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It is unquestionable that railway infrastructure is naturally a complex system. Its behaviours, geom-

etry and alignment, wheel-rail forces and operational parameters such as tractive efforts are often 

found to be nonlinear and asymmetrical. Not only does the complex train-track interaction generate 

vertical impact loading, but the curving behavior of the train body also induce dynamic lateral force 

acting on the rail. This paper presents a numerical simulation of a standard-gauge concrete sleepers, 

taking into account the tensionless nature of ballast support. The finite element model was calibrat-

ed using static and dynamic responses using experimental data. Previous extensive studies revealed 

that the two-dimensional Timoshenko beam model is the most suitable option for modeling con-

crete sleepers under vertical and lateral loads. In this investigation, the finite element model of Ti-

moshenko-like concrete sleeper has been developed and calibrated against the numerical and exper-

imental modal parameters. The influences coupling loads on the dynamic behaviours of concrete 

sleepers are investigated. In addition, it is the first to demonstrate the effects of material damping on 

the dynamic spectra of railway sleepers. The dynamic properties of sleepers are critical to dynamic 

serviceability of both track systems and sleepers themselves. The insight from this study will im-

prove the material design criteria in order to improve train-turnout interaction and ride comfort. 

 Keywords: Dynamic responses, FEM, concrete sleepers, coupling force, dynamic properties 

 

1. Introduction 

In reality, track loading conditions are rather dynamic and much more complex than simple static 

(or quasi-static as used in component design). Track systems are commonly designed to withstand 

those dynamic loads throughout the network. Although track load spectra have been identified, it is 

unlikely that the wayside system (to install load sensors) can really capture the train load throughout 

the network. As a result, track structures are often designed against the worst case scenarios to assure 

that no discontinuity could appear and derail the train services. Ballasted track systems consist of su-
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perstructure and substructure. Superstructure includes rails, rail pads, fastening systems, sleepers or 

crossties, and ballast. Rails generally are supported by crossties, which are embedded in ballast over 

substructure (including subballast, formation and foundation). Railway sleepers, bearers and transoms 

are safety-critical and structural elements in ballasted railway track systems. Their main functions are 

not only to withstand static and dynamic loads imposed by the wheels and transfer them to the ballast 

and underlying formation, but also to secure the rail gauge to allow trains to travel safely [1-3]. The 

behaviours of sleepers and bearers in track systems are correlated to the loading and support conditions. 

Many evidences revealed that their structural failure, cracks, and poor serviceability (high deformation 

and rotation) are due to the resonances generated by the components excited by the dynamic train loads 

[4-7]. Therefore, the dynamic resistance (derived from dynamic properties of materials and structural 

component) is critical to enhance durability and endure service life of railway sleepers and bearers in 

track systems. However, many practitioners still neglect the dynamic testing due to the lack of under-

standing into the realistic track performance. A clear example is the non-existence of realistic dynamic 

testing in design standards (e.g. European Standard EN 13230). On the other hands, a few countries 

have already developed dynamic resistance testing for sleepers and bearers (e.g. Australian Standard 

AS1085.14 and AS1085.19 – Impact attenuation tests; German DIN delivery guideline for Impact test 

for derailment resistance, etc.). These evidences show the inconsistency and different level of maturity 

of practices internationally. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Typical ballasted track components. 

Figure 1 shows the typical ballasted railway tracks and their key components. There have been a 

number of recent investigations on the railway sleeper models [8-12]. Most of the models in practice 

employed the concept of beam on elastic foundation where a sleeper is laid on the elastic support, act-

ing like a series of springs. It is reported that only vertical stiffness is sufficient to simulate the ballast 

support condition because the lateral stiffness seems to play an insignificant role in sleeper’s bending 

responses [6]. Field measurements suggest a diverse range of sleeper flexural behaviors, which are 

largely dependent to the support condition induced by ballast packing and tamping [13-15]. It is im-

portant to note that the designed cross sections and reinforcements deemed to comply with Design 

Standards (e.g. Australian AS1085.14, European EN 13230, etc.) shall provide adequate shear re-

sistance. Even though the sleeper cross-section plays a vital role on its flexural strength, the responses 

of the railway sleepers are insignificantly dependent to either the bending rigidity or the modulus of 

elasticity of sleepers [16-18]. By contrast, Figure 2 shows the effect of sleeper length on the flexural 

responses of sleepers. This is a root cause for variation in bending moment design calculation and field 

measurement resultants. It is thus very important to note that field measurements in a track system may 

not be able to appropriately inform a design of track components in another track system. 
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               a) short sleeper                       b) optimal sleeper                      c) long sleeper 

Figure 2: Influences of sleeper length on flexural behaviour. 

Although it is clear that the railway sleepers are topologically symmetrical, the aspect of coupling 

vertical and lateral forces acting at the crossings has never been fully investigated. This paper thus 

highlights a railway sleeper modeling capable of nonlinear impact analysis, in order to evaluate the 

dynamic effect of railway sleepers experiencing coupling vertical and lateral wheel forces. It focuses 

on the nonlinear dynamic flexural responses of railway concrete sleepers subjected to a spectrum of 

ballast stiffness at the mid span, in comparison with the current design method in accordance with the 

design standards. Since dynamic impact loads are over a quarter of annual track load spectra, the dy-

namic behaviour is crucial to track maintenance criteria [19-21]. Therefore, the effect of coupling verti-

cal and lateral wheelset dynamics on curved tracks will be focused in this study.  

2. Finite element modelling 

It is clear that many researches found that the two-dimensional Timoshenko beam model is the most 

suitable option for 2D modeling of concrete sleepers [2-5]. In this study, the finite element model of 

concrete sleeper (optimal length) has been previously developed and calibrated against the numerical 

and experimental modal parameters [5, 9]. Figure 3 shows the two-dimensional finite element model 

for an in-situ railway concrete sleeper for dynamic analyses. Using a general-purpose finite element 

package STRAND7 [22], the numerical model included the beam elements, which take into account 

shear and flexural deformations, for modeling the concrete sleeper. The trapezoidal cross-section was 

assigned to the sleeper elements. The rails and rail pads at railseats are simulated using a series of 

spring. In this study, the sleeper behaviour is stressed so that very small stiffness values were assigned 

to these springs. In reality, the ballast support is made of loose, coarse, granular materials with high 

internal friction. It is often a mix of crushed stone, gravel, and crushed gravel through a specific parti-

cle size distribution. It should be noted that the ballast provides resistance to compression only. This 

study demonstrates the significant attempt to realistically model ballast behaviour in a track system. 

 

Table 1: Engineering properties of the standard sleeper used in the modelling validation 

 Parameter lists  Units 

Flexural rigidity 
cEI = 4.60, rEI = 6.41 MN/m

2
 

Shear rigidity 
cGA = 502, rGA = 628 MN 

Ballast stiffness 
bk = 13 MN/m 

Rail pad stiffness 
pk = 17 MN/m 

Sleeper density 
s = 2,750 kg/m

3
 

Sleeper length L = 2.5 m 

Track loading gauge 

Rail gauge 

gt = 1.5 

g = 1.435 

m 

m 
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In practice, the use of elastic foundation in the current standard [1] does not well represent the real 

uplift behaviour of sleepers in hogging moment region (or mid span zone of railway sleeper). In this 

study, the support condition is simulated using the nonlinear tensionless beam support feature in 

STRAND7 [22]. This special attribute allows the beam to lift over the support while the tensile sup-

porting stiffness is omitted from the iterative numerical analysis. The tensionless support option can 

better represent the ballast characteristics in real tracks [12]. Table 1 shows the geometrical and materi-

al properties of the finite element model. It is important to note that the parameters in Table 1 give a 

representation of a specific rail track. These data have been validated using field measurements and the 

verification results have been presented elsewhere by the authors [5, 13-14]. Note that these data are 

the dynamic properties of the materials, which should be obtained by various appropriate dynamic test-

ing methods (e.g. using a modal hammer or using a dynamic shaker) [23]. 

 

 
 

Figure 3. STRAND7 finite element model of a prestressed concrete sleeper - optimal length (2.5m). 

 

To our knowledge, the nonlinear flexural analysis of railway concrete sleepers in a track system due 

to coupling vertical and lateral force has not yet fully addressed. Especially when the uplift behaviour 

due to ballast tensionless support in hogging region of sleepers is considered, a finite element analysis 

is required to supersede the simple manual calculation [15, 24]. The impact simulations are conducted 

using the nonlinear solver in STRAND7 [22], to study the effect of lateral over vertical force ratios on 

the dynamic flexural response of the railway concrete sleeper in a track system.  

 

 
Figure 4: Quasi-static responses of the railway sleeper as per design. 
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3. Quasi-static behaviour 

Using the design data in Table 1, Figure 4 shows the bending moment diagram along the sleeper 

when subjected to the equal wheel loads of 100kN at both railseats, in comparison with the standard 

design moments. Based on Australian design standard, the design maximum positive bending moment 

at the rail seat RM = 12.50 kNm, while the centre negative design bending moment CM = 6.95 kNm 

(if considered half support) or =12.50 kNm (if considered full support). It is typical that the positive 

and negative moments are associated with the railseat and mid-span sections, respectively. It shows that 

the standard design moments provide the conservative results. The standard design moment at mid span 

is about half between the other two cases (see Figure 4). 

4. Dynamic behaviours 

The effect of lateral over vertical force (L/V) ratios on the dynamic moment resultants to impact 

loading is investigated. The nominal bending moments M* at both rail seat and mid span are normal-

ized by the maximum dynamic bending moments when L/V =0. Since the lateral force can be applied 

at both rails, two cases of the L/Vs have been investigated. The first case is when the lateral forces oc-

cur equally at both rails, and the other case is when the lateral force occurs only at the high rail.  

  

 

Figure 5: Effect of L/V ratios on the dynamics of railway sleepers (Case 1). 
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The results demonstrated in Figure 5 and 6 show that the effect of L/V is pronounced on the nega-

tive bending moments at all locations when the L/V is unsymmetrical (Case 2). In Case 1, it is found 

that the L/V can increase the dynamic negative bending moments up to 14% especially at the rail seats. 

On the other hand, unsymmetrical L/V can increase the dynamic negative bending moment at outer 

railseat up to 28%.  

 

 

 

Figure 6: Effect of L/V ratios on the dynamics of railway sleepers (Case 2). 

5. Conclusion 

This investigation demonstrates the critical dynamic effects of a variety of lateral force conditions 

and lateral over vertical force (L/V) ratios on the flexural responses of the railway concrete sleepers in 

a track system to impact loading. The dynamic finite element model of concrete sleepers, which was 

established and calibrated earlier (using dynamic testing to obtain dynamic resistance and properties of 

the component), is utilised in this study. The nonlinear transient solver in STRAND7 was utilised to 

cope with nonlinear sleeper/ballast contact mechanics. Under static and dynamic conditions for equally 

supported sleepers, the numerical results exhibit that the bending moment resultants are affected by the 

force variation. The sleepers suffer from impact loading when there is an unsymmetrical lateral force at 

a rail. The standard design of sleepers tends to reinforce for the positive bending moment at both rail 

seats and mid span, resulting in an under-reinforced section for hogging moment at mid-span. General-

ly, negative bending moments at mid span of sleeper have generally low sensitivity to the spectrum of 
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L/V conditions in comparison with the more pronounced influence on the negative bending moment at 

outter railseat. In both symmetrical and unsymmetrical L/V cases, the dynamic negative bending mo-

ment at mid span is insensitive to the lateral forces.  
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