
 
 

University of Birmingham

When signalling goes wrong
Ehsan, Mehroz; Jiang, He; L Thomson, Kate; Gehmlich, Katja

DOI:
10.1007/s10974-017-9487-3

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Ehsan, M, Jiang, H, L Thomson, K & Gehmlich, K 2017, 'When signalling goes wrong: pathogenic variants in
structural and signalling proteins causing cardiomyopathies', Journal of Muscle Research and Cell Motility, vol.
38, no. 3-4, pp. 303-316. https://doi.org/10.1007/s10974-017-9487-3

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Mar. 2020

https://doi.org/10.1007/s10974-017-9487-3
https://doi.org/10.1007/s10974-017-9487-3
https://research.birmingham.ac.uk/portal/en/publications/when-signalling-goes-wrong(d6f4f8af-b2b6-405c-a6a6-24d4ed5c0cd7).html


Vol.:(0123456789)1 3

J Muscle Res Cell Motil (2017) 38:303–316 
DOI 10.1007/s10974-017-9487-3

When signalling goes wrong: pathogenic variants in structural 
and signalling proteins causing cardiomyopathies

Mehroz Ehsan1 · He Jiang1 · Kate L.Thomson1 · Katja Gehmlich1   

Received: 13 July 2017 / Accepted: 28 October 2017 / Published online: 8 November 2017 
© The Author(s) 2017. This article is an open access publication

affected individual. The different types include dilated car-
diomyopathy (DCM), hypertrophic cardiomyopathy (HCM), 
restrictive cardiomyopathy (RCM), arrhythmogenic right 
ventricular cardiomyopathy (ARVC) and left ventricular 
non-compaction (LVNC) cardiomyopathy (reviewed in Wat-
kins et al. 2011; Yacoub 2014). Many CMs are also associ-
ated with life-threatening arrhythmias (reviewed in Bezzina 
et al. 2015), that potentially result in sudden cardiac death 
events, making the identification and risk stratification of 
patients an important issue in the clinical practice.

Despite their different morphological appearances there 
is significant overlap of the underlying molecular pathways 
among various CMs. For example, cellular hypertrophy of 
cardiomyocytes is commonly observed in both DCM and 
HCM (Davis et al. 2016). Apoptosis, leading to myocyte 
death, is a prominent feature of DCM and ARVC (Narula 
et al. 1996; Thiene et al. 1997). Additionally, fibrosis, caused 
by fibroblast activation and collagen deposition—often in 
response to apoptosis of cardiomyocytes—is common 
among DCM, ARVC and HCM (Burlew and Weber 2000).

The genetic aetiology of cardiomyopathies is best under-
stood for HCM, DCM and ARVC. Historically, genomic-
wide linkage analysis in large families led to the identifi-
cation of the first HCM disease gene loci (Solomon et al. 
1990; Thierfelder et al. 1993; Watkins et al. 1993). The 
identification of de novo pathogenic variants in MYH7, the 
gene encoding sarcomeric beta (β)-Myosin heavy chain, 
confirmed it as causal gene in HCM (Watkins et al. 1992, 
1995). Together with the discovery of pathogenic variants in 
TPM1 and TNNT2 (encoding the thin filament proteins Tro-
pomyosin and Troponin T) and MYBPC3 (encoding Myosin 
Binding Protein C), the paradigm of HCM as a “disease of 
the sarcomere” was postulated (Geisterfer-Lowrance et al. 
1990; Thierfelder et al. 1994).

Abstract  Cardiomyopathies are a diverse group of car-
diac disorders with distinct phenotypes, depending on the 
proteins and pathways affected. A substantial proportion of 
cardiomyopathies are inherited and those will be the focus 
of this review article. With the wide application of high-
throughput sequencing in the practice of clinical genetics, 
the roles of novel genes in cardiomyopathies are recognised. 
Here, we focus on a subgroup of cardiomyopathy genes 
[TTN, FHL1, CSRP3, FLNC and PLN, coding for Titin, Four 
and a Half LIM domain 1, Muscle LIM Protein, Filamin 
C and Phospholamban, respectively], which, despite their 
diverse biological functions, all have important signalling 
functions in the heart, suggesting that disturbances in signal-
ling networks can contribute to cardiomyopathies.

Keywords  Cardiomyopathies · Genetic pathogenic 
variant · Mutation · Variant of unknown significance · 
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Introduction

Inherited cardiomyopathies (CMs) are genetic diseases of 
the heart; the majority of them are inherited in an autoso-
mal-dominant (AD) pattern. These diseases can be classified 
primarily on the basis of dominating morphological and/
or functional changes observed in the heart muscle of the 
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DCM is a more clinically heterogeneous condition. The 
vast majority of cases have a “non-genetic” aetiology (e.g. 
ischemic heart disease, viral myocarditis, substance abuse). 
However, in individuals with so called idiopathic DCM, 
in whom the common “non-genetic” causes have been 
excluded, approximately a quarter of cases appear to be 
familial (Petretta et al. 2011).

Over 50 genes have been reported to cause DCM, either 
as an isolated phenotype, or as part of a syndrome. These 
genes encode proteins with a diverse range of structural and 
functional roles within the cardiac myocyte (e.g. sarcomere, 
nuclear membrane, desmosome, sarcoplasmic reticulum, 
cytoskeleton). The majority of non-syndromic DCM is 
inherited in an AD manner; however autosomal recessive 
and X-linked forms are also reported (Hershberger et al. 
2013; McNally et al. 2013).

In individuals with AD non-syndromic DCM, loss-of-
function variants in the TTN gene, which encodes the protein 
Titin, are the most commonly reported genetic defect (Her-
man et al. 2012; Pugh et al. 2014; Walsh et al. 2017) and will 
be discussed below.

Pathogenic variants in LMNA (encoding the nuclear 
membrane protein isoforms Lamin A and Lamin C), and 
MYH7 appear to be the second most common, accounting 
for between 4–6 and 4–5% of cases respectively (Haas et al. 
2015; Pugh et al. 2014; Walsh et al. 2017).

Pathogenic variants in many other genes, including pro-
tein components of the sarcomere (e.g. TNNT2, TPM1), 
Z-disk (e.g. TCAP, MYPN, NEXN), cytoskeleton (e.g. DES, 
VCL), desmosome (e.g. DSP), and RNA-binding proteins 
(e.g. RBM20), have been reported in DCM cohorts. Indi-
vidually, these genes appear to account for a smaller pro-
portion of cases (Haas et al. 2015; Pugh et al. 2014; Walsh 
et al. 2017).

ARVC is recognised as a “disorder of the desmosome”, 
due to the majority of causal variants arising in genes 

encoding proteins in this cell–cell contact structure (e.g. 
PKP2, DSG2, DSC2, DSP and JUP) (Awad et al. 2008).

In the recent years, substantial advances have been 
made in our understanding of genetic causes of cardiomyo-
pathies through the application of high-throughput genetic 
sequencing techniques. Genomic sequencing in large ref-
erence cohorts has revealed unexpectedly high levels of 
rare variation in cardiomyopathy genes in the background 
population (Andreasen et al. 2013; Walsh et al. 2017). 
Simultaneously, it has become feasible to analyse more 
candidate genes in larger patient cohorts, and to explore 
genes which, due to their large size, were technically diffi-
cult to analyse (e.g. TTN, DMD and RYR2). This has facili-
tated the identification of novel disease genes, and enabled 
re-evaluation of existing gene–disease relationships.

The current major challenge in cardiomyopathy gene 
analysis is variant interpretation; in many cardiomyopa-
thy disease genes, it is difficult to distinguish between 
disease-causing and benign variation. Demonstrating the 
lack of suitable approaches beyond bioinformatics pre-
diction tools, an increasing proportion of variants—espe-
cially missense changes—are being classified as “variants 
of unknown significance” (Alfares et al. 2015; Pugh et al. 
2014; Waldmuller et al. 2015; Walsh et al. 2017). Insights 
into the detailed molecular mechanisms of disease are 
another challenging aspect of cardiomyopathies and usu-
ally lack behind the genetic discoveries.

In this review we discuss selected examples of cardio-
myopathy genes (TTN, FHL1, CSRP3, FLNC and PLN; 
see Table 1 and Fig. 1) which, based on their known bio-
logical functions and the (limited) functional work on the 
disease-causing pathogenic variants, have been shown 
to have important signalling functions in the heart. It is 
proposed that perturbations of these signalling functions 
in the presence of pathogenic genetic variants can cause 
cardiomyopathy.

Table 1   Summary of cardiac 
diseases caused by pathogenic 
variants in TTN, FHL1, CSRP3, 
FLNC and PLN 

AR autosomal recessive

Gene/chromosome Disease Inheritance pattern Comments

2q31.2
TTN

DCM AD, variable penetrance Truncating variants in A-band 
dominating, common (≤25%)

Xq26.3
FHL1

HCM X-linked With or without skeletal muscle 
involvement, rare

11p15.1
CSRP3

HCM AD, late onset Rare; missense variants dominating

FLNC
7q32.1

HCM
DCM

AD
AD

Missense variants dominating
Truncating variants dominating

PLN
6q22.31

DCM
HCM

AD (R9C, ΔR14), AR (L39X)
AD

Rare
Rare, L39X and promotor variants
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TTN (Titin)

Titin, originally named “connectin” (Maruyama et al. 1977, 
1976), appears as a long and flexible filament of about 1 µm 
in length and 3–4 nm-wide under the electron microscope 
(Maruyama et al. 1984; Trinick et al. 1984; Wang et al. 
1984). Indeed, it is the largest known polypeptide found in 
nature, a single molecular spans from the Z-disk to M-band 
of the sarcomere. Titin is encoded by the gene TTN that is 
located on chromosome 2q31.2. The complete sequence of 
TTN contains 363 exons, and encodes up to 38,138 amino 
acid residues with a molecular weight of ~ 4.2 MDa (Bang 
et al. 2001).

Disease-causing missense pathogenic variants in TTN 
have been studied extensively in the context of skeletal 
muscle diseases, including hereditary myopathy with early 
respiratory failure (HMERF) and tibial muscular dystrophy 
or Limb Girdle Muscular Dystrophy (LGMD) (Hackman 
et al. 2002; Pollazzon et al. 2010; Toro et al. 2013). These 
AD myopathy-causing pathogenic variants are located in 
C-terminal regions of Titin. Recessive truncating and dis-
ruptive missense TTN pathogenic variants have also been 
linked to disease affecting both skeletal and cardiac muscles, 
such as early-onset myopathies with fatal cardiomyopathy 

(Carmignac et al. 2007; Chauveau et al. 2014a, b; Jungbluth 
and Gautel 2014).

Truncating variants in TTN are the most frequent genetic 
finding in idiopathic DCM being present in up to 25% of 
the cases (Herman et al. 2012) and are also found frequently 
in peri-partum cardiomyopathy (van Spaendonck-Zwarts 
et al. 2014). This observation was initially confounded by 
the appearance of TTN truncating variants in normal cohorts 
(up to 3%) (Roberts et al. 2015), but it is now evident that 
DCM associated TTN variants tend to cluster predominantly 
in the A-band portion of Titin, while variants found in con-
trols tend to spare the A-band region and/or are in exons that 
have low usage in adult cardiac transcripts (Akinrinade et al. 
2015a; Roberts et al. 2015; Schafer et al. 2017).

Autosomal dominant TTN missense pathogenic variants 
have been reported in various types of isolated CM (Gerull 
et al. 2002; Itoh-Satoh et al. 2002; Matsumoto et al. 2005; 
Peled et al. 2014; Satoh et al. 1999; Taylor et al. 2011). One 
of them, TTN W976R, is well supported by co-segregation 
within a large DCM family and functional data (Gerull et al. 
2002; Gramlich et al. 2015; Hinson et al. 2015). Likewise, 
TTN A178D was identified in a family with features of 
left-ventricular non-compaction and DCM by a non-biased 
genetic approach. This pathogenic variant co-segregates 
with disease in the family and displays impaired function, 

Filamin C (FLNC)

Sarcomere: Z-disk

Phospholamban (PLN)

Sarcoplasmic Reticulum

Muscle LIM Protein (CSRP3)

Cytoplasm (and Nucleus)

Four and A Half LIM Domain (FHL1)

Sarcomere: Z-disk and I-band

Titin (TTN)

Sarcomere: Z-disk to M-band

Fig. 1   Schematic localisation of the five proteins of this review in a drawing of a cardiomyocyte; genes name are given in brackets; adapted 
from Cahill and Gehmlich 2015 with permission
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i.e. reduced binding to the ligand telethonin in vitro (Hast-
ings et al. 2016).

The causality for other TTN missense pathogenic variants 
is less clear, e.g. next generation sequencing identified large 
numbers of TTN missense variants in reference populations 
and in HCM (Lopes et al. 2013), but their relevance for the 
pathogenesis of HCM remains to be established. The chal-
lenge in clinical practice is that missense variants in TTN are 
common in normal population cohorts. One in three individ-
uals carries a rare (i.e. < 0.01% allelic frequency) variant in 
TTN, but clearly only a small fraction of these are penetrant 
disease-causing pathogenic variants. Hence, TTN missense 
pathogenic variants are currently generally ignored when 
found in diagnostic sequencing (Akinrinade et al. 2015b; 
Lopes et al. 2013), however attempts are being made to clas-
sify them based on bioinformatics predictions (Haas et al. 
2015; Helle and Parikh 2016; Laddach et al. 2017).

Expression of Titin is muscle-specific. Following Myosin 
and Actin, Titin is the third most abundant protein of striated 
muscle in vertebrates. As a result of alternative splicing of 
TTN, a number of Titin isoforms are expressed in differ-
ent type of striated muscle tissues. In the heart, three major 
splicing isoforms of Titin have been identified: N2B, N2BA 
and fetal cardiac Titin. Both N2B and N2BA are isoforms of 
Titin expressed in adult cardiac muscle (Bang et al. 2001), 
whereas fetal cardiac Titin is expressed exclusively during 
development of the fetal heart (Lahmers et al. 2004). N2B 
is the shortest and stiffest isoform with the size of approxi-
mately 3.0 MDa, and is the predominant isoform of Titin 
expressed in rodent left ventricles (Bang et al. 2001). N2BA 
is the medium-sized isoform (3.3–3.5 MDa) with compli-
ant stiffness that consists of both N2B and N2A elements, 
and contains an additional region of PEKV and Immuno-
globulin like (Ig) domain elements. The ratio of N2BA to 
N2B isoforms varies among species and a higher ratio is 
found in larger animals (Cazorla et al. 2000). In contrast, 
fetal cardiac Titin is the largest and most compliant cardiac 
isoform of Titin with a molecular weight of 3.6–3.8 MDa 
(Lahmers et al. 2004).

A significant increase of N2BA to N2B ratio has been 
reported in DCM patients, hence affecting the passive 
tension within the sarcomere due to changes in stiffness 
(Nagueh et al. 2004). Altered expression ratio between these 
two Titin isoforms has also been described in a hypertensive 
myocardium rat model (Warren et al. 2003) and a canine 
heart failure model (Wu et al. 2002). Of note, RBM20 is 
an alternative splicing regulator, and pathogenic variants 
detected in DCM patients have been reported to disrupt pro-
tein function. This is associated with more compliant, larger 
Titin isoforms, which appears to drive the DCM phenotype 
(Guo et al. 2012). Moreover, this is supported by a RBM20 
knockout rat model, which displays a DCM phenotype in the 
presence of more compliant, larger Titin isoforms.

As an intra-sarcomeric filament, Titin spans a half-sar-
comere in length—Titin anchors the Z-disk at its N-termi-
nus, crossing through the I-band and the A-band, towards the 
M-band at the C-terminus. Titin interacts with different sar-
comeric proteins, for instance it binds to α-Actinin (Young 
et al. 1998), Telethonin (T-cap) (Gregorio et al. 1998; Mues 
et al. 1998) and may interact with Nebulin’s Src Homology 
3 domain (Ma and Wang 2002) at the Z-disk. It binds Actin 
(Linke et al. 1997) and Obscurin (Young et al. 2001), and 
interacts with the Myosin filament through Myomesin at the 
M-line (Fukuzawa et al. 2008; van der Ven and Furst 1997). 
Cardiac Titin is considered a stable structural and flexible 
mechanical component of the myocardium, which prevents 
the overstretching of the sarcomere (Fürst and Gautel 1995; 
Maruyama 1997; Wang 1984). Titin plays an important role 
in regulating passive tension, an opposing force created dur-
ing sarcomere stretching. With the elastic recoil properties 
largely derived from near the Z-disk towards the edge of the 
A-band, Titin acts like a “molecular spring” that contrib-
utes to the passive tension during cardiac relaxation (Helmes 
et al. 1999; Linke et al. 1999). The characteristics of this 
spring can further be modulated by phosphorylation events 
(reviewed in Hamdani et al. 2017; Kruger and Linke 2011).

In addition, Titin also acts as a scaffold protein for the 
thick filament proteins within the A-band region (Freiburg 
and Gautel 1996; Head et al. 2001). In this context, Titin has 
been suggested to function as a molecular ruler, controlling 
thick filament length (Bennett and Gautel 1996; Wang 1996; 
Whiting et al. 1989), however this concept is still controver-
sially discussed (Granzier et al. 2014; Tskhovrebova et al. 
2015).

Titin also contains binding sites that interact with several 
signalling proteins such as protease Calpain p94 (Kinbara 
et al. 1997), Muscle-specific Ring Finger Protein 1 (MURF-
1) (Centner et al. 2001) and Four And A Half LIM Domains 
2 (FHL2, also referred to as DRAL) (Lange et al. 2002). In 
addition, Titin features a serine/threonine kinase domain at 
the M-line (Gautel et al. 1993). This Titin kinase domain 
region is conformationally opened by mechanical strain 
(Puchner et al. 2008), then interacts with Nbr-1 and also 
recruits MURFs, proteins controlling protein turn-over in 
cardiomyocytes (Bogomolovas et al. 2014; Lange et al. 2005; 
Pizon et al. 2002). Moreover, Titin binds FHL1 and FHL2, 
both of which are implicated in mechano-responsive hyper-
trophic signalling (Lange et al. 2002; Raskin et al. 2012).

FHL1 (Four And A Half LIM Domains 1)

FHL1 codes for a protein called Four And A Half LIM 
Domains 1 (FHL1). The gene is positioned on the X-chro-
mosome (Xq26.3), and therefore pathogenic variants in this 
gene cause X-linked disease. FHL1 was initially identified as 
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a disease gene for skeletal muscle diseases, such as X-linked 
myopathy with postural muscle atrophy (Windpassinger 
et al. 2008), reducing body myopathy (Schessl et al. 2009), 
and Emery–Dreifuss muscular dystrophy (Gueneau et al. 
2009). Particularly for Emery–Dreifuss muscular dystrophy 
cases, cardiac involvement is commonly observed, with con-
duction defects, arrhythmias, and hypertrophic cardiomyo-
pathy. More recently, FHL1 was also described as a disease 
gene for HCM, with or without skeletal muscle involvement 
(Friedrich et al. 2012; Hartmannova et al. 2013; Knoblauch 
et al. 2010).

FHL1 is a Titin-associated protein, with predominant 
expression in striated muscle tissues. As the name implies, 
it consists of four LIM domain and a fold resembling half 
a LIM domain (Lee et al. 1998). A LIM domain contains 
a cysteine rich consensus sequence [CX 2 CX 17–19 HX 
2 CX 2 CX 2 CX 16–20 CX (2 C/H/D)] and comprises of 
two zinc fingers which coordinate one zinc ion each (Zheng 
and Zhao 2007). FHL1 is upregulated in human disease and 
experimental models of cardiomyopathy (Lu et al. 2012). 
In particular, the use of an alternative 5′ start site resulting 
in an “induced” iFHL1 transcript is associated with patho-
physiological remodelling (Christodoulou et al. 2014). In 
the mouse model, inactivation of the gene has no baseline 
phenotype, however mice lacking FHL1 lack a response 
to pressure overload in the heart (Sheikh et al. 2008), sug-
gesting that the protein is involved in mechano-signalling 
pathways. At the molecular level, FHL1 interferes with the 
phosphorylation of Titin N2B by Extracellular Signal Reg-
ulated-Kinase-2 (Erk2), thereby modulating Titin mechanics 
(Raskin et al. 2012).

Functional work on HCM-causing FHL1 pathogenic vari-
ants suggests protein instability and loss of protein as the 
dominating contributor to disease (Friedrich et al. 2012). 
Moreover, FHL1 is discussed as a gender-specific modifier 
of disease severity in HCM patients, given its location on 
the X chromosome (Christodoulou et al. 2014).

CSRP3 (Muscle LIM Protein)

Muscle LIM Protein (MLP) was initially identified as a 
regulator of myogenesis in striated muscles (Arber et al. 
1994). MLP is encoded by the gene Cysteine and Glycine-
rich Protein 3 (CSRP3) on chromosome 11p15.1. Several 
pathogenic variants in CSRP3 have been shown to cause 
cardiomyopathies with AD inheritance (Bos et al. 2006; 
Geier et al. 2003; Hershberger et al. 2008; Mohapatra 
et al. 2003). Almost all of the reported disease-causing 
pathogenic variants are located within the first 100 amino 
acids, no disease-causing variants been identified at the 
C-terminus (Vafiadaki et al. 2015). The increased avail-
ability of next generation sequencing data has helped to 

validate previously published pathogenic variants. One 
such variant, CSRP3 p. W4R, described initially as a 
DCM-causing pathogenic variant (Knoll et al. 2002), has 
been re-classified as a benign polymorphism (Bos et al. 
2006; Geier et al. 2008). Linkage analysis in a large Ger-
man HCM pedigree led to identification of the C58G mis-
sense pathogenic variant in CSRP3 (Geier et al. 2003). 
The MLP C58G mutant protein, when compared to MLP 
wildtype, was shown to be more susceptible to degrada-
tion in vitro. This supported findings that MLP levels in a 
cardiac biopsy were significantly reduced, up to 40% in a 
patient with a heterozygous MLP C58G pathogenic variant 
(Geier et al. 2008).

In addition to disease-causing pathogenic variants, MLP 
protein expression changes have been shown to be associated 
with cardiac disease. MLP was significantly reduced in fail-
ing hearts (Zolk et al. 2000), however, as MLP expression 
is variable in hearts, reduced expression cannot be used as a 
marker for heart failure.

MLP has been shown to be expressed exclusively in car-
diomyocytes and in adult slow-twitch skeletal muscle cells 
(Arber and Caroni 1996; Schneider et al. 1999). MLP is 
a relatively small protein, consisting of 194 amino acids. 
The two LIM domains of MLP are followed by glycine-
rich repeat regions, and separated by more than 50 residues. 
These LIM domains are also responsible for most of the 
MLP’s protein interactions, both structural and signalling 
related, in different regions of the cell (Arber and Caroni 
1996; Kadrmas and Beckerle 2004; Schmeichel and Beck-
erle 1994, 1997; Weiskirchen et al. 1995). MLP has been 
shown to interact with Telethonin (T-cap) (Knoll et  al. 
2002), α-Actinin (Gehmlich et al. 2004; Louis et al. 1997) 
and Cofilin-2 (Papalouka et al. 2009) at the Z-disk. In vitro 
studies have also shown additional binding partners for MLP. 
For example, MLP can bind to itself (Zolk et al. 2000), it 
associates with proteins at the costamere (including, Zyxin, 
Integrin Linked Kinase, and β1-Spectrin) (Flick and Koniec-
zny 2000; Postel et al. 2008; Zolk et al. 2000) and the Nebu-
lin-related Anchoring Protein (N-RAP) (Ehler et al. 2001) 
at the intercalated disk. MLP also interacts with the nuclear 
transcription factors MyoD, Myogenin, and Myogenic Regu-
latory Factor 4 (MRF4) (Kong et al. 1997). MLP’s interac-
tions with these transcription factors, and the presence of 
predicted nuclear localization signal suggested that MLP 
function is regulated by translocation between nucleus and 
cytoplasm (Boateng et al. 2009). There is conflicting infor-
mation about MLP’s localisation within cardiac cells. MLP 
has been proposed to be a sarcomere protein located at the 
Z-disk, I-band, M-line, or at the cell membrane (Arber and 
Caroni 1996; Arber et al. 1997; Flick and Konieczny 2000; 
Henderson et al. 2003; Knoll et al. 2010). However, it has 
also been reported to be a non-sarcomeric protein, with dif-
fuse cytoplasmic expression (Geier et al. 2008).
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MLP Knockout (KO) mice were one of the first published 
models for dilated cardiomyopathy, with a molecular activa-
tion of hypertrophic signalling cascades (Arber et al. 1997). 
MLP KO cardiomyocytes exhibit cytoarchitecture pertur-
bations including disrupted myofibrillar assembly, abnor-
mal alignment of Z-disks and marked fibrosis (Arber et al. 
1997). Aberrations at the intercalated discs were observed in 
these mice, with upregulation of proteins including N-RAP, 
β-Catenin, Vinculin and plakoglobin, along with upregula-
tion of adherens junctions and downregulation of the gap 
junction protein Connexin-43 (Ehler et al. 2001). Other stud-
ies have also highlighted that loss of MLP leads to perturba-
tion in intracellular calcium handling and excitation–con-
traction coupling and that a double knockout of MLP and 
Phospholamban, which regulates sarcoplasmic reticulum 
calcium intake, rescues the DCM phenotype (Esposito et al. 
2000; Kemecsei et al. 2010; Kuhn et al. 2012; Minamisawa 
et al. 1999, Su et al. 2001).

MLP KO mice are born in Mendelian frequencies, dis-
missing an indispensable role in embryonic development, 
however, the protein is thought to be essential for adapta-
tion of the heart to increased hemodynamic stress post birth 
(Buyandelger et al. 2011). MLP deficiency resulted in loss of 
passive elasticity in isolated papillary muscles from neonatal 
and perinatal cardiomyocytes. This has been suggested as 
a contributing factor to development of diastolic dysfunc-
tion and eventual heart failure in these animals. Increased 
stiffness of cardiomyocytes was also demonstrated by 
Omens and colleagues in their study performed on hearts 
from 2-week-old MLP-deficient animals (Omens et  al. 
2002). The underlying molecular mechanism of this effect, 
however, is still poorly understood. Prolonged mechanical 
stress results in maladaptive changes in the cardiomyocytes 
leading to hypertrophy and eventual heart failure. These 
observed changes in elasticity, combined with findings that 
mechanical stimulation failed to stimulate BNP transcription 
in MLP KO cardiomyocytes, led to the proposal that MLP 
is part of cardiac stretch sensor complex, along with Titin 
and Telethonin (Knoll et al. 2002). These suggestions were 
made considering the findings that MLP was localised to 
Z-disk. However, more recent findings of MLP’s cytoplas-
mic localisation (Geier et al. 2008) makes it unlikely that a 
non-sarcomeric protein such as MLP can be a stress sensor 
for cardiomyocytes. It is likely that MLP is rather involved 
in downstream signalling pathways.

MLP heterozygous KO mice (MLP +/−) show no overt 
phenotype under normal conditions. Compared to WT ani-
mals, these mice present with more left ventricular dila-
tion and systolic dysfunction and decreased survival after 
myocardial infarction; this is associated with a supressed 
pro-hypertrophic Calcineurin-Nuclear Factor of Activated 
T-cells (NFAT) signalling pathway (Heineke et al. 2005), 
again underlining MLP’s role in hypertrophic signalling 

cascades. Moreover, MLP protein levels have been shown 
to increase during stress such as aortic banding in wild-type 
mice (Kuhn et al. 2012). However, overexpression of MLP 
does not confer any protection to the heart in response to 
pathological stress such as transverse aortic constriction or 
chronic infusion of angiotensin-II (Kuhn et al. 2012).

Further, the novel function of MLP as an endogenous 
inhibitor of Protein Kinase C α (PKCα) in the heart has been 
elucidated (Lange et al. 2016): Aberrant PKCα signalling in 
the heart has been shown to cause remodelling and patholog-
ical growth of the heart. In the absence of MLP the expres-
sion of adapter protein CARP was increased, which led to 
recruitment of PKCα at the intercalated disc. The absence 
of CARP reduces PKCα signalling at the intercalated disc, 
which is why mice lacking both MLP and CARP develop 
normally and show no signs of DCM (Lange et al. 2016).

FLNC (Filamin C)

Filamin C is encoded by FLNC on chromosome 7q32.1. It 
is an established disease gene for skeletal muscle disease, 
causing protein aggregation myofibrillar myopathy (MFM) 
(Vorgerd et al. 2005) or distal myopathy (Duff et al. 2011). 
Cardiac involvement has been described for approximately 
one-third of MFM cases (Kley et al. 2007; Vorgerd et al. 
2005). More recently, pathogenic variants in Filamin C were 
reported in families with familial HCM without skeletal 
muscle involvement (Valdes-Mas et al. 2014). The majority 
of the reported putative pathogenic variants were missense 
changes. In addition, two further missense pathogenic vari-
ants were reported in individuals with RCM (Brodehl et al. 
2016). Prompted by these findings, screening was expanded 
onto other types of CMs and subsequently pathogenic vari-
ants in FLNC were also associated with DCM and ARVC 
(Ortiz-Genga et al. 2016). It now emerges that missense 
pathogenic variants tend to cause HCM or RCM (Brodehl 
et al. 2016; Gomez et al. 2017), while nonsense and trunca-
tion pathogenic variants cause DCM or ARVC (Begay et al. 
2016; Janin et al. 2017; Ortiz-Genga et al. 2016).

Filamin C is highly expressed in muscle tissues. It 
belongs to the family of three Filamin proteins (A, B and 
C), all characterised by the same modular blueprint (Razinia 
et al. 2012): at the N-terminus, two calponin- homology 
domains form an Actin-binding interface, which is followed 
by 24 Ig-domains. The last of these domains (d24) mediates 
dimerization of the protein (Himmel et al. 2003; Sjekloca 
et al. 2007). As a result of this Y-shaped structure, Filamins 
are Actin-cross linking proteins.

Unique for Filamin C is a striated-muscle specific 80 
amino acid long insertion in Ig-domain 20, which mediates 
interactions to ligands such as e.g. Myotilin (van der Ven 
et al. 2000), Myopodin (Linnemann et al. 2010), Xin and 
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XIPR2 (van der Ven et al. 2006) and aciculin (Molt et al. 
2014). Of note, many of these proteins have striated-mus-
cle specific expression (Myotilin, Myopodin, Xin, XIPR2) 
and are thought to have a crucial role for the organisation 
and integrity of skeletal and/or cardiac tissue. For example, 
Myotilin is a known disease gene for LGMD (Salmikangas 
et al. 1999) and MFM (Selcen and Engel 2004) and deletion 
of Xin proteins in mouse models leads to either mild cardiac 
abnormalities (Otten et al. 2010) or cardiac hypertrophy and 
electrophysiological changes (Chan et al. 2011; Gustafson-
Wagner et al. 2007).

Many of the other Ig-domains have also been found to 
mediate interactions with ligands (reviewed in van der Flier 
and Sonnenberg 2001; Zhou et al. 2007) and the protein’s 
function are modulated by protein phosphorylation events 
(Murray et al. 2004; Reimann et al. 2017; Sequea et al. 
2013).

Like the other members of the Filamin family, Filamin C 
modulates Actin dynamics. It plays important roles in myofi-
brillogenesis (Chiang et al. 2000; Dalkilic et al. 2006) by 
acting in concert with its binding partners Xin, XIRP2 and 
Aciculin (Molt et al. 2014). A mouse model with genetic 
inactivation of Filamin C highlights the protein’s crucial role 
for muscle function; Filamin C deficient mice die at birth 
due to respiratory failure and have underdeveloped skeletal 
muscles (Dalkilic et al. 2006).

In mature striated muscle, Filamin C is found at the 
periphery of the Z-disks, linking sarcomeric Actin struc-
tures to the cytoskeleton (Gontier et al. 2005), and at the 
intercalated disk, a structure which links neighbouring 
cardiomyocytes to each other. Beyond its structural roles, 
Filamin C acts as a signalling hub and is an active player in 
the repair of myofibrillar damage in cardiomyocytes (Leber 
et al. 2016). Based on its homology and structural similar-
ity with Filamin A, mechano-sensing functions have been 
postulated (Razinia et al. 2012). The Ig-domains 20–21 of 
Filamin A have been shown to be in a closed conforma-
tion that opens upon mechanical stretch and is subsequently 
accessible for ligands (Chen et al. 2013; Seppala et al. 2015), 
thereby providing a molecular basis for how altered mechan-
ical load can trigger downstream signalling events, such as 
myofibrillar repair.

Filamin C has been identified as a target of chaperone 
assisted selective autophagy (CASA) (Arndt et al. 2010; 
Ulbricht et al. 2015). Upon mechanical stress, damaged 
components of the Z-disk such as Filamin C will be released 
in a chaperone BAG3-mediated process and targeted for deg-
radation by the autophagosome. This process seems de-reg-
ulated in skeletal muscle diseases (especially MFM) when 
aggregates of mutant Filamin C proteins form (Kley et al. 
2013b). These aggregates aberrantly recruit myofibrillar 
components and hence deplete them from the myofilament 
(Kley et al. 2013a). Moreover, the CASA mechanism and 

subsequent autophagy are impaired in the presence of these 
protein aggregates (Ruparelia et al. 2016).

The patho-mechanisms of Filamin C-related cardiomyo-
pathies are less clear. For DCM, nonsense and truncating 
pathogenic variants appear to dominate. However, why 
these pathogenic variants cause pure cardiac disease, mostly 
without skeletal disease involvement, is still unclear. The 
absence of Filamin C protein aggregates in the myocardium 
of DCM patients with Filamin C pathogenic variants is a 
valuable observation (Ortiz-Genga et al. 2016) and it could 
be speculated that a loss of function mechanism prevails. 
In contrast, for some (but not all) HCM/RCM patients with 
Filamin C pathogenic variants investigated, protein aggrega-
tion has been observed in vivo and in vitro (Brodehl et al. 
2016; Valdes-Mas et al. 2014). It is currently speculated that 
depending on the positions of the missense pathogenic vari-
ant in the protein, these mutants may cause disease through 
different modes of action (Gomez et al. 2017).

While Filamin C is now recognised as an important dis-
ease gene for cardiomyopathies, future functional work, 
including the generation of model systems and organisms, 
is needed to gain insights into the detailed pathophysiology 
of cardiomyopathies.

PLN (Phospholamban)

Phospholamban is encoded by PLN on chromosome 
6q22.31. It is a rare, but well established disease gene for 
DCM, with several disease-causing missense pathogenic 
variants identified in familial cohorts. A causative role 
for PLN R9C in DCM is evidenced by co-segregation in a 
large 4 generation family affected by DCM and heart failure 
(Schmitt et al. 2003). Additionally, the L39X pathogenic 
variant was identified in another large family, resulting in 
left ventricular hypertrophy in heterozygous carriers and 
DCM in homozygous carriers in the absence of detectable 
Phospholamban protein (Haghighi et al. 2003). Interest-
ingly, the heterozygous L39X pathogenic variant has also 
been found in patients with HCM (Chiu et al. 2007; Land-
strom et al. 2011). Another pathogenic variant supported by 
co-segregation in a large family with DCM is the deletion 
of arginine 14 (Haghighi et al. 2006), which has also been 
found in other, unrelated individuals and/or families affected 
by DCM (DeWitt et al. 2006; Posch et al. 2009). In addition, 
two pathogenic variants in the promoter region of PLN have 
been associated with HCM (Medin et al. 2007; Minami-
sawa et al. 2003), with functional studies showing opposing 
effects on promotor activity.

Functionally, Phospholamban associates with the Sar-
coplasmic Reticulum Calcium ATPase (SERCA2a) (Ver-
boomen et al. 1992) and acts to negatively regulate intra-
cellular calcium removal through direct inhibition of 
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SERCA-mediated calcium uptake into the sarcoplasmic 
reticulum. Under basal conditions, Phospholamban exists 
in equilibrium between its monomeric and pentameric form 
(Fujii et al. 1989), with phosphorylation demonstrated to 
stabilize the pentameric structure and reduce the affinity of 
Phospholamban to SERCA2a (Hou et al. 2008). Phospho-
rylation of serine 16 by Protein Kinase A (PKA) and threo-
nine 17 by Calcium/Calmodulin-dependent Protein Kinase 
occur in response to beta-adrenergic stimulation (Wegener 
et al. 1989). Both phosphorylation events release SERCA2a 
inhibition, thereby increasing SERCA2a’s transport of cal-
cium from the cytosol into the lumen of the sarcoplasmic 
reticulum during diastole.

Ablation of Phospholamban in mice leads to enhanced 
myocardial performance (Luo et al. 1994), equivalent to that 
of wildtype hearts with fully activated by beta-adrenergic 
stimulation. As such, ablation of Phospholamban has sub-
sequently been used as an experimental approach to improve 
cardiac function in rodent models of heart failure (Kaneko 
et al. 2016; Mazzocchi et al. 2016; Minamisawa et al. 1999; 
Tsuji et al. 2009; Zhang et al. 2010).

Mouse models for DCM-associated PLN pathogenic vari-
ants provide sufficient evidence to support a disease-causing 
role of PLN pathogenic variant in cardiac disease. Trans-
genic mice carrying the deletion of arginine 14 in Phos-
pholamban die between 2 and 16 weeks of age due to ven-
tricular dilatation and heart failure (Haghighi et al. 2006). 
At the molecular level, the mutant protein fails to inhibit 
SERCA2a due to a lack of physical interaction (Haghighi 
et al. 2012), and instead is mis-localises to the sarcolemmal 
Na/K-ATPase where it activates its pump function. Trans-
genic mice expressing the R9C pathogenic variant are also 
characterised by heart failure and premature death (Schmitt 
et al. 2003). In these mice, the mutant protein traps PKA and 
thereby blocks phosphorylation of wildtype Phospholamban. 
Molecular studies have shown that R9C stabilises the penta-
meric form of Phospholamban due to disulfide bond forma-
tion, preventing phosphorylation by PKA and interaction 
with SERCA2a (Ha et al. 2011). The R9C transgenic mice 
have subsequently been used to study disease progression in 
DCM on the transcriptome and proteome level (Burke et al. 
2016; Kuzmanov et al. 2016).

Though pathogenic variants in PLN are rare, findings 
from PLN mutant carriers and mouse models demonstrate 
that changes in calcium handling in the presence of Phos-
pholamban pathogenic variants, secondary to perturbations 
in SERCA2a activity, are sufficient to cause cardiomyopathy.

Conclusions

We have demonstrated with the examples of Titin, FHL1, 
MLP/Csrp3, Filamin C and Phospholamban discussed here, 

that there are disease genes for cardiomyopathies beyond the 
“classical” genes coding for proteins with exclusively struc-
tural roles in the sarcomere or the cytoskeleton. It emerges 
that signalling pathways, often involved in the detection and 
adaptation to increased load in the normal heart (e.g. acutely 
upon sympathetic stimulation or more chronically in the pres-
ence of hypertension), can be disturbed by pathogenic variants 
in the genes discussed here and that these chronic disturbances 
of signalling pathways result in cardiomyopathic changes over 
a long period of time (often decades).

Our understanding of disease mechanisms lags behind the 
genetic findings and future work will need to elucidate how 
pathogenic variants in these genes cause cardiomyopathies. 
In addition to biochemical in vitro experiments, model organ-
isms such as zebrafish (Asnani and Peterson 2014; Wilkin-
son et al. 2014) and mice (Camacho et al. 2016) can help 
gain insight into the complex changes at whole organ level. 
A novel, emerging technology to model disease in vitro are 
human induced pluripotent stem cell derived cardiomyocytes, 
allowing the generation of patient-derived human cardiomy-
ocytes with a specific genetic pathogenic variant. Together 
with recent advances in genome-editing technologies, induced 
pluripotent stem cell derived cardiomyocytes have emerged as 
a powerful tool to explore patho-mechanisms of cardiomyopa-
thies (reviewed in Giacomelli et al. 2017; Sallam et al. 2014).

With exception of TTN truncating variants in DCM, the 
pathogenic variants in the genes discussed here are individu-
ally rare, but collectively they contribute to an estimated 3% 
of cases in cardiomyopathy cohorts. With the wide-spread 
application of high-throughput sequencing techniques in the 
clinical practice, these disease genes will be increasingly inter-
rogated. The challenge remains to confidently assign or dis-
regard a causative role of a variant for the cardiomyopathy 
phenotype observed in an individual—a classification as “vari-
ant of unknown significance” is not helpful e.g. for predictive 
testing in family members. New bio-informatics approaches in 
combination with simple, high throughput wet-lab approaches 
will need to be developed to tackle this challenge.
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