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Automated Formal Analysis of Side-Channel
Attacks on Probabilistic Systems

Chris Novakovic and David Parker

School of Computer Science, University of Birmingham, UK
{c.novakovic,d.a.parker}@cs.bham.ac.uk

Abstract. The security guarantees of even theoretically-secure systems
can be undermined by the presence of side channels in their implementa-
tions. We present Sch-imp, a probabilistic imperative language for side
channel analysis containing primitives for identifying secret and publicly-
observable data, and in which resource consumption is modelled at the
function level. We provide a semantics for Sch-imp programs in terms
of discrete-time Markov chains. Building on this, we propose automated
techniques to detect worst-case attack strategies for correctly deducing a
program’s secret information from its outputs and resource consumption,
based on verification of partially-observable Markov decision processes.
We implement this in a tool and show how it can be used to quantify
the severity of worst-case side-channel attacks against a selection of sys-
tems, including anonymity networks, covert communication channels and
modular arithmetic implementations used for public-key cryptography.

1 Introduction

Side channels are covert channels that convey information about the behaviour
of a hardware or software system implementation beyond what was intended by
its design. Information from a system’s side channels — most commonly via their
use of resources such as time or power, or their production of emissions such as
electromagnetic radiation or sound — may be combined with information gained
via the system’s regular output channels in such a way that an observer may be
able to correlate the system’s overt behaviour with information they are unable
to directly observe, such as data stored in a program’s memory.

Side channels are most impactful in systems that attempt to ensure the confi-
dentiality of some secret data being processed, even in systems that are theoret-
ically secure. Software-level attacks often leverage authorised access or exposure
to the system that the attacker already has, making them particularly potent:
for instance, a timing side channel may be exploitable by an attacker with a user
account on the same system, or with a virtual machine running on the same hy-
pervisor (e.g. [19, 22]). Hardware-level attacks — such as power analysis — were
once prohibitively expensive to mount, but thanks to the ever-increasing quality
of consumer-level gadgets and falling cost of specialist hardware, even they are
now within reach of attackers with modest resources; e.g., it is now possible to
use $50 software-defined radios to break widely-used cryptosystems [8, 9].
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Given the potential severity and relative ease of performing successful side-
channel attacks, there is a need to be able to verify that implementations of
theoretically-secure systems are free of such vulnerabilities — or, in cases where
side channels are an unavoidable consequence of the system’s intended behaviour,
that they do not leak more than a maximum permitted amount of information
about the secret data being processed. When an undesirable side-channel does
exist, we also want to know the execution path through the system that causes
the side channel to arise, so that it can be eliminated or mitigated.

This paper presents a framework for automatically analysing systems for the
presence of side channels in the face of an adversary with knowledge of the sys-
tem’s behaviour (although not necessarily the secret information it is processing)
and the capability to observe its outputs; this is analagous to a physical attacker
with (e.g.) a hardware schematic or program source code and the ability to time
certain operations or empirically measure their power consumption. Since prob-
ability is an important factor in the design and implementation of many security
protocols and systems, we focus on the analysis of probabilistic systems.

We have developed Sch-imp, a probabilistic language featuring control flow
structures (functions, conditionals and loops), scoped variable declaration and
assignment, and the ability to indicate that certain values are output publicly.
The language is expressive enough that non-trivial models can be encoded suc-
cinctly. The program’s secret information is stored in variables defined with the
keyword initial. As with regular variables in Sch-imp, the values of initial vari-
ables are assigned according to a probability mass function (p.m.f.); however,
the attacker does not necessarily know which concrete value was drawn from
each p.m.f. and assigned to each initial variable, and the attacker’s goal is there-
fore to maximise what they learn about these concrete values by observing the
program’s externally-visible behaviour.

A novelty of this framework is the ability to reason about the resource usage
of Sch-imp programs. A resource function is declared alongside a Sch-imp pro-
gram, which defines how (a subset of) functions declared in the program make
use of resources when invoked. While our focus in this paper is on how functions
consume time and power, the framework is flexible enough that any other con-
sumable resource could be considered. We assume that the attacker is capable
of monitoring the program’s resource usage as it executes, and may exploit it in
an effort to compromise the secrecy of its initial variables.

We provide a semantics for the execution of Sch-imp programs that is pa-
rameterised by the resource function and defined in terms of a discrete-time
Markov chain (DTMC). The states of the DTMC capture two constructs of rel-
evance to side-channel analysis: the set of concrete mappings for each initial
variable declared in the program, and an observation function encoding all of
the information about the program’s behaviour that is exposed to the attacker.

First, we systematically explore and construct this DTMC representing the
(probabilistic) behaviour of the system. We then use this to construct a partially-
observable Markov decision process (POMDP) in which the initial variable infor-
mation from each terminating state is hidden. The partial observability property
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of a POMDP is ideal for modelling the uncertain knowledge of the Sch-imp pro-
gram’s internal state (specifically, the concrete value of each initial variable for
a particular execution trace) from the attacker’s perspective. We then solve the
POMDP to identify the attacker’s optimal strategies for learning the hidden ini-
tial variable information by observing the outputs and resource usage. In doing
so, we compute the (worst-case) probability of such an attack succeeding, thus
meaningfully quantifying the worst-case exposure of the program’s secrets.

Our approach is fully automated and we have implemented it in a tool [1]. An
analyst need only encode their system in Sch-imp, along with the resource usage
of its functions (which could be empirically measured). The tool then explores
the DTMC representing the system’s state space and constructs and solves the
POMDP modelling the attacker’s uncertain knowledge of this state space using
an extension [17] of the Prism [13] model checker. The two phase construction of
the POMDP (via a DTMC) provides opportunities to aggressively minimise the
state space of the models. This is an important consideration for any technique
based on exhaustive state space exploration. We illustrate the practicality and
applicability of our techniques and tool by applying them to a selection of case
studies: an anonymity network, a covert communication channel, and a modular
arithmetic implementation used for public-key cryptography.

1.1 Related Work

The leakage of information from a secret channel to a public channel in insecure
systems is a well-known problem, and has been studied extensively. Many ex-
isting approaches use concepts from information theory to quantify the leakage;
common measures include Shannon entropy, min-entropy, and mutual informa-
tion. (Smith [20] performs a brief survey.) There is no single measure that is
appropriate for use in all scenarios [2], and it is often difficult to interpret their
concrete effect on the system’s security. In contrast, our framework provides
an easily-understood metric: the probability that the attacker’s best possible
strategy successfully manages to compromise the system’s secret information.

We consider the effect of side channels on probabilistic systems in which
the secret information is present at initialisation and outputs (including the use
of resources) occur as the system executes and eventually terminates. Informa-
tion flow and side-channel analysis frameworks for several other types of system
exist, including non-terminating [3, 23] and interactive [12] systems. Although
our framework does not currently consider the case where the attacker is able to
interact with and observe the system simultaneously, it is intended to be extend-
able to this case by modelling the entire execution of the system as a POMDP
and the attacker’s inputs as nondeterministic choices.

There are many examples of probabilistic languages in the literature, e.g. in
artificial intelligence, where reasoning under uncertainty in probabilistic envi-
ronments is common. These languages are inappropriate for use in our work, as
either they are too low-level to succintly encode the systems (and their resource
usage) described in Section 4 (e.g. [7]), or because uncertainty of and belief about
the program’s state are an inherent aspect of the language (e.g. [18]); our work
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infers the attacker’s uncertainty as the POMDP is constructed, and does not
require that complexity to be part of the language encoding the system itself.
Sch-imp is most closely related to Ch-imp, a probabilistic language for infor-
mation flow analysis that features in our earlier work [6]. As in Sch-imp, the
execution of Ch-imp programs is defined as a semantics that induces a DTMC;
however, Ch-imp has no notion of subroutines or functions that define their
resource usage, which are needed for side-channel analysis.

While POMDPs are widely used in other areas of research, their application
to quantitative information flow analysis is less well-studied. Marecki et al. [15]
analyse unauthorised information leaks in one-to-many broadcast systems, using
POMDPs to model the sender’s uncertainty about the recipient’s subsequent
handling of the secret information; Tschantz et al. [21] have a similar concern.
The covert channel example that we use as an example in Section 4 was analysed
as a POMDP in [17], but that does not explicitly consider side channels or
attack strategies. To the best of our knowledge, our framework is the first to use
POMDPs for the formal analysis of side-channel attacks.

2 A Language for Formal Side-Channel Analysis

We now present Sch-imp, the probabilistic language used by our framework. In
this section, we give the syntax of the language, explain how resource usage is
modelled in Sch-imp programs, and give a formal defintion of the semantics.

2.1 The Sch-imp Language

The grammar for Sch-imp is shown in Fig. 1 and we give an illustrative example
program in Fig. 2 (a larger example for one of our case studies can also be found
in Appendix A). Values of variables are rational numbers, assigned according to
a p.m.f. over Q. There are two types of variables: initial variables (declared with
the initial command at the start of the program, whose initial values are con-
sidered “secret” and therefore of interest to an attacker), and regular variables
(declared with the new command, and which have no secrecy connotations). Ini-
tial variables, and regular variables declared immediately afterward, are visible
to all functions, while variables declared inside function bodies and if and while

P ::= [initial V := ρ;]∗

[new V := ρ;]∗

[function F ([V ]∗) { C; [output [A]+;]? return };]+

F ([A]∗); end

C ::= skip | new V := ρ | V := ρ | F ([A]∗)
| if (B) { C } [else { C }]?

| while (B) { C } | C; C

Fig. 1. The Sch-imp grammar. V is a variable name, A is an arithmetic expression, B
is a Boolean expression, and ρ is a p.m.f. over arithmetic expressions.
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initial i := {
0→ 1/4, 1→ 1/4, 2→ 1/4, 3→ 1/4

};
function f(x) {

new o := 1;
if (x > 0) { o := x / x };
output o;
return

};
f(i);
end

{
f→ {

(0)→ {
(5, 7)→ 1/2, (6, 7)→ 1/2
},
(_)→ {

(6, 7)→ 1/2, (7, 7)→ 1/2
}
}
}

Fig. 2. A Sch-imp program and resource function containing a side channel when i = 0.
_ represents any arithmetic constant permitted by Sch-imp (i.e., a rational number).

blocks are in scope only within those constructs. We consider programs that
declare a variable with the same name twice in the same scope or that refer to
undefined variables to be badly-formed.

Following the declaration of top-level variables, a program consists of at least
one function definition followed by the invocation of one of these functions. Func-
tion bodies may invoke other functions, subject to the limitations described in
Section 2.2. Before a function returns control to its caller, it may output the re-
sult of evaluating one or more arithmetic expressions with the output command;
these values are considered “public” and visible to the attacker.

2.2 Resource Usage in Sch-imp Programs

While the overt behaviour of Sch-imp programs is expressed by the syntax in
Fig. 1, we are primarily interested in the covert information about the program’s
behaviour that is revealed during its execution. In reality, this covert information
is most often revealed through a system’s use of available resources, typically
time and power. Since functions represent the broadest level of control flow
within Sch-imp programs, and because the behaviour of a function typically
varies depending on the arguments passed to it, it is natural to reason about
the resource usage of a program’s functions based on how they are called. We
therefore employ a resource function that defines how functions in the Sch-imp
program consume time and power based on the arguments passed to them.

Definition 1 (resource function). A resource function R for a Sch-imp
program P ranges over a subset of the functions declared in P and, for each
such function F , partially maps sequences of arguments (q1, . . . , qn) to probability
distributions over tuples (N × N) that define the number of units of time that
elapse and of power that are consumed when F (q1, . . . , qn) is executed.

Similarly to how a Sch-imp program can be seen as a formal encoding of
a system, a resource function can be seen as a formal encoding of a system’s
resource usage; as such, the information in a resource function could (e.g.) be
determined empirically from the resource usage of a system’s implementation.
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An example Sch-imp program and its resource function are given in Fig. 2.
While the program theoretically does not overtly leak information about the
secret value of the initial variable i — it ultimately has no effect on the value
of o that is output and visible to the attacker — the resource function indicates
that the function f() on average executes slightly faster when its parameter x is
0, perhaps because of the extra operation that is performed when x > 0. Because
the value of x is directly related to that of i when it was declared, this in fact
presents a timing side channel that leaks information about i to the attacker.

Although function bodies consist of one or more commands, we take a high-
level view of their resource consumption: their commands consume resources
as a single unit, rather than discretely. From the perspective of the attacker, a
function that consumes a non-zero amount of time or power when it executes
does so atomically, regardless of the size or complexity of its body. In order
to provide a clean definition of resource usage, we introduce the notion of an
instantaneous function, whose execution takes no time and consumes no power
from the perspective of the attacker; this is defined formally below. Any other
function is referred to as non-instantaneous.

Definition 2 (instantaneous function). A Sch-imp function F with n pa-
rameters is instantaneous with respect to a resource function R iff F /∈ dom (R)
or R (F ) (q1, . . . , qn) = {(0, 0)→ 1} for any argument sequence (q1, . . . , qn).

Because function bodies may themselves invoke functions, it is unclear what
information an attacker would learn about a program if a non-instantaneous
function A were to invoke another non-instantaneous function B given the above
definitions: because the commands in a non-instantaneous function body con-
sume resources as a single unit, the resources consumed by B would also appear
to be consumed during its invocation in A, at which point A would no longer
necessarily consume the resources dictated by the resource function, thus cre-
ating a contradiction. To simplify matters, we consider programs in which non-
instantaneous functions invoke non-instantaneous functions to be badly-formed.
All other forms of invocation, including (bounded) recursive invocation of in-
stantaneous functions, are permitted.

Information leakage model. The presence of side channels in a system can
be characterised as a special case of information leakage in which the “public in-
formation” in the system consists not only of the overt outputs that the system
produces on the public channel, but also information on other visible channels
that can be correlated with the information from the public channel to form a
new multiplex channel with a greater capacity. This creates a best-case scenario
in which an attacker observing the multiplex channel learns nothing more about
the system’s secret information than they do by observing only the public chan-
nel; this indicates that the system is free from side channels. Alternatively, the
worst-case scenario is the one in which the attacker learns nothing about the
system’s secret information by observing the public channel, but learns all of
the secret information when observing the multiplex channel.
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2.3 Semantics for the Sch-imp Language

The execution of a Sch-imp program is defined in terms of a discrete-time
Markov chain (DTMC):

Definition 3 (discrete-time Markov chain). A DTMC D is a tuple (S, s̄,P),
where S is a finite set of states, s̄ ∈ S is an initial state, and P : S × S → [0, 1]
is a transition probability matrix such that

∑
s′∈S P(s, s′) = 1 for all s ∈ S.

In the context of Sch-imp, the states in S define the execution status of
the program at any given moment, providing a notion of a program counter,
storage for bindings for in-scope variables, and information about the secret
data, observable data and resource usage that has occurred up to that point
during the program’s execution. More formally:

Definition 4 (state). A Sch-imp state is a tuple (F , I, t, p,∆), where:

• F : C×seq (Var→ Q) is a stack of commands (with their associated variable
scope frames) that remain to be executed;

• I : Var → Q is a mapping consisting of the initial variables defined during
the program’s execution along with their values;

• t : N is the total time that has elapsed so far during the program’s execution;
• p : N is the cumulative amount of power that has been consumed so far during
the program’s execution;

• ∆ : N → N × seq (Q) is an observation function defining the cumulative
amount of power consumed by and values that were output from the program
at a given time.

F behaves like a call stack: each element in F represents the commands to be
executed during invocation of a single function, along with a sequence of bindings
for variables that are visible to that function, which we denote with σ. The first
element in F represents the function currently being executed. Within σ, the
last element represents the program’s global scope (i.e., it contains bindings for
the top-level variables declared at the start of the program); the penultimate
element contains bindings for the function’s parameters based on the arguments
present when the function was invoked, and the remaining elements represent
block-level scope frames within the function, becoming narrower toward the start
of the sequence. I maintains the secret values of the initial variables at the point
at which they were declared, while the observation function ∆ represents the
attacker’s knowledge of the program’s execution status; they are respectively
formalisations of the program’s secret and multiplex channels described earlier.

The semantic rules for the Sch-imp commands relevant to side-channel analy-
sis are shown in Fig. 3; the remaining rules are intuitive or result in deterministic
transitions between states that are not relevant to side-channel analysis, and are
omitted for brevity. We write s p−→ s′ to denote the existence of a DTMC transi-
tion from state s to state s′ with probability p (i.e. P(s, s′) = p). Formally, there-
fore, the semantics of a Sch-imp program is a DTMC (per Definition 3), where
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S is a finite set of Sch-imp states (per Definition 4), s̄ = ((P, ({})), {}, 0, 0, {}),
and P is defined by the rules in Fig. 3 (amongst others).

There are two sources of probabilistic behaviour in Sch-imp. The first is the
initial, new and assignment commands, which bind a value to a variable according
to a p.m.f. ρ. Variable scope is maintained as functions and command blocks (i.e.,
branches of if commands and bodies of while loops) execute via the creation and
destruction of scope frames. We note that the value of a variable declared with
the initial command is only considered secret at the point at which it is declared ;
thus, secrecy is a property of the specific value of an initial variable, rather than
of the variable itself.

The second source of probabilistic behaviour is the resource function R:
when a function is invoked, the cumulative elapsed time and power consump-
tion of the program are incremented probabilistically according to the p.m.f.
R (F, (q1, . . . , qn)) (where (q1, . . . , qn) are the arguments passed to F after eval-
uation) and are stored in s′. The new time and power information is also stored
in the observation function ∆, indicating that the attacker is able to observe
how the program is consuming resources as it executes.

The output command indicates that the given sequence of values (following
evaluation of the expressions) is revealed on the program’s public channel. This
sequence is associated with the current amount of elapsed time in the observation
function; if values have already been output by the program at this time point,
the new outputs are appended to the existing sequence. This means that the
invocation of multiple instantaneous functions, all producing outputs, will appear
to the attacker as an instantaneous stream of outputs on the public channel.

In this work, we assume that Sch-imp programs always eventually terminate
(with probability 1) and that their semantics yields a finite state space. We define
terminating states as those in which an end command is executed, and denote
the set of all such states S.

JAKo ::σ → q

((initial V := ρ; C, o ::σ) ::F , I, t, p,∆)
ρ(A)−−−→

((C, o ∪ {V → q} ::σ) ::F , I ∪ {V → q}, t, p,∆)

JAiKσ → qi

((output V1, . . . , Vn; C, σ) ::F , I, t, p,∆)
1−→

((C, σ) ::F , I, t, p,∆ ∪ {t→ (∆p(t),∆o(t) :: (q1, . . . , qn))})

JAiKσ → qi

((F (A1, . . . , An); C, σ) ::F , I, t, p,∆)
R(F,(q1,...,qn),(t′,p′))
−−−−−−−−−−−−−−−→

(((C(F ), {V(F )1 → q1, . . . ,V(F )n → qn} ::σG) , (C, σ)) ::F ,
I, t+ t′, p+ p′,∆ ∪ {t→ (∆p(t) + p′, ())})

Fig. 3. The side-channel semantic rules of Sch-imp. σG is the global variable scope
frame, V(F ) and C(F ) are the parameter names and body of function F respectively,
∆p(t) and ∆o(t) are the power consumption and the list of values output at time t.
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3 Automated Detection of Side-Channel Attacks

Using the semantics defined above, we can construct a DTMC representing all
possible executions of a Sch-imp program. From this, we describe how to build
and analyse a partially-observable Markov decision process to detect and quan-
tify side-channel attacks that compromise the program’s secret information.

3.1 POMDPs

We model the attacker’s capabilities using partially-observable Markov decision
processes (POMDPs), which are an extension of a Markov decision processes
(MDPs). POMDPs model decision-making in the context of a probabilistic sys-
tem where decisions can only be made based on observable parts of the system.
We summarise the key concepts below, adopting the notation of [17].

Definition 5 (POMDP). A POMDP is a tuple P = (S, s̄, A, T ,O,O), where:
S is a finite set of states; s̄ ∈ S is an initial state; A is a set of actions; T :
S × A → (S → [0, 1]) is a (partial) transition probability function; O is a finite
set of observations; and O : S → O is a labelling of states with observations.

In each state s ∈ S of a POMDP, there is a choice between the set of
available actions A(s)

def
= {a ∈ A | T (s, a) is defined}. States with the same ob-

servation must have the same available actions, i.e., for states s, s′ ∈ S with
O(s) = O(s′), we have A(s) = A(s′). Once an action a ∈ A(s) is chosen in state
s, the next state of the POMDP is determined by the probability distribution
T (s, a), i.e. it transitions to state s′ with probability T (s, a)(s′).

A strategy (also known as a policy) of a POMDP P resolves the choice of
action taken in each state, based on the history of its execution so far. Formally, it
is defined as a function from any finite path of P to one of the actions available in
the final state of the path. We are only interested in observation-based strategies
which make decisions based purely on the observationO(s) for each state s of the
POMDP’s history. In this work, we only need finite-memory strategies, whose
choices depend not on the full history of the POMDP, but on one of a finite
set of modes, which are switched between over time. Under a given strategy σ
for P, we can define a probability measure PrσP over the set of possible paths
(executions) through the POMDP [11] and use this to quantify various measures
of interest. In this paper, we concern ourselves with the probability PrσP(♦T ) of
reaching a set T ⊆ S of target states. We then wish to compute the maximum
probability, over all possible strategies, of reaching T , and an optimal strategy
σ∗ which achieves this. While this problem is known to be undecidable [14], a
variety of practical techniques exist to approximate the optimal probability.

3.2 Detecting Side Channels using POMDPs

We represent the interaction of a Sch-imp program and an attacker as a POMDP.
Probabilities in the POMDP are used to model the initial assignment of values
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to initial variables. We use partial observation to accurately model the capabil-
ities of an attacker, who can observe the program’s multiplex channel and must
make decisions about how to proceed based only on this information.

The partial observability property restricts the knowledge of the POMDP’s
current state s to its observations O(s) ∈ O. This is useful for the purpose of
modelling an attacker in Sch-imp, as it allows privileged parts of the program’s
status (e.g., the concrete value of each initial variable) to be hidden while ex-
posing information available on the program’s multiplex channel via O.

For a Sch-imp program P, we will denote by PP the POMDP constructed to
analyse it. The starting point for this is the DTMC representing the semantics
of P, which we denote DP. Intuitively, DP represents the execution of P, parts
of which are observable by the attacker; we then allow the attacker to guess the
value of the program’s initial variables based on these observations.

The DTMC has a set of terminating states S in which an end command is
executed; we assume that these states are reached with probability 1. Each state
in S contains two constructs relevant to side-channel analysis of the program: I,
which contains the original (secret) value of each of its initial variables, and ∆,
which contains all of its publicly-observable information — a record of when it
produced its outputs, and when it consumed power.

States of PP consist of references to the representations of I and ∆ found in
the DTMC’s state, along with Boolean values indicating whether the attacker’s
guess for the value of each initial variable in I is correct. The observation function
O is used to hide I.

The POMDP is constructed in two phases. In the first phase, each unique
representation of both I and ∆ is extracted from S and a new state for PP is
constructed from each of them, with the Boolean correctness values remaining
undefined. A transition from the POMDP’s initial state to each of these “phase-
1” states is then added, and assigned a probability equal to the probability in
DP of reaching states in S containing each particular representation of I and ∆.
The probability for all possible such values can be determined simultaneously
by computing the steady-state probability distribution of DP.

In the second phase, another set of states is generated in which the repre-
sentations of I and ∆ are undefined, and each of the Boolean correctness values
is set to either true or false; the number of “phase-2” states is therefore 2n,
where n is the number of initial variables declared in the Sch-imp program.
The actions between the “phase-1” and “phase-2” states represent the attacker
guessing a concrete value for each of the initial variables; the set of available
actions between the first and second phases is therefore the Cartesian product of
the sets of possible values for each initial variable. Each action results in a single
deterministic transition to a “phase-2” state in which the correctness variables
are assigned depending on whether each guess is correct.

Finally, we compute (or approximate) the maximum probability, in PP, of
reaching “phase-2” states where the guesses for all (or, if preferred, a subset) of
the initial variables are correct. A corresponding POMDP strategy that achieves



Automated Analysis of Side-Channel Attacks on Probabilistic Systems 11

these values represents the attacker strategy for optimally guessing the program’s
secret information based on its observations.

4 Experimental Results

We have implemented the Sch-imp language and our side channel detection
techniques in a software tool. Here, we describe its implementation and demon-
strate the applicability of our approach by using it to detect and quantify side
channels in three case studies. The tool, as well as the Sch-imp code for these
examples, is available online [1].

4.1 Implementation

Our tool is primarily implemented in Java. Parsers for the Sch-imp language
and resource function definitions are developed in Antlr. Construction and
analysis of DTMCs and POMDPs is achieved by building upon the Prism model
checker [13], in particular the POMDP extension presented in [17].

Construction of the DTMC for a Sch-imp program is achieved by imple-
menting the semantic rules shown in Fig. 3 as well as the ones omitted from this
paper for brevity. These are used in conjunction with PRISM’s model generator
interface, used to systematically construct probabilistic models in its “explicit”
model checking engine. A number of optimisations are employed here to reduce
the amount of time and memory required to fully explore the DTMC’s state
space. The most effective optimisation drastically reduces the total number of
states in the model altogether: since many commands in Sch-imp result in de-
terministic transitions between states, paths of deterministic transitions between
more than two states are collapsed into a single deterministic transition between
the states at the start and end of the path. This allows our tool to be a faithful
representation of the formal model presented in this paper, while still being able
to analyse systems that it otherwise could not.

The construction of the POMDP representing the attack model of a Sch-imp
is achieved using a second phase of the model generator interface. Transition
probabilities are computed using a steady-state analysis of the DTMC. The re-
sulting POMDP is then (approximately) solved to determine an optimal attack
strategy. This is done using the approach of [17], which is based on the construc-
tion and solution of a grid-based discretisation of the belief space of the POMDP.
For our experiments, we fixed a grid resolution of 8 (see [17] for details), which
sufficed to give accurate approximations (see Section 4.5).

4.2 Traceability in Anonymous Communication Networks

Our first case study is the DC-net [4] communication network protocol, which
provides for the anonymous transmission of a single bit of information per round
amongst its constituent nodes. Assuming the nodes are arranged in a ring, each
round proceeds as follows. Each pair of adjacent nodes randomly generates a
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single bit that is known only to them; this is achieved by each of the nodes
randomly generating a single bit and transmitting it to the other node over a
private secure channel, allowing each node to independently compute the shared
bit by XORing the bit they generated with the bit they received from the other
node. After this process is complete, each node has knowledge of two shared
bits (one shared with each node adjacent to them). Each node then XORs these
two known shared bits and publicly broadcasts the output of this operation to
the other nodes, with the exception of the node that wants to transmit one
extra bit anonymously during this round; this node instead broadcasts the in-
version of their XOR output. When all nodes have broadcasted, each node can
independently verify whether one of the nodes transmitted an extra bit in this
round by XORing together all of the broadcasted bits: a result of 1 indicates the
transmission of an extra bit; 0 indicates the absence of an extra bit.

While the DC-net is theoretically secure — the identity of the node transmit-
ting the extra bit of information is concealed both to other nodes in the DC-net
and to external observers — a faulty implementation may nevertheless leak infor-
mation about the transmitting node’s identity. Many different implementation
errors could cause this situation. For example, since the node attempting to
communicate anonymously must perform an additional computation compared
to the other nodes, an implementation that fails to account for the additional
processing time this computation incurs may cause a noticeable delay before
the transmitting node broadcasts. This would therefore introduce a timing side-
channel into the protocol that reveals the identity of the transmitting node.

A Sch-imp encoding of one round of a four-node DC-net is shown in Ap-
pendix A. One of the nodes is chosen uniformly to become the transmitting node
in this round; its identity is stored in the initial variable transmitter, indicating
that the transmitting node’s identity should be concealed from the attacker.
Since we assume that the model itself is known to the attacker, we are also im-
plicitly stating that the attacker knows that each node is equally likely to be
the transmitter. The broadcast() function executes the protocol from the per-
spective of one node (whose identity is given by the index parameter), and is
invoked four times by the main() function; whether or not this node is the trans-
mitter is given by the is_transmitter parameter. The single-bit value stored in b,
which is revealed publicly at the end of the function, is computed by XORing
the values of my_bit and their_bit; if this node is the transmitter, the value of
b is then XORed with 1 to invert its value. The extra time taken to perform
the additional computation in the case of the transmitting node is reflected in
the resource function definition for broadcast(), in which broadcast()’s execution
consumes a constant amount of power, but which takes differing amounts of time
to execute depending on whether the node is the transmitter. The question of
interest, therefore, is how much information about the identity of the transmit-
ting node is revealed to the attacker as a result of the attacker observing the
timing of the four executions of the broadcast() function, and how the attacker
can improve upon their a priori random guess (a strategy that succeeds with
probability 0.25, as each node is equally likely to be the transmitter).
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We consider the scenario in which the elapsed time is drawn from an approx-
imately binomial distribution centred on 4 units of time when the broadcasting
node is the transmitter and 3 units of time otherwise, modelling a situation in
which the transmitter will on average take longer to broadcast but with enough of
an intersection between the two distributions that the attacker cannot be sure of
their identity based solely on the timing side channel. In this scenario, Sch-imp
identifies an attacker strategy that successfully deanonymises the transmitter
with probability ≈ 0.527, a significant improvement over the probability of 0.25
expected of the ideal implementation.

4.3 Covert Information Flows over a Unidirectional Network

The purpose of a unidirectional network is to provide a means for, and enforce-
ment of, one-way communication between hosts. An example is the National
Research Laboratory’s Network Pump [10], intended for use in classified net-
works: it divides the network into “low-security” and “high-security” partitions
and, while hosts in the low-security partition may send messages to hosts in the
high-security partition, it forbids information from being communicated in the
opposite direction. However, the Network Pump also provides confirmation of
receipt of messages, which introduces the possibility of a covert channel being
created between the partitions via collusive timing delays in message receipt con-
firmations: if hosts in each partition can mutually agree on a scheme for encoding
bits of information in the time taken between the low-security node sending its
message and the high-security node confirming receipt of that message, a for-
bidden side channel from the high-security node to the low-security node can
be created. Although a well-designed unidirectional network will introduce noise
into this side channel by probabilistically inserting its own delay between re-
ceiving the confirmation from the high-security node and forwarding it on to
the low-security node, the nodes will always be able to defeat the network by
agreeing on a sufficiently long delay; there is therefore a trade-off to be made
between limiting the capacity of the side channel (i.e., by maximising the delay)
and maintaining network performance.

In the Sch-imp model of this scenario, a high-security node attempts to
covertly communicate a secret value in an initial variable h (which is equally
likely to be 0 or 1) to a low-security node via a unidirectional network. The
acknowledgement delay introduced by the high-security node lasts for h0 units
of time when h is 0 and h1 units of time when h is 1. The network introduces
its own probabilistic delay of 1/2hn units of time, where n is the value of h. If
the low-security node does not receive an acknowledgement after 10 units of
time, it assumes the message has been lost. The nodes may exchange up to m
messages in an attempt to communicate the value of h. By fixing the value of
h0 and varying the values of h1 and m, we can identify the artificial delays that
the high-security node can choose to insert to maximise the probability that the
value of h is leaked successfully within the permitted number of messages while
maintaining network performance.
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Fig. 4. The vulnerability of the unidirectional network to side-channel attacks for a
fixed value of h0 (2) and varying values of h1 and m.

Fig. 4 shows the probability of h successfully being communicated for a fixed
value of 2 for h0, values of h1 from 3–10, and values of m from 5–15. The collud-
ing nodes quickly benefit from diminishing returns as h1 and m both increase:
when h1 = 4, the nodes can already leak h with probability ≈ 0.997 within 4
messages, and the success rate does not improve significantly either by increasing
the artificial delay or by exchanging more messages.

4.4 Power Consumption of Square-and-Multiply Algorithms

Modular exponentiation — a modular arithmetic variant of the exponentiation
operation — is a fundamental operation in public-key cryptography. Operations
are of the form bn mod m. While it is cheap to compute directly for small values
of n, more efficient algorithms are required when computing modular exponen-
tiations for larger values of n, such as those used as private or public keys in
public-key cryptography. Square-and-multiply is one such algorithm: starting
with r = 1, for each bit ni in n, r is squared modulo m and then multiplied
by b modulo m if bit ni is 1; the result of the modular exponentiation is the
final value of r. While this algorithm is able to compute modular exponentia-
tions with lower space and time complexities than the direct method due to the
efficiency with which the squaring operation can be performed in hardware, the
multiplication operation is still comparatively expensive. Crucially, because this
expense only occurs for certain bits of n, naive implementations of the algorithm
leak information about n. This has been the basis of power analysis side-channel
attacks against cryptosystems that rely on the impracticality of inverting the
modular exponentiation by computing the discrete logarithm (e.g., [16]).

In the Sch-imp modelling of this scenario, we assume a naive implementation
of square-and-multiply is being used to compute a ciphertext for a public-key
cryptosystem, so the exponent n is in fact a private key e whose value is secret;
we select values of n from a uniform distribution over 0–7. The values of b and
m are unimportant in this scenario, so we arbitrarily fix them at b = 42 and
m = 13. The core of the algorithm is implemented in the sq_mult() function,
which in turn calls the functions sq_mod() and mult_mod() depending on the
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values of the individual bits of e. Since modular multiplication is a more expen-
sive operation than modular squaring, the resource function assigns a greater
consumption of power to mult_mod() than to sq_mod(). The function outputs
the result of the exponentiation.

Even in an implementation free of side channels, the sq_mult() function
necessarily leaks information, as our attacker model assumes that the attacker
knows the value of m and the range of values for b (because of their knowledge of
the system’s behaviour) as well as the result of the exponentiation (by observing
the outputs). The question is therefore how muchmore likely it is that the system
leaks information about n due to the presence of side channels. In the ideal case
— i.e., in which there is no time or power cost to invoking either sq_mod()
or mult_mod(), and therefore no side channel to exploit — the attacker finds
a strategy that successfully recovers e with probability ≈ 0.406. On the other
hand, when sq_mod() draws power from an approximately binomial distribution
centred on 3 units and mult_mod() from another centred on 5 units — simulating
not only the additional power draw of the more complex function, but also the
imprecise nature of power consumption and power analysis — the probability
of finding an attack strategy that successfully recovers e increases to ≈ 0.964,
almost certainly compromising the secrecy of the key.

There are various alternative modular exponentiation algorithms that mit-
igate this side channel, usually at the expense of efficiency. One example is
square-and-multiply-always, in which the modular multiplication is performed
for every bit of n and the result discarded if it is not needed. While Sch-imp
verifies that this algorithm is free of side channels — a successful attack is found
with probability ≈ 0.406, indicating that it is an ideal implementation — it is
clearly wasteful. Chevallier-Mames et al. [5] propose a number of more efficient
side-channel-resistant alternatives that rely on modular multiplication alongside
standard arithmetic operations such as addition and bitwise XOR; they assume
that these standard operations are side-channel-equivalent, assumptions that
we also make for Sch-imp’s model (i.e., that they consume the same resources
when executing regardless of their operands). Sch-imp is able to verify that
the algorithms in Fig. 2(b) and Fig. 4(b) of [5] are also equivalent to the ideal
square-and-multiply implementation.

4.5 Evaluation

Table 1 summarises the performance of our tool with these case studies. The “Re-
sult” columns show the approximate probability p of the attacker’s best possible
strategy succeeding. The “error” values refer to the absolute difference between
the lower and upper bounds returned by the approximate POMDP solution tech-
nique of [17] used in our tool. The largest error we encountered was 0.03 (in the
unidirectional network examples where h1 ≥ 8). Tighter bounds can be obtained
if required using a finer grid resolution, at a cost of additional time and memory.
The table also shows the size of both the DTMC and POMDP constructed, and
the time required for the full process (we ran our experiments on a 2.1 GHz
machine with the Java virtual machine allocated 8GB of memory).
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Table 1. The DTMC and POMDP sizes for a selection of examples, along with the
result of (and total time taken for) the analysis.

States Result

Example DTMC POMDP p Error Time (min)

DC-net 93333 20003 0.527 0.017 63
Uni. network: h1 = 3, m ≤ 15 142547 36009 0.991 0.000 13
Uni. network: h1 = 10, m ≤ 5 43461 12403 0.997 0.003 1
Square-and-multiply: naive 60749 27003 0.964 0.000 16

The framework and tool both rely on the ability to identify the Sch-imp
program’s terminating states and the probability of reaching each of them; this
requires the exploration of the program’s entire state space, which is infeasible
in practice for large systems due to the excessive time and space complexities.
However, our tool makes a number of aggressive optimisations to reduce the
complexity of the DTMC model of a program’s execution; most significantly,
paths consisting of multiple deterministic transitions are collapsed into a single
transition, reducing both the number of states and transitions without affecting
the accuracy of the analysis. This explains the much larger analysis time for the
DC-net example in Table 1 compared to the other examples, even though the
number of states is similar: the DC-net program induces several orders of magni-
tude more deterministic transitions than the others, and while these transitions
must be explored (hence the higher execution time), the tool only stores states
and transitions that affect the side-channel analysis. Without such optimisations,
the DC-net example would otherwise be infeasible to analyse.

5 Conclusion

We have presented a framework for formally analysing probabilistic systems for
the presence of side channels; systems are specified in Sch-imp, an imperative
probabilistic language, and are then systematically analysed through the con-
struction and solution of a POMDP. This identifies possible side-channel attacks
in the face of an adversary with knowledge of the system’s behaviour, outputs
and resource usage, and culminates in an easily-understood metric: the prob-
ability that the adversary’s most effective attack successfully compromises the
system’s secret information, plus the strategy it employs to do so. We imple-
mented our approach in a tool and applied it to several case studies. Future
work will analyse extended attack models, for example where we also consider
the most efficient way in which an attacker can observe the system.
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Appendix A Sch-imp Model for Section 4.2

Sch-imp program:

initial transmitter := { 1→ 1/4, 2→ 1/4, 3→ 1/4, 4→ 1/4 };
new nodes := 4;
new last_my_bit := { 0→ 1/2, 1→ 1/2 };
new last_their_bit := 0;
function broadcast(index, is_transmitter, their_bit) {

new my_bit := 0;
if (index == nodes - 1) {

my_bit := last_my_bit
} else {

my_bit := { 0→ 1/2, 1→ 1/2 }
};
new b := my_bit xor their_bit;
if (is_transmitter == 1) { b := b xor 1 };
last_their_bit := my_bit;
output b;
return

};
function main() {

new i := 0;
while (i < nodes) {

new is_transmitter := 0;
if (i + 1 == transmitter) { is_transmitter := 1 };
if (i == 0) {

broadcast(i, is_transmitter, last_my_bit)
} else {

broadcast(i, is_transmitter, last_their_bit)
};
i := i + 1

};
return

};
main();
end

Resource function:

{
broadcast→ {

(_, 0,_)→ {(1, 1)→ 1/10, (2, 1)→ 1/5, (3, 1)→ 2/5, (4, 1)→ 1/5, (5, 1)→ 1/10},
(_, 1,_)→ {(2, 1)→ 1/10, (3, 1)→ 1/5, (4, 1)→ 2/5, (5, 1)→ 1/5, (6, 1)→ 1/10}
}
}
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