level
of accuracy with the reference value again being 〈y2〉 = 0.125). This behavior is actually
consistent with the demonstration in [35] that the BAOAB method “exactly” preserves the
average quantity of 〈y2〉 in this particular case.

6. Summary and Outlook. We have derived various time correlation functions and as-
sociated quantities of the linear Langevin dynamics (both without and with inertia effects)
for a harmonic oscillator in the presence of friction, additive noise, and an external field with
both rotational and deformational contributions. We have demonstrated how in the nontrivial
limit of vanishing mass the inertia results reduce to their noninertia counterparts. While all
results were derived explicitly using a most straightforward approach suitable for a classroom,
we have mentioned two alternative approaches based on (i) the Fourier transform and (ii)
the Fokker–Planck equation. In our numerical experiments, for which algorithms were stated
in section 4, we not only have verified various time correlation functions (3.30) derived in this
article for the benchmark (2.13), but also demonstrated the importance of optimal design of
numerical methods. To be more specific, in the Brownian case, we have shown that the limit
method substantially outperforms the popular Euler–Maruyama (EM) method in equilibrium
while the former appears to be still visibly more accurate than the latter in nonequilibrium. On
the other hand in the case of Langevin dynamics, the BAOAB method is orders of magnitude
more accurate than the stochastic velocity Verlet (SVV) method in equilibrium whereas the
former appears to be only slightly better than the latter in nonequilibrium. While the bench-
mark (2.13) involves only dimensionless parameters, we have explicitly stated its connection
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with dimensional equations from real world applications. One of them is the study of the full
Rouse model [14,56] (bead-spring chain, i.e., coupled harmonic oscillators with masses, whose
eigenmodes behave as harmonic oscillators) for the short-time and high frequency dynamics
of unentangled polymeric systems subjected to flows. With the time correlation functions
for q obeying (2.1) at hand, all relevant properties of a bead-spring chain subjected to flow
can be written down upon replacing m, k, and γ by their mode-dependent counterparts mp,
kp, and γp [14], where p = 0, 1, 2, . . . , N enumerates the N normal modes of a chain with
N − 1 segments connecting N mass points (beads). In the limit of vanishing mass the known
solution of the Rouse model [14] is also recovered this way. The analytical methods applied
here to solve the linear Langevin dynamics characterized by matrices A and B in (3.53) apply
without modification to arbitrary A and B. The numerical methods apply to both linear
and nonlinear problems. These include, for example, the finite extendable nonlinear elas-
tic (FENE) dumbbell or multibead chain models [21, 25, 30]. Their approximate analytical
treatment remains beyond the scope of this contribution, for a numerical implementation see,
e.g., [54].

Appendix A. Nondimensionalization.
In what follows we show that the nondimensionalized version of (2.5) is (2.13). Dimen-

sionless quantities f∗ are introduced via f = f∗fref, in general, with reference quantities fref
carrying the physical dimension. Having restored the asterisks dropped and also rewritten
the noise term as a derivative (although it is not rigorously defined in the usual mathematical
sense), (2.13a) reads

(A.1)
d2x∗
dt2∗

= −sxx∗ − 2

(
dx∗
dt∗
− ry∗

)
+

dW∗,x
dt∗

.

Since W2 has dimension of time, Wref =
√
tref, and (A.1), upon replacing f∗ by f/fref, and

subsequent multiplication by by mqref/t
2
ref on both sides of the equation yields

(A.2) m
d2x

dt2
= −sx

mx

t2ref
− 2

(
m

tref

dx

dt
− rmy

t2ref

)
+mqref

t
1/2
ref

t2ref

dWx

dt
.

Proof. Inserting qref, tref, sµ, and r from (2.11) and (2.12) into (A.2)

m
d2x

dt2
= −4mkx

γ2
mγ2x

4m2
− 2

(
mγ

2m

dx

dt
− 2mκxy

γ

mγ2y

4m2

)
+m

23/2σ
√
m

γ3/2

( γ

2m

)3/2 dWx

dt

= −kxx− γ
(

dx

dt
− κxyy

)
+ σ

dWx

dt
.(A.3)

Appendix B. Ideal Brownian dynamics: m = 0, kx = ky = 0.

B.1. Time correlation function 〈[x(t)− x(0)][y(t)− y(0)]〉.
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Proof. Starting from (3.1), with the help of (2.3), we arrive at (3.5) as follows

〈[x(t)−x(0)][y(t)−y(0)]〉 =

〈∫ t

0
ẋ(t1) dt1

∫ t

0
ẏ(t2) dt2

〉
=
√

2D

∫ t

0

∫ t

0

[
κxy 〈y(t1)ηy(t2)〉+

√
2D 〈ηx(t1) ηy(t2)〉

]
dt2dt1

= 2Dκxy

∫ t

0

∫ t

0

∫ t1

0

〈
ηy(t

′
1)ηy(t2)

〉
dt′1 dt2 dt1

= 2Dκxy

∫ t

0

∫ t

0

∫ t1

0
δ(t′1 − t2) dt′1 dt2 dt1

= 2Dκxy

∫ t

0

∫ t1

0

∫ t1

0
δ(t′1 − t2) dt′1 dt2 dt1

= 2Dκxy

∫ t

0

∫ t1

0
dt2 dt1 = Dκxyt

2 .(B.1)

B.2. Mean squared displacement
〈
[x(t)− x(0)]2

〉
.

Proof. Starting from (3.1), with the help of (2.3), we arrive at (3.6) as follows

〈
[x(t)− x(0)]2

〉
=

〈∫ t

0
ẋ(t1) dt1

∫ t

0
ẋ(t2) dt2

〉
=

∫ t

0

∫ t

0

[
2D δ(t1 − t2) + κ2xy 〈y(t1)y(t2)〉

]
dt1 dt2

= 2Dt+ κ2xy

∫ t

0

∫ t

0

[
2Dmin(t1, t2) + y20

]
dt1 dt2

= 2Dt+ 2Dκ2xy

(∫ t

0

∫ t

t2

t2dt1dt2 +

∫ t

0

∫ t2

0
t1dt1dt2

)
+ (κxyy0t)

2

= 2Dt

[
1 +

1

3
(κxyt)

2

]
+ (κxyy0t)

2 .(B.2)

Appendix C. Nonideal Brownian dynamics: m = 0, kx, ky > 0.

C.1. Time correlation function 〈y(t1)y(t2)〉.

Proof. Starting from (3.7b), with the help of (2.3) together with the identity min(t1, t2) =
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(t1 + t2)/2− |t1 − t2|/2, (3.8) is obtained as follows

〈y(t1)y(t2)〉 = 2D

〈∫ t1

−∞
ηy(t

′
1)e
−ωy(t1−t′1) dt′1

∫ t2

−∞
ηy(t

′
2)e
−ωy(t2−t′2) dt′2

〉
= 2D

∫ t1

−∞

∫ t2

−∞
e−ωy(t1+t2−t′1−t′2)

〈
ηy(t

′
1) ηy(t

′
2)
〉

dt′2 dt′1

= 2D

∫ t1

−∞

∫ t2

−∞
e−ωy(t1+t2−t′1−t′2) δ(t′1 − t′2) dt′2 dt′1

= 2D

∫ min(t1,t2)

−∞
e−ωy(t1+t2−2t′1) dt′1

=
D

ωy
e−ωy |t1−t2| ,(C.1)

C.2. Time correlation function 〈x(t)y(0)〉.

Proof. Starting from (3.7b), an intermediate result is

〈y(t1) ηy(t2)〉 =
√

2D

∫ t1

−∞

〈
ηy(t

′
1) ηy(t2)

〉
e−ωy(t1−t′1) dt′1

=
√

2D

∫ t1

−∞
δ(t′1 − t2)e−ωy(t1−t′1) dt′1

=
√

2De−ωy(t1−t2)Θ(t1 − t2) ,(C.2)

where Θ denotes the Heaviside step function. Since 〈ηx(t) ηy(t
′)〉 = 0, one recovers (3.10a)

using (C.2)

〈x(t)y(0)〉 =
√

2D

∫ t

−∞

∫ 0

−∞

〈[
κxyy(t1) +

√
2Dηx(t1)

]
ηy(t2)

〉
e−ωx(t−t1)+ωyt2 dt2 dt1

= 2Dκxy

∫ t

−∞

∫ 0

−∞
e−ωy(t1−t2)Θ(t1 − t2)e−ωx(t−t1)+ωyt2 dt2 dt1

= 2Dκxye
−ωxt

∫ 0

−∞
e2ωyt2

∫ t

t2

e(ωx−ωy)t1 dt1 dt2

= Dκxy
(ωx + ωy)e

−ωyt − 2ωye
−ωxt

(ω2
x − ω2

y)ωy
.(C.3)

C.3. Time correlation function 〈y(t)x(0)〉.
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Proof. In full analogy to Appendix C.2, (3.10b) is derived via

〈y(t)x(0)〉 =
√

2D

∫ t

−∞

∫ 0

−∞

〈
ηy(t1)

[
κxyy(t2) +

√
2Dηx(t2)

]〉
e−ωy(t−t1)+ωxt2 dt2 dt1

= 2Dκxy

∫ t

−∞

∫ 0

−∞
e−ωy(t2−t1)Θ(t2 − t1)e−ωy(t−t1)+ωxt2 dt2 dt1

= 2Dκxye
−ωyt

∫ 0

−∞
e(ωx−ωy)t2

∫ t2

−∞
e2ωyt1 dt1 dt2

=
Dκxye

−ωyt

(ωx + ωy)ωy
.(C.4)

C.4. Time correlation function 〈x(t)x(0)〉.

Proof. The solution (3.7a) can be written as the sum of two uncorrelated contributions
x(t) = x1(t) + x2(t), where x1(t) and x2(t) are given by

(C.5) x1(t) = κxy

∫ t

−∞
y(t′)e−ωx(t−t′) dt′ , x2(t) =

√
2D

∫ t

−∞
ηx(t′)e−ωx(t−t′) dt′ .

While 〈x2(t)x2(0)〉 can be immediately obtained from (3.7b) and (3.9) as

(C.6) 〈x2(t)x2(0)〉 =
De−ωxt

ωx
,

and since the cross-correlation 〈x1(t)x2(0)〉 vanishes for all t as 〈ηx(t)ηy(0)〉 does, the remaining
contribution to 〈x(t)x(0)〉 is

〈x1(t)x1(0)〉 = κ2xy

∫ t

−∞

∫ 0

−∞
〈y(t1)y(t2)〉 e−ωx(t−t1−t2) dt2 dt1

=
κ2xyD

ωy

∫ t

−∞

∫ 0

−∞
e−ωy |t1−t2|e−ωx(t−t1−t2) dt2 dt1

=
κ2xyDe

−ωxt

ωy

[∫ 0

−∞
e(ωx+ωy)t2

∫ t

t2

e(ωx−ωy)t1 dt1 dt2

+

∫ 0

−∞
e(ωx−ωy)t2

∫ t2

−∞
e(ωx+ωy)t1 dt1 dt2

]
=
κ2xyD

(
ωxe

−ωyt − ωye−ωxt
)

(ω2
x − ω2

y)ωxωy
.(C.7)

The sum of (C.6) and (C.7) is the desired expression (3.12) for 〈x(t)x(0)〉.

Appendix D. Ideal Langevin dynamics: m > 0, kx = ky = 0.
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D.1. Mean squared displacement
〈
[y(t)− y(0)]2

〉
.

Proof. Rewriting y(t)− y(0) as an integral, using (3.18b), we arrive at (3.20) as follows〈
[y(t)− y(0)]2

〉
=

〈∫ t

0
ẏ(t1) dt1

∫ t

0
ẏ(t2) dt2

〉
=

∫ t

0

∫ t

0
〈ẏ(t1)ẏ(t2)〉 dt1 dt2 =

1

4

∫ t

0

∫ t

0
e−2|t1−t2| dt1 dt2

=
1

4

[∫ t

0
e−2t1

∫ t1

0
e2t2 dt2 dt1 +

∫ t

0
e2t1

∫ t

t1

e−2t2 dt2 dt1

]
=

1

8

(
2t+ e−2t − 1

)
.(D.1)

Appendix E. Nonideal Langevin dynamics: m > 0, k ≡ kx = ky > 0.

E.1. Solution of the system y(t).

Proof. Let

(E.1) G±y (t) = Gy (t, s±) = e−s±t
∫ t

−∞
es±t

′
ηy(t

′) dt′ ,

Equation (3.25) may be rewritten as

(E.2) 2
√

1− sy = G−y −G+
y .

Differentiating this expression with respect t gives

(E.3) 2
√

1− s ẏ = −s−G−y + s+G
+
y ,

and differentiating once more with respect to t gives

(E.4) 2
√

1− s ÿ = s2−G
−
y − s2+G+

y + (s+ − s−)ηy .

Substituting the above three equations into (3.24b) we have proven (3.25).

E.2. Time correlation function 〈y(t)y(0)〉.
Proof. We begin with the intermediate result

〈Gy(t, a)Gy(0, b)〉 =

〈∫ t

−∞
e−a(t−t1) ηy(t1) dt1

∫ 0

−∞
e−b(0−t2) ηy(t2) dt2

〉
=

∫ t

−∞

∫ 0

−∞
e−a(t−t1)+bt2 〈ηy(t1) ηy(t2)〉 dt2 dt1

=

∫ t

−∞

∫ 0

−∞
e−a(t−t1)+bt2 δ(t1 − t2) dt2 dt1

= e−at
∫ 0

−∞
e(a+b)t1 dt1

=
e−at

a+ b
, [<(a+ b) > 0] .(E.5)
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Given a, b ∈ {s−, s+}, one can verify that the real parts of a+b are always positive. Therefore,
starting from (3.25) one approves (3.30a) with the help of (E.5)

〈y(t)y(0)〉 =
1

4(1− s)
〈[Gy(t, s−)−Gy(t, s+)] [Gy(0, s−)−Gy(0, s+)]〉

=
1

4(1− s)

[
e−s−t

2s−
− e−s−t

s− + s+
− e−s+t

s− + s+
+
e−s+t

2s+

]
=

1

8s
√

1− s
(C+

1 + C−1 ) .(E.6)

E.3. Time correlation function 〈x(t)y(0)〉.

Proof. We need the following intermediate results,

〈
Gy(t1, s

′) ηy(t2)
〉

=

〈∫ t1

−∞
e−s

′(t1−t′) ηy(t
′) ηy(t2) dt′

〉
=

∫ t1

−∞
e−s

′(t1−t′) 〈ηy(t′) ηy(t2)〉 dt′

=

∫ t1

−∞
e−s

′(t1−t′) δ(t′ − t2) dt′

= e−s
′(t1−t2)Θ(t1 − t2) ,(E.7)

and, with y(t) from (3.25),

〈y(t1) ηy(t2)〉 =
1

2
√

1− s
〈[Gy(t1, s−)−Gy(t1, s+)] ηy(t2)〉

=
1

2
√

1− s
[〈Gy(t1, s−) ηy(t2)〉 − 〈Gy(t1, s+) ηy(t2)〉]

=
1

2
√

1− s

[
e−s−(t1−t2) − e−s+(t1−t2)

]
Θ(t1 − t2) .(E.8)

Using (E.7) and (E.8), with yet unspecified a and b

〈Gx(t, a)Gy(0, b)〉 =

〈∫ t

−∞
e−a(t−t1) [2ry(t1) + ηx(t1)] dt1

∫ 0

−∞
e−b(0−t2) ηy(t2) dt2

〉
= 2r

∫ t

−∞

∫ 0

−∞
e−a(t−t1)+bt2 〈y(t1) ηy(t2)〉dt2 dt1

=
r√

1− s

∫ t

−∞

∫ 0

−∞
e−a(t−t1)+bt2

[
e−s−(t1−t2) − e−s+(t1−t2)

]
Θ(t1−t2)dt2dt1

=
re−at√
1− s

∫ t

t2

∫ 0

−∞
eat1+bt2

[
e−s−(t1−t2) − e−s+(t1−t2)

]
dt2 dt1 .(E.9)
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For all the relevant choices of a and b in (E.9), the integrals can be performed

〈Gx(t, s−)Gy(0, s−)〉 =
re−s−t√

1− s

[
t

2s−
+

1

4s2−
− 1

s− − s+

(
e(s−−s+)t

s− + s+
− 1

2s−

)]
,

〈Gx(t, s−)Gy(0, s+)〉 =
re−s−t√

1− s

[
t

s− + s+
+

1

(s− + s+)2
− 1

s− − s+

(
e(s−−s+)t

2s+
− 1

s− + s+

)]
,

〈Gx(t, s+)Gy(0, s−)〉 =
re−s+t√

1− s

[
1

s+ − s−

(
e(s+−s−)t

2s−
− 1

s− + s+

)
− t

s− + s+
− 1

(s− + s+)2

]
,

〈Gx(t, s+)Gy(0, s+)〉 =
re−s+t√

1− s

[
1

s+ − s−

(
e(s+−s−)t

s− + s+
− 1

2s+

)
− t

2s+
− 1

4s2+

]
,

With their help the correlation 〈x(t)y(0)〉 can now be calculated quite conveniently as

〈x(t)y(0)〉 =
1

4(1− s)
〈[Gx(t, s−)−Gx(t, s+)] [Gy(0, s−)−Gy(0, s+)]〉

=
re−s+t

8(1− s)3/2

√
1− s(

1 +
√

1− s
) [t+

1

2

(
1 +

1

1 +
√

1− s

)
+

1√
1− s

]
− re−s−t

8(1− s)3/2

√
1− s(

1−
√

1− s
) [−t− 1

2

(
1 +

1

1−
√

1− s

)
+

1√
1− s

]
.(E.10)

Multiplying
(
1−
√

1− s
)2 (

1 +
√

1− s
)2

= s2 on both sides gives

s2 〈x(t)y(0)〉 =
re−s+t

8(1− s)3/2
(
1−
√

1− s
)2 [

(2 + t)
√

1− s+

(
1

2
+ t

)
(1− s) + 1

]
− re−s−t

8(1− s)3/2
(
1 +
√

1− s
)2 [− (2 + t)

√
1− s+

(
1

2
+ t

)
(1− s) + 1

]
,(E.11)

so that we finally arrive at (3.30a)

(E.12) 〈x(t)y(0)〉 =
r (A+ −A−)

8s2(1− s)3/2
= 〈y(−t)x(0)〉 .

E.4. Time correlation function 〈y(t)x(0)〉.
Proof. Here we need another intermediate result,〈

ηy(t1)Gy(t2, s
′)
〉

=

〈∫ t2

−∞
e−s

′(t2−t′) ηy(t1) ηy(t
′) dt′

〉
=

∫ t2

−∞
e−s

′(t2−t′) 〈ηy(t1) ηy(t′)〉 dt′

=

∫ t2

−∞
e−s

′(t2−t′) δ(t1 − t′) dt′

= e−s(t2−t1)Θ(t2 − t1) ,(E.13)
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as well as, with y(t) from (3.25),

〈ηy(t1)y(t2)〉 =
1

2
√

1− s
〈ηy(t1) [Gy(t2, s−)−Gy(t2, s+)]〉

=
1

2
√

1− s
[〈ηy(t1)Gy(t2, s−)〉 − 〈ηy(t1)Gy(t2, s+)〉]

=
1

2
√

1− s

[
e−s−(t2−t1) − e−s+(t2−t1)

]
Θ(t2 − t1) .(E.14)

Making use of (E.13) and (E.14), one has

〈Gy(t, a)Gx(0, b)〉 =

〈∫ t

−∞
e−a(t−t1) ηy(t1) dt1

∫ 0

−∞
e−b(0−t2) [2ry(t2) + ηx(t2)] dt2

〉
= 2r

∫ t

−∞

∫ 0

−∞
e−a(t−t1)+bt2 〈ηy(t1)y(t2)〉dt2 dt1

=
r√

1− s

∫ t

−∞

∫ 0

−∞
e−a(t−t1)+bt2

[
e−s−(t2−t1) − e−s+(t2−t1)

]
Θ(t2 − t1)dt2dt1

=
re−at√
1− s

∫ t2

−∞

∫ 0

−∞
eat1+bt2

[
e−s−(t2−t1) − e−s+(t2−t1)

]
dt2 dt1

=
re−at√
1− s

[
1

a+ b

(
1

a+ s−
− 1

a+ s+

)]
.(E.15)

Starting from (3.25) and (3.28), we can then immediately write down

〈y(t)x(0)〉 =
1

4(1− s)
〈[Gy(t, s−)−Gy(t, s+)] [Gx(0, s−)−Gx(0, s+)]〉

=
re−s−t

16
√

1− s

(
1

s−

)2

− re−s+t

16
√

1− s

(
1

s+

)2

.(E.16)

Multiplying
(
1−
√

1− s
)2 (

1 +
√

1− s
)2

= s2 on both sides gives

(E.17) s2 〈y(t)x(0)〉 =
re−s−t

16
√

1− s
(
1 +
√

1− s
)2 − re−s+t

16
√

1− s
(
1−
√

1− s
)2
.

so that we have proven (3.30c)

(E.18) 〈y(t)x(0)〉 =
r
(
C−2 − C

+
2

)
16s2
√

1− s
= 〈x(−t)y(0)〉 .

E.5. Time correlation function 〈x(t)x(0)〉.
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Proof. For the sake of completeness and readers’ convenience we here provide the full
proof of (3.30d). We begin, as before, with an intermediate result,

〈Gy(t1, a)Gy(t2, b)〉 =

〈∫ t1

−∞
e−a(t1−t

′
1) ηy(t

′
1) dt′1

∫ t2

−∞
e−b(t2−t

′
2) ηy(t

′
2) dt′2

〉
=

∫ t1

−∞

∫ t2

−∞
e−a(t1−t

′
1)−b(t2−t′2) dt′2 dt′1

〈
ηy(t

′
1) ηy(t

′
2)
〉

=

∫ t1

−∞

∫ t2

−∞
e−a(t1−t

′
1)−b(t2−t′2) δ(t′1 − t′2) dt′2 dt′1

= e−(at1+bt2)
∫ min(t1,t2)

−∞
e(a+b)t

′
1 dt′1

= e−(at1+bt2)
e(a+b)min(t1,t2)

a+ b
, [<(a+ b) > 0] ,(E.19)

which corresponds, for t1 ≥ t2, or t1 ≤ t2 to either

(E.20) 〈Gy(t1, a)Gy(t2, b)〉 = e−(at1+bt2)
e(a+b)t2

a+ b
=
e−a(t1−t2)

a+ b
Θ(t1 − t2)

or

(E.21) 〈Gy(t1, a)Gy(t2, b)〉 = e−(at1+bt2)
e(a+b)t1

a+ b
=
e−b(t2−t1)

a+ b
Θ(t2 − t1) .

With the help of (3.25), (E.20), and (E.21)

〈y(t1)y(t2)〉 =
1

4(1− s)
〈[Gy(t1, s−)−Gy(t1, s+)] [Gy(t2, s−)−Gy(t2, s+)]〉

=
1

8s
√

1− s

[
s+e

−s−(t1−t2) − s−e−s+(t1−t2)
]

Θ(t1 − t2)

+
1

8s
√

1− s

[
s+e

−s−(t2−t1) − s−e−s+(t2−t1)
]

Θ(t2 − t1) .(E.22)

Defining GY which differs from Gy in that ηy(t
′) is replaced by y(t′)

(E.23) GY (t, s′) ≡
∫ t

−∞
e−s

′(t−t′)y(t′) dt′ ,
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we have

〈GY (t, a)GY (0, b)〉 =

〈∫ t

−∞
e−a(t−t1)y(t1) dt1

∫ 0

−∞
e−b(0−t2)y(t2) dt2

〉
=

∫ t

−∞

∫ 0

−∞
e−a(t−t1)+bt2 〈y(t1)y(t2)〉dt2 dt1

=
e−at

8s
√

1− s

[
s+

∫ 0

−∞
e(b+s−)t2

∫ t

t2

e(a−s−)t1 dt1 dt2

−s−
∫ 0

−∞
e(b+s+)t2

∫ t

t2

e(a−s+)t1 dt1 dt2

]
+

e−at

8s
√

1− s

[
1

a+ b

(
s+

a+ s−
− s−
a+ s+

)]
.(E.24)

More specifically, the cases we really need below are

〈GY (t, s−)GY (0, s−)〉 =
e−s−t

8s
√

1− s

[
s+t

2s−
+

s+
4s2−
− s−
s− − s+

(
e(s−−s+)t

s− + s+
− 1

2s−

)
+

b+
2s−

]
,

〈GY (t, s−)GY (0, s+)〉 =
e−s−t

8s
√

1− s

[
s+t

s− + s+
+

s+
(s− + s+)2

− s−
s− − s+

(
e(s−−s+)t

2s+
− 1

s− + s+

)]

+
e−s−t

8s
√

1− s

[
1

s− + s+

(
s+
2s−
− s−
s− + s+

)]
,

〈GY (t, s+)GY (0, s−)〉 =
e−s+t

8s
√

1− s

[
s+

s+ − s−

(
e(s+−s−)t

2s−
− 1

s− + s+

)
− s−t

s− + s+
− s−

(s− + s+)2

]

+
e−s+t

8s
√

1− s

[
1

s− + s+

(
s+

s− + s+
− s−

2s+

)]
,

〈GY (t, s+)GY (0, s+)〉 =
e−s+t

8s
√

1− s

[
s+

s+ − s−

(
e(s+−s−)t

s− + s+
− 1

2s+

)
− s−t

2s+
− s−

4s2+
+

b−
2s+

]
.

where the abbreviation

(E.25) b± = ± s±
2s∓
∓ s∓
s− + s+

was needed. We can rewrite the solution (3.28) as the sum of two uncorrelated parts x(t) =
x1(t) + x2(t), with

(E.26) xi(t) =
1

2
√

1− s
[Gxi(t, s−)−Gxi(t, s+)] , i = 1, 2 ,

and

(E.27) Gx1(t, s′) ≡
∫ t

−∞
e−s

′(t−t′)2ry(t′) dt′ , Gx2(t, s′) ≡
∫ t

−∞
e−s

′(t−t′)ηx(t′) dt′ .
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Since 〈x2(t)x2(0)〉 = 〈y(t)y(0)〉 had already been calculated above, the remaining contribution
to 〈x(t)x(0)〉 is

〈x1(t)x1(0)〉 =
r2

1− s
〈[GY (t, s−)−GY (t, s+)] [GY (0, s−)−GY (0, s+)]〉

=
r2e−s+t

16s(1− s)3/2

√
1− s(

1 +
√

1− s
) [s−t+

s−
s+
−
(√

1− s− 1√
1− s

)]
+

r2e−s−t

16s(1− s)3/2

√
1− s(

1−
√

1− s
) [s+t+

s+
s−

+

(√
1− s− 1√

1− s

)]
.(E.28)

Multiplying
(
1−
√

1− s
)2 (

1 +
√

1− s
)2

= s2 on both sides gives

s2 〈x1(t)x1(0)〉 =
r2e−s+t

16s(1− s)3/2
(
1−
√

1− s
)2 [√

1− s (st+ s+ 1) + 2s− 1
]

+
r2e−s−t

16s(1− s)3/2
(
1 +
√

1− s
)2 [√

1− s (st+ s+ 1)− 2s+ 1
]
.(E.29)

which brings us in agreement with (3.30d)

(E.30) 〈x(t)x(0)〉 =

(
C+
1 + C−1

)
8s
√

1− s
+
r2 (B+ +B−)

16s3(1− s)3/2
.
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Springer Science & Business Media, 2001.
[7] R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids.

Volume 2: Kinetic Theory, Wiley-Interscience, 1987.
[8] H. Block and E. F. Hayes, Dielectric behavior of stiff polymers in solution when subjected to high

voltage gradients, Trans. Faraday Soc., 66 (1970), p. 2512.
[9] W. R. Cao, M. Z. Liu, and Z. C. Fan, MS-stability of the Euler–Maruyama method for stochastic

differential delay equations, Appl. Math. Comput., 159 (2004), pp. 127–135.
[10] E. A. Codling, M. J. Plank, and S. Benhamou, Random walk models in biology, J. Roy. Soc. Interf.,

5 (2008), pp. 813–834.
[11] W. T. Coffey and Y. P. Kalmykov, The Langevin Equation: With Applications to Stochastic Problems

in Physics, Chemistry and Electrical Engineering, World Scientific, New York, 4th ed., 2017.



36 X. SHANG AND M. KRÖGER
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