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Abstract. We show that any nontrivial self-similar subset of the real line that is

invariant under a lattice iterated function system (IFS) satisfying the open set

condition (OSC) is not Minkowski measurable. So far, this was only known for

special classes of such sets. Thereby, we provide the last puzzle-piece in proving that

under OSC a nontrivial self-similar subset of the real line is Minkowski measurable

iff it is invariant under a nonlattice IFS, a 25-year-old conjecture.

1. Introduction

The Minkowski content was proposed by B. B. Mandelbrot [Man95] as texture

parameter for irregular sets (a measure of “lacunarity”). Indeed, the Minkowski

content can be used to understand the geometry of a fractal set beyond its (Hausdorff

or Minkowski) dimension and in particular is a tool to distinguish between sets of

the same dimension. Besides its geometric relevance, the Minkowski content has

attracted attention in connection with the Weyl-Berry conjecture concerning the

distribution of the eigenvalues of the Laplacian on bounded domains Ω ⊆ Rd with

fractal boundaries. More precisely, M. L. Lapidus and C. Pomerance showed in

[LP93] that if Ω ⊆ R, then the second asymptotic term of the eigenvalue counting

function can be expressed in terms of the Minkowski dimension and the Minkowski

content of the boundary of Ω, whenever these quantities exist. However, although

† This research was initiated and carried out while the authors were staying at the Institut Mittag-

Leffler. The authors would like to thank the staff of the institute as well as the participants and

organisers of the 2017 research programme Fractal Geometry and Dynamics for the stimulating
atmosphere, the excellent working environment, warm hospitality and financial support.
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2 S. Kombrink, S. Winter

much progress has been made in recent years, in general it is not easy to decide,

whether the Minkowski content of a given fractal set exists or not.

Assuming the open set condition (OSC) it was conjectured in [Lap93,

Conjecture 3] (see also [Gat00, Section 5.2]) that a nontrivial self-similar set is

Minkowski measurable (i. e. its Minkowski content exists, and is positive and finite)

iff it arises from a nonlattice iterated function system (IFS). The progress in resolving

this conjecture is as follows: Self-similar subsets of R generated from nonlattice IFS

satisfying OSC were shown to be Minkowski measurable in [Lap93, Fal95, Gat00]

(the results of [Gat00] hold for self-similar subsets of Rd, too). For nontrivial

self-similar subsets of R the converse, i. e. lattice sets are not Minkowski measurable,

was shown in [LvF00] under additional assumptions. These assumptions address

the geometric structure of the underlying feasible open set for the OSC and have

been weakened in [KK15, KPW16], see Section 2.3 for more details. However, up

to now the conjecture remained unresolved for large classes of self-similar sets, see

Section 2.4 for examples.

In the present article we fully remove the assumptions of [LvF00, KK15,

KPW16] and in this way provide the last puzzle-piece in proving that under

OSC a nontrivial self-similar subset of R is Minkowski measurable iff it arises from

a nonlattice IFS. This resolves the conjecture stated in [Lap93, Conjecture 3] and

[Gat00, Section 5.2] for self-similar sets in R.

The article is organised as follows. After some preliminaries in Sections 2.1 and

2.2 we give a brief exposition of the key results from the literature in Section 2.3. A

class of self-similar sets for which Minkowski measurability had previously not been

understood is discussed in Section 2.4. Our main results are stated in Section 3 and

proved in Section 4. We conclude by showing in Section 5 that for sets in R the

above-mentioned results from [KK15, KPW16] are equivalent.

2. Preliminaries

2.1. Minkowski measurability Let A denote a compact subset of the one-

dimensional Euclidean space (R, |·|) and let ε > 0. Define the ε-parallel set

of A to be Aε := {x ∈ R | infa∈A|x − a| ≤ ε}. If the Minkowski dimension

dimM (A) := 1 − limε↘0 log(λ(Aε))/ log(ε) exists, then we consider the rescaled

volume function ε 7→ εdimM (A)−1λ(Aε) defined on (0,∞), where λ denotes Lebesgue

measure in R. If its limit as ε↘ 0 exists, then we write

M(A) := lim
ε↘0

εdimM (A)−1λ(Aε)

and call this value the Minkowski content of A. If M(A) exists, and is positive and

finite then we say that A is Minkowski measurable.

2.2. Self-similar sets, open set condition, (non-)lattice and nontrivial We let

Φ := {φ1, . . . , φN} with N ∈ N, N ≥ 2 denote an iterated function system (IFS)

consisting of similarities φj acting on R. Note that the φj are not required to be

orientation preserving. Suppose that the IFS Φ satisfies the open set condition

Prepared using etds.cls



Lattice self-similar sets are not Minkowski measurable 3

(OSC), that is, there exists a nonempty open set O such that

φi(O) ⊆ O and φi(O) ∩ φj(O) = ∅ for i, j ∈ Σ, i 6= j (2.1)

where Σ := {1, . . . , N}. Any nonempty open set O satisfying (2.1) shall be called

a feasible open set for the IFS Φ. Let ri denote the similarity ratio of φi. We say

that Φ is lattice, if the set {log(ri) | i ∈ Σ} generates a discrete subgroup of (R,+).

Otherwise, Φ is said to be nonlattice. If Φ is lattice, then there exists a maximal

a > 0 such that {log(ri) | i ∈ Σ} ⊆ aZ and we call r := ea the base of Φ.

The natural action of Φ on the class of subsets of R is defined via ΦA :=
⋃
i∈Σ φiA

for A ⊆ R. By Hutchinson’s theorem, there exists a unique nonempty compact set

F satisfying the invariance relation ΦF = F . This set F is called the self-similar

set associated with Φ. It is well-known that under OSC dimM (F ) exists and that

#F > 1, where # denotes the cardinality.

F is called nontrivial if dimM (F ) < 1. Nontriviality of F is equivalent to

the assertion that any feasible open set O satisfies O \ ΦO 6= ∅, see [PW12,

Corollary 5.6]. Here, B and ∂B denote the topological closure and boundary of a

set B respectively. A feasible open set O for Φ is called strong, if it has nonempty

intersection with F , i. e. O ∩ F 6= ∅. Moreover, following [KPW16, Win15] O is

called compatible, if ∂O ⊆ F . (Notice, in [PW12] O is called compatible if ∂O ⊆ F ,

which is a weaker condition on O.) Let πF denote the metric projection onto F ,

which is defined on the set of points x ∈ R with a unique nearest neighbour y in F by

πF (x) := y. The set O is said to satisfy the projection condition if φiO ⊆ π−1
F (φiF )

for i ∈ Σ.

2.3. Known results on Minkowski measurability of self-similar sets in R Let F ⊆ R
be the self-similar set of an IFS Φ as defined in Section 2.2 and let I denote the

interior of the convex hull of F , that is, I is the smallest closed interval containing

F . Note that since F is not a singleton, I is nonempty.

Theorem 2.1. Suppose that Φ satisfies OSC.

(i) [Lap93, Fal95] If Φ is nonlattice and φi(I) ∩ φj(I) = ∅ for i 6= j (i. e. the

strong separation condition is satisfied), then F is Minkowski measurable.

(ii) [Gat00] If Φ is nonlattice, then F is Minkowski measurable.

(iii) [LvF00] If Φ is lattice, F is nontrivial and I is a feasible open set for Φ, then

F is not Minkowski measurable.

(iv) [KK15] If Φ is lattice, F is nontrivial and ΦmI is a feasible open set for Φ

for some m ∈ N0, then F is not Minkowski measurable.

(v) [KPW16] Assume existence of a strong feasible open set O for Φ that satisfies

the projection condition and for which there exists a finite partition of (0,∞)

so that ε 7→ λ(Fε ∩ (O \ ΦO)) is polynomial on each partition interval. If Φ is

lattice and F is nontrivial, then F is not Minkowski measurable.
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4 S. Kombrink, S. Winter

We point out that the results of [Gat00, KPW16] stated above in (ii) and (v) hold

in arbitrary dimension. For self-similar subsets of R the assumptions in (iv) and (v)

are equivalent, which we prove below in Theorem 5.1. To clarify that there exist

lattice self-similar sets which are not covered by the results (iii)–(v), we now discuss

some examples with more complicated feasible open sets.

2.4. Self-similar sets with complicated feasible open sets Let A > 1 and let

D := {d1, . . . , dN} ⊆ R be a digit set. Define similarities φj acting on R by

φj(x) = (x+ dj)/A for j ∈ {1, . . . , N}. Further, let

D1 := D, Dn := D +ADn−1, n ≥ 2 and D∞ :=
⋃∞
n=1Dn.

By [HL08, Theorem 4.4] the IFS Φ := {φ1, . . . , φN} satisfies OSC iff D∞ is uniformly

discrete and #Dk = Nk for all k ≥ 1. (D∞ is uniformly discrete if there exists r > 0

so that |x − y| ≥ r for all x 6= y ∈ D∞.) Thus, if one chooses A, d1, . . . , dN to be

nonnegative integers, then OSC is satisfied iff di 6= dj(modA) for i 6= j. Depending

on the choice of A and D feasible open sets can be rather complicated. E. g. for the

IFS Φ given by N = 3, A = 4, d1 = 0, d2 = 1 and d3 = 6, displayed in Figure 1,

OSC is satisfied but the assumptions of Theorem 2.1(iii)–(v) are violated, which can

be seen as follows. For (iii) and (iv) we provide a proof in the next paragraph. The

statement for (v) then directly follows from the equivalence of (iv) and (v) which

we prove in Theorem 5.1 below.

Fix m ∈ N0 and let U := ΦmI, where I = (0, 2) in this example. We claim that

U is not feasible for Φ. Without loss of generality we can assume that m is odd,

i. e. m = 2k + 1 for some k ∈ N0, since feasibility of ΦmI would imply feasibility of

Φm+1I. Writing φω := φω1
◦ · · · ◦ φωn

for ω ∈ Σn the claim directly follows from

φ1(U) ∩ φ2(U) ⊃ φ1

(
φ3φ

k
23(I)

)
∩ φ2

(
φk23φ2(I)

)
6= ∅, (2.2)

which we now prove: First observe that φ1(0) = 0, φ3(2) = 2 and φ23(2/3) = 2/3.

Second, note that for the left endpoints of the intervals φ13φ
k
23(I) and φ2φ

k
23φ2(I)

we have

φ13φ
k
23(0)− φ2φ

k
23φ2(0) = φ13

(
φk23

(
2
3

)
− 2

3

(
1
4

)2k)− φ2

(
φk23

(
2
3

)
− 5

12

(
1
4

)2k)
=
(

1
4

)2k+2
> 0.

1
2 3

11 12 13
21 22 23

31 32 33

0 1/4 1/2 3/4 1 5/4 3/2 7/4 2

Figure 1. The interval [0, 2] and its images under the first two iterations of the IFS {x
4
, x+1

4
, x+6

4
}.

The numbers above the intervals indicate their coding, e. g. ‘12’ encodes φ1φ2([0, 2]).
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Lattice self-similar sets are not Minkowski measurable 5

Third, the intervals φ13φ
k
23(I) and φ2φ

k
23φ2(I) both have length 2 · (1/4)2k+2.

Therefore, they must overlap in an interval of length (1/4)2k+2, showing (2.2).

Remark 2.2. Indeed, in the above example, any feasible open set necessarily has an

infinite number of connected components, disqualifying, in particular, the sets ΦmI.

This was pointed out to us by Christoph Bandt, whom we wish to thank for sharing

the following arguments with us:

The dynamical boundary of F associated with Φ is the set db(F ) :=
⋃
h F ∩ hF ,

where the union is taken over all neighbour maps h, i. e. maps of the form h = φ−1
u φω,

where u, ω ∈ Σn for some n ∈ N are so that φu(F ) ∩ φω(F ) 6= ∅ and u1 6= ω1.

When x ∈ db(F ) then φu(x) ∈ φu(F ) ∩ φω(F ). Thus, any feasible open set O for Φ

may not intersect db(F ). On the other hand, db(F ) ⊆ F and whence db(F ) ⊆ O.

Therefore, db(F ) ⊆ ∂O. Now, if the dynamical boundary has infinite cardinality

(which is the case here, see below), then O necessarily has infinitely many connected

components.

In [BM09] general statements were obtained to determine the cardinality of the

dynamical boundary of a limit set of a graph-directed system via neighbour graphs.

The neighbour graph associated to the present example is depicted in Figure 2. Its

root is the identity and its vertices are the neighbour maps. “An arrow with label i, j

is drawn from vertex h to vertex h if h = φ−1
i hφj for two marks i, j ∈ Σ. We keep

only those arrows which correspond to proper neighbors, that is φi(F )∩hφj(F ) 6= ∅.”

[BMT18]. In our example φi(F ) ∩ φj(F ) 6= ∅ iff (i, j) ∈ {(1, 2), (2, 1)}. Therefore,

there are precisely two arrows leaving the root vertex id. The first arrow, labeled

with ‘1,2’, terminates in the vertex φ−1
1 φ2 with φ−1

1 φ2(x) = x + 1. The second

arrow, labeled with ‘2,1’, terminates in the vertex φ−1
2 φ1 with φ−1

2 φ1(x) = x − 1.

The other vertices and arrows are constructed accordingly. Using the terminology

from [BM09] the light shaded vertices are intermediate and the dark shaded ones

are terminal. According to [BM09, Theorem 7] the terminal and intermediate

vertices correspond to subsets of the dynamical boundary with cardinality one and

countably infinite respectively. Thus, db(F ) is countably infinite here.

id

x+ 1 x− 1

x− 2 x+ 2

1,2 2,1

3,2

3,1
2,3

1,3

1,3 3,1

Figure 2. Neighbour graph for the IFS {x
4
, x+1

4
, x+6

4
}.
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6 S. Kombrink, S. Winter

3. Main results

Theorem 3.1. If F is a nontrivial self-similar set in R generated by a lattice IFS

Φ satisfying OSC, then F is not Minkowski measurable.

Together with Theorem 2.1 (ii) we thus verify the conjecture of [Lap93,

Conjecture 3] and [Gat00, Section 5.2] for self-similar sets in R:

Corollary 3.2. Suppose that F is a nontrivial self-similar set in R generated by

an IFS Φ satisfying OSC. Then F is Minkowski measurable iff Φ is nonlattice.

Remark 3.3. The nontriviality condition, dimM (F ) < 1, is necessary in the

statements of Theorem 3.1, Corollary 3.2 and Theorem 2.1(iii)–(v) and cannot

be removed: The unit interval X := [0, 1] has Minkowski dimension dimM (X) = 1.

It is the self-similar set associated with the lattice IFS {x 7→ x/2, x 7→ (x+ 1)/2}
acting on R. However, its Minkowski content M(X) = limε→0(1 + 2ε) = 1 exists

as a positive and finite value. Hence X is Minkowski measurable. In fact, any self-

similar set F in R with dimM F = 1 is Minkowski measurable, see e. g. [KPW16,

Theorem 1.1(i)].

A key ingredient in the proof of Theorem 3.1 is the construction of a relatively

simple strong feasible open set, see Theorem 3.4 below and its proof. With this set

at hand we can deduce Minkowski non-measurability from [KPW16, Theorem 3.1],

see Theorem 4.1 below. Define Σ∗ :=
⋃∞
n=0 Σn with Σ0 := {∅}, where ∅ denotes

the empty word. Moreover, for ω = (ω1, . . . , ωn) ∈ Σ∗ write φω := φω1
◦ . . . ◦ φωn

and let φ∅ be the identity map.

Theorem 3.4. Let F ⊆ R be the self-similar set generated by an IFS Φ satisfying

OSC. Then there exists a strong and compatible feasible open set U for Φ, i. e. one

which satisfies U ∩ F 6= ∅ and ∂U ⊆ F .

What is more, there always exists such a set U that can be generated from a finite

union of elementary intervals φu(I): there exist m ∈ N0 and Λ ⊆ Σm such that

UΛ :=
⋃
ω∈Σ∗

φω
⋃
u∈Λ

φu(I) (3.1)

defines a strong and compatible feasible open set for F .

Remark 3.5. For any m ∈ N0 and any nonempty Λ ⊆ Σm, the set UΛ in (3.1) has

nonempty intersection with F , since I∩F 6= ∅. Moreover, UΛ is compatible, because

∂UΛ ⊆
⋃
ω∈Σ∗ φω

⋃
u∈Λ φu(∂I) ⊆ F , where the last inclusion follows since ∂I ⊆ F

and φωF ⊆ F for any ω ∈ Σ∗. However, it is not obvious that UΛ is a feasible open

set and this is indeed only true for particular choices of Λ.

4. Proofs

4.1. Construction of a feasible open set UΛ – Proof of Theorem 3.4 Obviously,

the first statement of the theorem follows from the second. In view of Remark 3.5,

it therefore suffices to show that at least one of the sets UΛ (defined by (3.1)) is

feasible. First observe that for any m ∈ N and any nonempty Λ ⊆ Σm the set UΛ

Prepared using etds.cls



Lattice self-similar sets are not Minkowski measurable 7

is nonempty and open, since I has these properties, and that φiUΛ ⊆ UΛ for any

i ∈ Σ. Therefore, all that remains to be shown is existence of a set Λ ⊆ Σm for

some m ∈ N0 such that φi(UΛ) ∩ φj(UΛ) = ∅ for any i 6= j ∈ Σ. For this we adapt

Schief’s construction in [Sch94] of a strong feasible open set:

Let rω denote the similarity ratio of φω for ω = (ω1, . . . , ωn) ∈ Σ∗. Note that

rω = rω1
· · · rωn

. Fix ε ∈ (0, 1/6). Schief showed [Sch94, proof of Theorem 2.1] that

there exists κ ∈ Σ∗ so that

Oκ :=
⋃
u∈Σ∗φuκ (Fε)

is a feasible open set for Φ. As ri < 1 for all i, there is a minimal k ∈ N0 such that⋃
ω∈ΣkφωI ⊆ Fε.

Set m := k + |κ|, where |κ| denotes the length of κ, i. e. κ ∈ Σ|κ|. Further, set

Λ := {κω | ω ∈ Σk}. Then ∅ 6= Λ ⊆ Σm and UΛ ⊆ Oκ, whence φi(UΛ)∩φj(UΛ) = ∅
for any i 6= j ∈ Σ. This completes the proof of Theorem 3.4.

4.2. A criterion for Minkowski measurability. In the proof of Theorem 3.1 we will

make use of a general Minkowski measurability criterion for self-similar sets in Rd
(satisfying OSC) derived in [KPW16]. It is based on feasible open sets satisfying

the projection condition and was obtained via classical renewal theory. We briefly

restate a version of this criterion here, boiled down to our present one-dimensional

setting. Given Φ, O and F as in Section 2 we set

Γ := O \ ΦO and g := sup{ inf
y∈F
|x− y| | x ∈ Γ}. (4.1)

Theorem 4.1. [KPW16, Theorem 3.1 and Corollary 3.2] Let F ⊆ R be a

nontrivial self-similar set generated by a lattice IFS Φ with base r. Suppose that

Φ satisfies OSC with a strong feasible set O satisfying the projection condition.

Let D := dimM (F ) and let Γ and g be defined as in (4.1). Define the function

p : (rg, g]→ R by

p(ε) := εD−1

[
λ(Γ)

rD−1 − 1
+

∞∑
`=0

r`(D−1)λ(Fr`ε ∩ Γ)

]
. (4.2)

Then F is Minkowski measurable iff p is constant on (rg, g].

Note that the series in the definition of p is uniformly convergent in ε, see

[KPW16, proof of Theorem 3.1].

Remark 4.2. It is easily seen that a feasible open set of the form UΛ given in (3.1)

satisfies the projection condition. In fact, any strong and compatible feasible open

set O satisfies the projection condition, see e. g. [Win15, Remark 3.20].
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8 S. Kombrink, S. Winter

4.3. Minkowski non-measurability – Proof of Theorem 3.1 Let r denote the lattice

base of Φ and let U be a strong and compatible feasible open set for Φ. Such a set

U exists due to Theorem 3.4. We want to apply Theorem 4.1 and note that all its

assumptions are satisfied; in particular, the projection condition, see Remark 4.2.

We infer that the set F is Minkowski measurable iff the function p defined in (4.2)

is constant.

In the following we will demonstrate that the properties of U imply that p cannot

be constant. We pursue a proof by contradiction, whence assume that there exists

C > 0 so that p(ε) = C or, equivalently,

L(ε) := Cε1−D − λ(Γ)

rD−1 − 1
=

∞∑
`=0

r`(D−1)λ(Fr`ε ∩ Γ) =: R(ε) (4.3)

for ε ∈ (rg, g]. Define G := U \ ΦU . Clearly, G is open and G ⊆ Γ. Moreover,

λ(Γ\G) = 0, since Γ\G = U ∩∂ΦU ⊆ U ∩Φ∂U ⊆ F and dimM (F ) < 1. Therefore,

λ(Fr`ε ∩ Γ) = λ(Fr`ε ∩G). As stated in Section 2.2, nontriviality implies G 6= ∅.

Hence G has countably many connected components Gj , j ∈ J , each of which

is an open interval. Without loss of generality suppose that either J = N0 or

J = {0, . . . , n} for some n ∈ N0. Write diam(Gj) for the diameter of Gj and assume

that the Gj are ordered so that diam(Gj−1) ≥ diam(Gj) for all j ∈ J \ {0}. Since

∂Gj ⊆ F and Gj ∩ F = ∅, we have

λ(Ft ∩Gj) =

{
2t : 0 < 2t ≤ diam(Gj),

diam(Gj) : 2t > diam(Gj).
(4.4)

For ` ∈ N0, j ∈ J define f`,j : (rg, g]→ R by

f`,j(ε) := r`(D−1)λ(Fr`ε ∩Gj).

Then R(ε) =
∑∞
`=0

∑
j∈J f`,j(ε). Let f

(−)
`,j (ε) and f

(+)
`,j (ε) denote the left and right

derivatives of f`,j at ε respectively. By (4.4), we have that

f
(−)
`,j (ε) ≥ f (+)

`,j (ε) ≥ 0 for ` ∈ N0, j ∈ J and ε ∈ (rg, g). (4.5)

In fact, since λ(Fε ∩Gj) is piecewise linear with at most two different slopes, the

derivative f ′`,j(ε) of f`,j exists at all ε ∈ (rg, g) except for at most one point.

Lemma 4.3. The series
∑∞
`=0

∑
j∈J f

(+)
`,j and

∑∞
`=0

∑
j∈J f

(−)
`,j converge uniformly

on (rg, g).

Proof. Let Nε(`) := #{j ∈ J | 2r`ε ≤ diam(Gj)}. As remarked in Section 4.2, the

series
∑∞
`=0 r

`(D−1)λ(Fr`ε ∩ Γ) from (4.2) is uniformly convergent in ε. Thus, there

exists a sequence (cn)n so that limn→∞ cn = 0 and so that for ε ∈ (rg, g], n ∈ N

cn ≥
∞∑
`=n

r`(D−1)
∑
j∈J

λ(Fr`ε ∩Gj) ≥
∞∑
`=n

r`(D−1)

Nε(`)−1∑
j=0

2r`ε = ε

∞∑
`=n

2r`DNε(`).
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Since f
(−)
`,j (ε) = 0 if 2r`ε > diam(Gj), this yields

∞∑
`=n

∑
j∈J

f
(−)
`,j (ε) =

∞∑
`=n

Nε(`)−1∑
j=0

2r`D =

∞∑
`=n

2r`DNε(`) ≤
cn
ε
≤ cn
rg

which proves uniform convergence of
∑∞
`=0

∑
j∈J f

(−)
`,j and by (4.5) also of the series∑∞

`=0

∑
j∈J f

(+)
`,j . 2

Remark 4.4. Observe that f`,j are Kneser functions of order 1, i. e. they satisfy

f`,j(µb)− f`,j(µa) ≤ µ(f`,j(b)− f`,j(a)),

for all a, b ∈ (rg, g) with a ≤ b and any µ ≥ 1 such that µb < g. This can be

checked directly, but it also follows from [Sta76, Lemma 5], since the intervals Gj
are metrically associated with F (meaning that for each point x ∈ Gj there is a

point y ∈ F with |x− y| = infa∈F |x− a| such that the whole segment between x

and y is contained in Gj) and therefore λ(Ft ∩Gj) is a Kneser function of order 1

on (0,∞). Hence, the assertion of Lemma 4.3 is a special case of [Sta76, Lemma 4].

In order to obtain a contradiction, we consider two cases:

Case 1: There exist `∗ ∈ N0, j∗ ∈ J and x ∈ (rg, g) so that f
(−)
`∗,j∗(x) 6= f

(+)
`∗,j∗(x).

Equation (4.4) implies

f
(−)
`∗,j∗(x) = 2r`

∗D > 0 = f
(+)
`∗,j∗(x) (4.6)

Lemma 4.3 shows that the right and left derivatives of R at x exist and are given

by R(+)(x) =
∑∞
`=0

∑∞
j∈J f

(+)
`,j (x) and R(−)(x) =

∑∞
`=0

∑∞
j∈J f

(−)
`,j (x). With (4.5)

and (4.6) we thus obtain

R(−)(x)−R(+)(x) ≥ f (−)
`∗,j∗(x)− f (+)

`∗,j∗(x) = 2r`
∗D > 0.

Hence, unlike the function L, the function R is not differentiable at x, contradicting

(4.3).

Case 2: The derivative f ′`,j exists on (rg, g) for all ` ∈ N0, j ∈ J .

In this case, for any j ∈ J there exists k = k(j) ∈ N0 so that diam(Gj) = 2rkg,

yielding

f ′`,j ≡ 2r`D on (rg, g) for all ` ≥ k(j), and f ′`,j ≡ 0 otherwise. (4.7)

By Lemma 4.3, R′ exists and coincides with
∑∞
`=0

∑
j∈J f

′
`,j which by (4.7) is

constant on (rg, g). However, L′(ε) = C(1−D)ε−D which, due to the nontriviality

of F (and since C > 0), is clearly not constant. Therefore, we obtain a contradiction

to (4.3) also in the second case. This completes the proof of Theorem 3.1.

5. Equivalence of (iv) and (v) of Theorem 2.1

During our discussions the question arose whether the classes of self-similar subsets

of R covered by the assertions (iv) and (v) of Theorem 2.1 are equivalent. The

following statement gives an affirmative answer (irrespective of the IFS being lattice

or nonlattice).
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Theorem 5.1. Let Φ be an IFS in R satisfying OSC such that the associated

invariant set F is nontrivial. Then the following assertions are equivalent.

(i) ΦmI is a feasible open set for Φ for some m ∈ N0.

(ii) There exists a strong feasible open set O for Φ, satisfying the projection

condition, for which there exists a finite partition of (0,∞) so that

ε 7→ λ(Fε ∩ (O \ ΦO)) is polynomial on each partition interval.

Proof. To begin with, note that for any feasible open set of the form ΦmI there

exists a finite partition of (0,∞) so that ε 7→ λ(Fε ∩ (ΦmI \ Φm+1I)) is polynomial

on each partition interval. Therefore, (i) implies (ii).

For the converse, suppose that O is as in (ii). Consider U := int
(
O
)
, where int

denotes the topological interior. Then U =
⋃
i∈E Ui is a union of open intervals Ui

with the property that the distance between any two Ui is strictly positive. Let

Ẽ := {i ∈ E : Ui ∩ I 6= ∅}. The key part of the proof is to show that

#Ẽ <∞. (5.1)

Before proving (5.1) we demonstrate that (5.1) implies assertion (i). Since O is

a strong feasible open set for Φ, so is U , which can be seen by contradiction.

Therefore, F ⊆ U and so, by (5.1), F ⊆ U ∩ I ⊆ ⋃i∈Ẽ Ui, which implies that there

exists m ∈ N so that ΦmI ⊆ ⋃i∈Ẽ Ui (simply choose m large enough that, for any

w ∈ Σm, diam(φwI) is smaller than the minimal distance between the finitely many

Ui). The property that the Ui have positive distance to one another implies that

ΦmI ⊆ ⋃i∈E Ui. From this inclusion it is easy to see that ΦmI is feasible for Φ,

whence assertion (i) holds.

To verify (5.1) let c1, . . . , ck ∈ (0,∞) denote the partition points of the partition

of (0,∞) associated with O. Let {Hj}j∈J denote the collection of connected

components of int(O \ ΦO). Clearly, each Hj is an open interval and it is easy to

see that Hj ∩ F = ∅. We show (5.1) in four steps. Our first one is to prove

(I) #J <∞.

For this, set hj := inf{ε > 0 : Hj ⊆ Fε}. Observe that ε 7→ λ(Fε ∩Hj) is constant

(and equal to λ(Hj)) for ε > hj , and linear (and nonconstant) in a left neighborhood

of hj . In particular, the function ε 7→ λ(Fε∩Hj) is not differentiable at hj and so hj
must be one of the partition points c`. Next we show that for each of the finitely many

c` the associated set J` := {j ∈ J | hj = c`} is of finite cardinality: For j ∈ J` let H̃j

be the largest open interval (or one of the two in case of non-uniqueness) satisfying

Hj ∩ H̃j 6= ∅ and H̃j ⊆ F<c` \ F , where F<c` := {x ∈ R | infa∈F |x− a| < c`}. By

construction, {H̃j}j∈J` is a pairwise disjoint family (here it is important to restrict

to j ∈ J`). Furthermore, λ(H̃j) = c`. Therefore,

#J` = 1
c`

∑
j∈J`

λ(H̃j) = 1
c`
λ
( ⋃
j∈J`

H̃j

)
≤ 1

c`
λ(Fc`) <∞,

whence #J =
∑k
`=1 #J` <∞, showing (I).

Our second step is to verify that

Prepared using etds.cls



Lattice self-similar sets are not Minkowski measurable 11

(II) the number of connected components of U \ ΦU is finite.

For this, note that the family of connected components of U \ΦU essentially coincides

with {Hj}j∈J , with the only possible differences occurring at the boundary points⋃
j∈J ∂Hj . More precisely, each Hj is a subset of U \ ΦU but not necessarily a

connected component of this set, and U \ ΦU ⊆ ⋃j∈J Hj . Therefore, U \ ΦU has

at most #J connected components and (I) implies (II).

For the third step let Ui1 , . . . , Uin denote those connected components of U which

intersect U \ ΦU and let E∗ := {i1, . . . , in} denote the respective index set. (The

finiteness of E∗ is clear from assertion (II).) We prove

(III)
⋃
j∈E∗ Uj ∩ F 6= ∅.

If i ∈ E \ E∗ then Ui ⊆ ΦU =
⋃
j,k φk(Uj), which is a disjoint union by OSC and

definition of the Uj . As furthermore Ui and each φk(Uj) is open and connected

there exist k ∈ Σ, j ∈ E so that Ui ⊆ φk(Uj). On the other hand, since φk(Uj) is

a connected subset of U and intersects the connected component Ui, it must be

contained in Ui. Thus Ui = φk(Uj), i. e. Ui is the precise image of Uj under φk.

Amongst {Ui | i ∈ E \ E∗} there is at least one largest bounded one, Ui∗ , which

needs to be an image of some Uj with j ∈ E∗ by the contraction property of the

φk. Amongst {Ui | i ∈ E \ E∗} \ {Ui∗} there again is a largest bounded one and

inductively we see that each bounded Ui with i ∈ E \ E∗ is the image of one of

the sets Uj , j ∈ E∗ and that also the possible unbounded components need to be

amongst Ui1 , . . . , Uin . Since U is strong, we conclude
⋃
j∈E∗ Uj ∩ F 6= ∅, showing

(III).

In the final step we deduce (5.1) from the above: By (III), we can find a minimal

m ∈ N and ω ∈ Σm so that φωI ⊆
⋃
j∈E∗ Uj . Let ω = ω1 · · ·ωm. If φω2···ωm

I

intersected infinitely many of the positively separated Ui, then U \ ΦU would have

infinitely many connected components. (Assume that φω2···ωmI intersects infinitely

many Ui, say Uj1 , Uj2 , .... Then on the one hand, φωI intersects all the sets φω1
Ujk ,

i. e. infinitely many. On the other hand, φωI is an interval and thus contained in

a connected component V of U . Thus, as each φω1
Ujk is connected, φω1

Ujk ⊆ V .

Further, the family {φω1
Ujk}k is disjoint, which implies that the set V \ φω1

U

and thus V \ ΦU and U \ ΦU must have infinitely many connected components.)

This contradicts assertion (II). Thus, φω2···ωm
I intersects only finitely many Ui.

Inductively, one can now show that I can only intersect finitely many Ui. (Suppose

that φωk···ωm
I intersects infinitely many Ui. Then with a similar argument as above,

the same must hold for φωk−1···ωmI, which provides a contradiction to the previous

induction step.) Hence #Ẽ <∞, proving (5.1). 2
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