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Summary 44 

Microbiomes associated with human skin and the oral cavity are uniquely exposed to personal care 45 

regimes. Changes in the composition and activities of the microbial communities in these 46 

environments can be utilised to promote consumer health benefits; for example by reducing the 47 

numbers, composition or activities of microbes implicated in conditions such as acne, axillary 48 

odour, dandruff and oral diseases. It is however important to ensure that innovative approaches for 49 

microbiome manipulation do not unsafely disrupt the microbiome or compromise health, and where 50 

major changes in the composition or activities of the microbiome may occur, these require 51 

evaluation to ensure that critical biological functions are unaffected. This article is based on a two-52 

day workshop held at SEAC Unilever, Bedford, United Kingdom, involving 31 specialists in 53 

microbial risk assessment, skin and oral microbiome research, microbial ecology, bioinformatics, 54 

mathematical modelling and immunology. The first day focused on understanding the potential 55 

implications of skin and oral microbiome perturbation, while approaches to characterise those 56 

perturbations were discussed during the second day. This article discusses the factors that the panel 57 

recommend are considered for personal care products that target the microbiomes of the skin and 58 

the oral cavity.  59 

 60 

INTRODUCTION 61 

 62 

The human microbiome  63 

 64 
The last two decades have seen the effective application of culture-independent methods to study 65 

the human microbiota (the microbial cells) or microbiome (the associated DNA) (1). This has led to 66 

a deeper and more comprehensive analysis of the diverse range of organisms that inhabit the body, 67 

where a substantial proportion are not readily amenable to culture (2). In the process some but 68 

certainly not all knowledge gaps have been addressed. High-throughput sequencing is currently 69 

performed using a range of platforms including Illumina and Ion Torrent, which can rapidly 70 

sequence millions of fragments of DNA in parallel (3). Hypervariable regions of the bacterial 16S 71 

rRNA genes, or whole genome DNA is targeted to analyse complex microbial communities. For 72 

16S amplicon sequencing in particular, bioinformatic analyses have been applied to cluster the 73 

generated sequences according to their similarity to define different operational taxonomic units 74 

(OTU), which are then compared to databases to reveal community composition. However, tools 75 

such as DADA2 are being increasingly used to obtain exact sequence variants (4) giving greater 76 

resolution (5). The often short sequencing reads and the large data volumes generated through NGS 77 

presents challenges and taxonomic classification and relative abundances can vary depending on the 78 



 4 

bioinformatic pipeline used (3). Microbiome research has nevertheless identified considerably 79 

greater microbial diversity than had been previously characterised, overcoming some of the 80 

limitations of culture including issues of non-culturability. Whilst microbiome research in humans 81 

has focussed primarily on the gut, studies of the oral cavity (6-9) and skin (10-14) have facilitated 82 

the deeper understanding of these sites, which are of particular relevance to personal care. The use 83 

of personal care products can result in changes in microbiome that may be intentional or otherwise. 84 

It is however important to note that "oral microbiome" and "skin microbiome" are simplified terms 85 

referring to biogeography-dependent sets of communities where microbial composition and 86 

activities can vary markedly depending on site. 87 

 88 

The challenge of establishing causality 89 

 90 
The human microbiome provides protection against pathogenic organisms (14) and can stimulate 91 

the immune system (15, 16) and participate in the maintenance of different ecological niches 92 

present in the body (17). Fluctuations in micobiome composition may therefore perturb beneficial 93 

microbial functions with potential health implications for the host. The following section will 94 

consider some notable diseases of the skin and the oral cavity where differentiating between cause 95 

and association for microbiome composition has been challenging.  96 

Atopic dermatitis (AD) is a chronic, relapsing inflammatory condition characterised by pruritis 97 

(itchiness), wheels and flares, and in severe cases, broken, bleeding skin. A high Staphylococcus 98 

aureus load has been reported to correlate with AD flares and vice versa in clinical studies 99 

involving AD patients, where coagulase negative staphylococci (CoNS) were more abundant in 100 

healthy controls (18). Colonisation with commensal staphylococci early in life appears to be 101 

protective against the development of AD (19), and AD is also strongly associated with mutations 102 

in the barrier protein, filaggrin (20). It has therefore been hypothesised that an abnormal epidermal 103 
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environment caused by a leaky skin barrier predisposes the skin to infection by exposing 104 

environmental niches that would normally be inaccessible to S. aureus.  105 

Unravelling the role of the microbiome in dermal diseases is confounded by the physiological 106 

changes in host tissues that characterise the pathology. Acne vulgaris, for example, has been 107 

associated with overgrowth of Cutibacterium (formerly Proprionibacterium) acnes, but this 108 

association is not necessarily causal. In addition, Acne vulgaris has been potentially linked to 109 

changes in the dermal environment proposed to be driven by factors including a Western style diet, 110 

which may influence signaling in the hair follicle resulting in overproduction of sebum (21). The 111 

photodermatosis, polymorphic light eruption (PLE) that is characterised by a rash on exposure to 112 

UV light has been associated with the abnormal expression of antimicrobial peptides in the skin, 113 

(22) distinct from that seen in psoriasis or AD, suggesting a microbiota involvement. PLE is 114 

however also associated with other changes in the immune system of the skin (23) (24). The 115 

common inflammatory skin condition psoriasis has been associated with changes in the skin 116 

microbiota (25) (26) but this association is not necessarily causal because the massive systemic 117 

inflammatory response that is a feature of psoriasis may also profoundly influence the composition 118 

of the skin microbiota (as reviewed by (27)).  119 

Whilst the relationship between the oral microbiome and oral disease is arguably better understood, 120 

knowledge gaps remain. Common conditions such as dental caries, gingivitis and periodontitis are 121 

closely associated with potentially harmful changes in the composition and activities of the oral 122 

microbiota (sometimes referred to as dysbiosis) (28) (29) that have environmental triggers. The 123 

development of caries for example, is related to high intake of sugary foods and the consequent 124 

production of lactic acid by caries-associated bacteria within the oral microbiome. This in turn 125 

favours the growth of acid-tolerant, acidogenic organisms such as Streptococcus mutans which, 126 

along with other oral bacteria, forms biofilms on the tooth surface (30). Acid produced by these 127 

organisms can alter the balance of enamel demineralisation/remineralisation of the tooth, leading to 128 
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loss of mineral, and caries formation. In periodontitis, the persistent presence of subgingival 129 

biofilms associated with poor oral hygiene can lead to inflammation and bone loss (31). The 130 

pathology of periodontitis is largely caused by the host response and the primary risk factor is host 131 

susceptibility (as reviewed by Wade (32)). However, certain species of bacteria favour inflamed 132 

sites including Porphyromonas gingivalis, which can subvert the host response leading to a 133 

“dysbiotic” microbiota, which further exacerbates lesions (33). Whilst the role of the host response 134 

in periodontitis is well established, the roles of host response and microbiome for gingivitis merits 135 

further research. Additionally, some reports suggest that oral bacteria can translocate from the 136 

mouth into the systemic circulation and whilst causality has not been confirmed, periodontitis for 137 

example, has been associated with other conditions such as coronary artery disease (34), rheumatoid 138 

arthritis (35) and respiratory disease (36) (37).  139 

 140 

Targeting specific microbes with personal care products 141 

 142 
As well as investigating the role of the microorganisms present in health and disease, microbiome 143 

research is increasingly being applied to investigate the fundamental biology of various skin 144 

conditions (38), oral hygiene (39), dandruff (40), dental caries (41), acne (42) and periodontitis (28, 145 

29) (Table 1). Recent advances in this field include improved knowledge of the bacterial and fungal 146 

composition of the scalp in individuals with and without dandruff (43), and the identification of 147 

bacteria involved in axillary (44) and oral (45) malodour. In addition, the importance of bacterial 148 

strain variability in acne is also now appreciated; although the overall relative abundance of C. 149 

acnes is comparable between acne and healthy individuals, significant differences at the strain level 150 

have been observed (42). Manipulation of the compositional structure or function of skin and oral 151 

microbiomes can potentially counteract certain undesirable health conditions where use of 152 

probiotics, prebiotics and targeted antimicrobials may provide opportunities to restore the healthy 153 

microbial composition of the skin (46) and oral cavity (47) (48). Manipulating innate immunity of 154 

the skin and oral cavity is a another route through which this could be achieved (39) (49) 155 
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Aims and Objectives 156 

 157 
Whilst differentiating between association and causality remains a key issue in microbiome 158 

research, the fact that in some cases interactions between the microbiome and the host play a role in 159 

health and disease has been established (as previously reviewed (50)). It is therefore important that 160 

the effect of personal care regimes on the microbiome receives adequate consideration. 161 

Understanding of the factors that cause fluctuations in the microbiome is likely to contribute to the 162 

development of novel approaches to understand potential links to undesirable health conditions, and 163 

to the identification of microbiome-based biomarkers. It is in this context that the U.S. National 164 

Academy of Sciences have discussed the need to incorporate interactions between the microbiome 165 

and chemicals in assessing human health risks associated with environmental chemical exposure 166 

(51). As understanding of the functional significance of the human microbiome progresses, and the 167 

exploration of host-microbial interactions advances, understanding the effects of intentional 168 

manipulation of the human microbiome in the context of human safety should be addressed.  169 

In October 2016, a workshop was organised at Colworth Science Park in the UK including 31 170 

specialists in the areas of microbial risk assessment, skin and the oral microbiome, microbial 171 

ecology, bioinformatics, bacterial modelling and immunology. This manuscript emerged from 172 

exploration of the areas discussed during the workshop. It considers factors that the panel agreed 173 

require consideration when evaluating the safety of personal care products that aim to benefit the 174 

consumer by affecting the composition or activities of the skin and oral microbiomes. 175 

PROTECTION OF THE ORAL AND SKIN MICROBIOME FUNCTIONS TO PROMOTE 176 

HEALTH 177 

 178 

The human microbiome in health and wellbeing 179 

 180 
Microbiotas associated with the oral mucosa and the skin help programme the human immune 181 

system to recognise pathogens (52, 53), reduce the risk of invasion by undesired organisms (54), 182 

produce vitamins and other metabolites such as short-chain fatty acids (55). In skin, Phenol Soluble 183 
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Modulins (PSMs) and bacteriocins (56) contribute to the ecological and structural maintenance of 184 

the niche (54). Commensal skin organisms such as S. epidermidis and C. acnes use distinct 185 

mechanisms to inhibit pathogens and maintain a healthy skin barrier. S. epidermidis produces 186 

antimicrobial peptides which can reportedly control the growth of S. aureus (16) as well as serine 187 

proteases to inhibit biofilm formation (16), fermentation products such as succinic acid that may 188 

inhibit the overgrowth of the opportunistic pathogen C. acnes (46), and a unique form of 189 

lipoteichoic acid that can inhibit skin inflammation during skin injury (57). C. acnes has also a 190 

protective role as a commensal by converting sebum to free fatty acids, which in consequence 191 

inhibit colonisation of opportunistic pathogens and contribute to the maintenance of an acidic skin 192 

pH (46).  193 

In the oral cavity, some streptococci generate hydrogen peroxide that can inhibit the caries-194 

associated bacterium S. mutans (58). The oral microbiome also has non-antimicrobial functions of 195 

importance to health and disease where nitrate-reducing oral bacteria can convert dietary nitrate into 196 

nitrites, which can influence cardiovascular health and blood pressure (59). Nutritional functions of 197 

the oral microbiota are delivered by complex communities via cross feeding and syntrophy. For 198 

example, streptococci have both glycosidic and endopeptidase activity, whilst species of Prevotella 199 

and Porphyromonas species have endopeptidase activity and Fusobacterium and 200 

Peptostreptococcus have aminopeptidase activity (60). Bearing in mind the roles of the skin and 201 

oral microbiome that are currently understood and the fact that other activities remain unknown, the 202 

maintenance and protection of the healthy functionality of the microbiome is an important 203 

consideration when assessing the effect of personal care products.  204 

Microbiome Composition versus function 205 

 206 
Initiatives such as the Human Microbiome Project (HMP) (13) (53) (55) and other studies (14, 52, 207 

61) have enhanced our understanding of baseline skin and oral microbial composition but the search 208 

for attributes that define a healthy human microbiome continues. As part of the HMP, where 200 209 
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healthy individuals were examined, the “core” microbiome of different body sites, including saliva, 210 

plaque, tongue and other oral tissues, ranged from zero to eight operational taxonomic units (OTUs) 211 

when analysed for percentage prevalence of 100% compared to a higher range of 19-75 OTUs when 212 

the percentage was lowered to 50% (62). Interpretation of the core microbiome to measure the 213 

similarity of samples depends on the taxonomic resolution employed since samples may decrease in 214 

apparent similarity when analysed to genus or OTUs compared to phylum level (61) (63) (64). 215 

Whilst a specific group of microorganisms may be shared between individuals, inter-individual 216 

variation may still be considerable at the species-level, and for the presence of rare microorganisms 217 

(8, 14, 61). Care is therefore required when classifying microbiome composition as healthy or 218 

otherwise, especially in the absence of species-level classification. This is of particular importance 219 

in the oral cavity where different species within the same genera can have contrasting associations 220 

between health and disease.  221 

The functions provided by compositionally different microbiomes can be relatively similar between 222 

individuals (55). Exploring which of these general functions are associated with health represents an 223 

alternative to the concept of “healthy composition” (65). A proposed functionality-based definition 224 

of a “healthy microbiome” involves three functions: those associated with health-related 225 

housekeeping functions, human functions, and specialised functions (53). Housekeeping functions 226 

involve energy production and the generation of metabolites and other requirements to maintain the 227 

microbial community itself; human-associated functions comprise interactions with the host such as 228 

developing and influencing the activity of the immune system and specialised functions include 229 

regulation of the pH in a specific body site. A functional core has been described for metabolic 230 

pathways detected in more than 75% of individuals (55). Pathway cores were identified for either 231 

multiple or single body sites, reflecting the fact that some core functions are broadly distributed and 232 

general to the human host whilst others are an adaptation to a specific body site. It should be noted 233 

that core functions are not necessarily beneficial to the host.  Among site-enriched pathways, nitrate 234 



 10 

reduction has been identified as important in the oral cavity (55). These core pathways are generally 235 

associated with microbial consortia. Such functional observations may provide further insights 236 

when studied across populations and during longer temporal studies with a controlled microbial 237 

change. If functional characterisation of the human microbiome can be achieved, measuring or 238 

predicting the loss of a beneficial function or the introduction of an undesired function could be 239 

used as a functional index during consumer safety assurance. 240 

FACTORS THAT CONTRIBUTE TO PERTURBATION OF THE SKIN AND ORAL 241 

MICROBIOME 242 

Microbiome stability as an indicator of health   243 

The stability of the microbiome over time in healthy individuals has been assessed (66). Temporal 244 

stability has been explained as a state of equilibrium for a community regardless of the fact that 245 

some microbes may at the same time be changing as response to disturbances (67). The ability of 246 

the microbiome to remain balanced when exposed to a perturbation and to recover to a healthy 247 

functional profile afterwards has also been proposed as a key feature of a healthy microbiome (53). 248 

Despite their importance for understanding microbial community dynamics and responses to 249 

perturbations, long-term longitudinal studies are still rare. However, based on the available 250 

evidence, the composition of the human microbiome is relatively stable over time, with the main 251 

variation within an individual being between body sites (13) and considerable temporal stability has 252 

also been reported for the microbiome in healthy skin. Oh and colleagues (68) generated 253 

metagenomic sequence data from longitudinal samples collected over 2 years and reported that 254 

bacterial, fungal, and viral communities were largely stable over that time despite exposure to the 255 

external environment. This stability was observed to be site-specific, with body sites harbouring 256 

high microbiome diversity being more variable than low diversity (sebaceous) body sites.  257 

Observations of temporal stability in the skin microbiome have been interpreted as evidence for 258 

colonization resistance and used as the basis for clinical studies exploring skin microbiome in 259 
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disease states, where compositional changes in the microbiome have been reported. Costello et al. 260 

(10) assessed the resilience of the skin microbiota by disinfecting plots on the forehead and left 261 

volar (i.e. underside of) forearms of volunteers and then inoculating them with “foreign” 262 

microbiotas (i.e. taken from the tongue and skin of other individuals). The microbiotas of forearm 263 

plots (n= 16) that had been inoculated with tongue scrapings were more similar to tongue 264 

communities than to those normally associated with the forearm in relative abundance between 2 265 

and 8 h after inoculation. However, communities more similar to those normally associated with the 266 

forehead, developed on forehead plots that had been similarly inoculated with tongue material. It 267 

can be inferred therefore, that for some reason (potentially the presence of sebaceous lipids), the 268 

forehead environment exerted a stronger selection pressure than the forearm. Furthermore, 269 

following interpersonal and inter-gender reciprocal swaps of forehead and forearm microbiotas, 270 

developing communities resembled the recipient rather than the donor, demonstrating the 271 

importance of the environment and possibly, the action of endogenous mechanisms for 272 

individualisation and microbiota perpetuation. The authors hypothesised that the stronger selection 273 

at forehead sites was due to sebaceous secretions which, in contrast to dry sites like the volar 274 

forearm, may have i) been more strongly selective and/or ii) could have supported the more rapid 275 

recolonisation from appendageal structures, which is in agreement with the hypothesis outlined 276 

above.  277 

The oral microbiota may also remain stable over time in healthy individuals (6) although it is also 278 

sufficiently malleable to be beneficially manipulated through hygienic intervention (39). It is 279 

however important to consider what stability means when referring to a host-associated microbiota. 280 

Belstrøm and colleagues collected saliva from five volunteers without oral disease every 4 h for 24 281 

h, repeated this seven days later (69) and profiled the salivary microbiome. Whilst caution is 282 

necessary given the small sample size, the author’s tentative conclusion was that “little or no 283 

variation” within salivary microbiomes was observed over time. The oral cavity is a complex 284 
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environment with various distinct areas, and saliva, often purported to contain microorganisms 285 

originating from multiple sites on the mouth may vary less in terms of microbiome composition 286 

than for example, a tooth surface where in individuals following the recommended oral health 287 

regime of twice daily brushing microbial abundance will be very low immediately after cleaning, 288 

but can exceed 10
7
 bacteria per cm

2
 following regrowth.  289 

Maintaining microbiome stability in healthy individuals will ensure that the beneficial microbial 290 

functions are maintained (70) so the measurement of microbiome stability and its recovery 291 

following disturbance are important in understanding potential risks. Whilst the human microbiome 292 

is relatively stable, its composition can be altered both by pathologies such as gingivitis and 293 

dandruff, or by treatment.  294 

Consumer products can alter microbiome composition or function  295 

The hypothesis that the skin microbiota, once established, is perpetuated by continuous endogenous 296 

inoculation is supported by an investigation by Grice et al. (12) in which skin microbiota was 297 

sampled using swabs and biopsies and profiled by high-throughput sequencing. An attractive 298 

explanation is that secretions from sweat glands and the outward migration of differentiating skin 299 

cells could transport bacteria cells from within appendageal structures continuously onto the skin 300 

surface (as proposed by Kong et al. (71)). Daily hygiene regimens may however affect the 301 

microbiome and some routines tooth brushing and hand washing do this intentionally to 302 

respectively control reduce the risk of oral disease and to reduce the transmission of pathogens, (54, 303 

72). Exposure to antimicrobials through the use of household and personal care products has shown 304 

minimal long-term effects on the microbiome. In this respect, two human studies monitored how the 305 

use of toothpaste, liquid and bar soap, and dishwashing liquid, with and without triclosan perturbed 306 

the microbiome. The first study; a crossover control study involving healthy individuals, showed no 307 

significant impact on human oral or gut microbiome composition during 4 months exposure to the 308 

antibacterial compound triclosan (73). A longitudinal survey of the gut microbiota in infants and 309 
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mothers during the first year following birth also did not show major compositional changes or loss 310 

of microbial diversity (74). It is highly likely that environmental modulation of the skin microbiota 311 

has been occurring since the ancient origins of the microbiome for the skin through UV irradiation, 312 

friction and washing, and for the oral cavity through diet, friction and cleaning. In personal care, 313 

antiperspirants are used by approximately 50% of the global population and have been shown to 314 

reduce bacterial load in the axilla. Individuals that do not use antiperspirants have been observed to 315 

harbour greater axillary microbiome diversity than individuals that use antiperspirants do (75). For 316 

antiperspirant and deodorant users who ceased use of product, an increase in Staphylococcaceae 317 

was observed, in comparison to Corynebacterium species dominating in non-users. Perhaps 318 

surprisingly, microbiome diversity was reported to be greater in antiperspirant users compared to 319 

deodorant or non-users. In a separate study of nine cohorts, axillary diversity was similarly found to 320 

be greater in antiperspirant (and deodorant) users compared to non-users (76). A recent study on 321 

effect of cosmetic products on the microbiome of facial skin of high and low hydration groups 322 

indicated that baseline bacterial diversity was greater in the low than that of high hydration group, 323 

and that the use of cosmetic products  decreased the differences between the two groups (38).  324 

Microbiome individualisation  325 

Evidence suggests that both environment and host genetics play important roles in determining the 326 

composition of individual microbiomes. Salivary microbiome studies in twins indicate that overall 327 

microbial abundance and some aspects of the microbial population structure are influenced by 328 

heritability (77). With respect to the skin microbiome, Blekhman and colleagues (78) analysed 329 

shotgun metagenomic data from the HMP, collecting data on host genetic variation for 93 330 

individuals. They reported significant associations between host genetics and microbiome 331 

composition for ten of the fifteen sites they assessed, including the oral cavity and the skin. Thus, as 332 

well as extrinsic environmental factors, host genetics appears to play a role in the composition of 333 

the oral and skin microbiotas, probably through immunological and other mechanisms. These 334 
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examples partly explain the variability between individuals observed in microbiome research (8) 335 

and highlight the need to separate a significant change from individual variation when assessing 336 

specific perturbations. 337 

Extrinsic factors also influence the stability of the microbiome since activities such as smoking 338 

tobacco have been shown to influence the composition of oral biofilms (79), suggesting that 339 

smoking promotes the acquisition and colonisation of pathogenic bacteria. The development of 340 

gingivitis and its progression from gingivitis to periodontitis and the promotion of dental plaque 341 

biofilm colonisation partly depends on the host immune response (80). Gomez and colleagues (81) 342 

illustrated the impact of host genetics through a human volunteer study involving a large cohort of 343 

monozygotic and dizygotic twin children with and without active caries, with the aim of elucidating 344 

the contributions of host genotype and shared environment on the oral microbiomes (supragingival 345 

plaque) of children. They observed that similarity in oral microbiomes was higher between 346 

monozygotic twins regardless of caries state, with certain taxa being identified as highly heritable 347 

but that most of the variation was determined by the specific growth microenvironment. The caries 348 

state however, was not associated with the more highly heritable bacteria suggesting that lifestyle, 349 

diet and oral hygiene practices might outweigh parental heritability in establishment of a caries 350 

associated microbiome. The more heritable species were detected at lower abundance with 351 

increasing age and sugar consumption.  352 

MEASURING CHANGES IN MICROBIOME COMPOSITION AND ACTIVITIES 353 

 354 

Risks of pathogen colonisation 355 

One of the beneficial activities of the microbiotas of the skin and oral cavity is the protection of the 356 

host tissue from pathogens (as summarised in Figure 1). Perturbation of commensal communities 357 

may be therefore a contributing factor to the pathogenesis of certain inflammatory conditions. In 358 

some circumstances, overgrowth of commensal microorganisms with pathogenic potential 359 

(pathobionts) or colonisation by external pathogenic organisms (transients) can cause disease. The 360 
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ability of transient organisms to colonise is likely to depend on the interactions with the 361 

commensals residing at each specific body site. In this respect, microbial communities with more 362 

competitive interactions than cooperative interactions are assumed to be more resilient in the sense 363 

that cooperation causes coupling between species involving several species to change at the same 364 

time and destabilise the system (82). In the mouth, loss of colonisation resistance through antibiotic 365 

use can lead to infections by opportunistic pathogens such as Candida species and S. aureus (as 366 

reviewed (83) (60)). In this regard, microbial changes that do not increase the opportunity for 367 

pathogens to colonise are unlikely to adversely affect the wellbeing of the host. 368 

The human body as a microbial niche 369 

The skin and oral cavity present distinct environments, and ecological conditions in situ, have a 370 

large influence on the compositional differences in microbiota between body sites. Oily, moist and 371 

dry skin sites regulate nutrients and harbour specific microbial taxa (46, 52, 84). The mouth can be 372 

broadly divided into different habitats: the gingiva and hard palate; the tongue and throat; and 373 

dental plaque; each one colonised by a microbiome characteristic of the specific site (60). The 374 

microbiota present in the oral cavity form biofilms by attaching to the different surfaces, which 375 

confer spatial structure and provide the conditions required for different organisms to survive within 376 

the community (85). The availability of oxygen is one of the drivers of microbiota composition and 377 

in this context, a succession during the formation of dental plaque has been proposed whereby teeth 378 

are initially colonised by facultative genera such as Streptococcus, with a shift to a microbial 379 

community better adapted to anaerobic conditions, as the biofilm matures. Bacterial succession on 380 

the tooth surface can also be strongly influenced by nutrient availability, mechanical stress and 381 

saliva flow (6, 61, 86) and by binding of bacteria to proteins in the salivary pellicle coating the tooth 382 

surface (87). 383 

Interactions with the external environment can also drive selection. For example, an increase in 384 

sugar intake or a reduction in saliva flow may induce a reduction in pH that allows the expansion of 385 
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aciduric organisms (86). Loss of moisture, changes in temperature and exposure to ultraviolet 386 

radiation can also result in microbiota alteration in the skin (88). Similarly, changes in the spatial 387 

structure may also influence the microbial community within a given body site (9, 88).  388 

 389 

Microbial diversity in health 390 

Several indices have been employed to differentiate microbiomes associated with health and 391 

disease. Among these, microbial (ecological) diversity is frequently measured. Ecological diversity 392 

can be measured as richness (the number of taxa present) and evenness (the abundance of microbial 393 

constituents). Although not universally applicable, higher diversity has been associated with health 394 

in specific contexts when considering that more diverse microbes may supply the host with 395 

increased functional traits. However, microbial diversity on its own is not an accurate measure for 396 

determining disease aetiology or health. Whilst reduced microbial diversity has frequently been 397 

observed in conditions such as atopic dermatitis and psoriasis (89)-(90) this is not always the case, 398 

for example, in both psoriatic and unaffected elbows (81) richness has been reported to be the same 399 

whilst, an increase in bacterial diversity due to the rise of species of minor abundance has been 400 

observed in gingivitis and periodontitis (64, 91). The measurement of diversity also does not 401 

account for interactions among species and two microbiomes with the same level of diversity may 402 

be different. It may therefore be more pertinent to observe the entire community of microbes 403 

present and by extension how they are functioning, rather than relying on richness alone as a 404 

predictor of disease (92). 405 

The importance of bacterial abundance 406 

Compositional studies of the skin and oral microbiomes have suggested that the load or abundance 407 

of organisms can be more significant than their presence in the progression of disease. A 65% 408 

increase in the proportion of S. aureus in atopic dermatitis sufferers at flare sites and partial 409 

correlation between S. aureus abundance and disease severity have been reported (99). Similarly, S. 410 
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epidermidis was significantly more abundant during flares than post flares and in controls, although 411 

the underlying reasoning for the increase in S. epidermidis was not determined (99).  Several studies 412 

have reported increased C. acnes abundance in acne compared to unaffected volunteers (93). Whilst 413 

differences between the absolute numbers of bacteria between inflammatory acne, papules and 414 

pustules have been reported there appears to be progressively higher bacterial loads vis-à-vis 415 

severity of the disease (94). The use of quantification methods such as quantitative PCR has 416 

revealed higher levels of S. mutans and S. sobrinus in children with caries compared to caries-free 417 

children (95). In other oral diseases such as gingivitis, severity is better correlated with the plaque 418 

load and maturity than with some specific bacteria (60). It should however be born in mind that 419 

NGS is not well-suited to determining differences in bacterial absolute abundance (quantified 420 

genetic or microbial load within a sample) such that two samples with identical relative abundance 421 

(genetic representation of microbes within a sample ranked against all taxa in the sample) could 422 

differ markedly in absolute abundance (96). 423 

Host-microbiota interactions 424 

Skin functions as a two-way barrier, which helps to preserve hydration levels and prevent entry of 425 

noxious substances into the body. Skin function may be shaped by the commensal organisms and in 426 

this respect, Naik et al. (97) demonstrated that germ-free mice had a weakened immune response to 427 

the parasite Leishmania major compared to mice raised under specific pathogen-free conditions. 428 

The impaired response in the germ-free mice could be rescued by colonisation with S. epidermidis 429 

(97) implying a role for the microbiota in promoting host immunity. More recent evidence suggests 430 

that the microbiota is fundamental to skin structure. Conventionally reared mice showed altered 431 

gene expression compared with germ-free mice. Meisel et al. (98) reported that 2820 genes were 432 

differentially regulated by microbial colonisation, which included genes associated not only with 433 

the host immune response but also epidermal differentiation. Crucially, the expression of 9 genes 434 

involved in the epidermal differentiation complex (EDC), a collection of genes involved in terminal 435 
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differentiation of keratinocytes (reviewed in (99)), was regulated by the microbiota. When the skin 436 

of conventionally raised mice was compared to germ-free mice, differences in the balance of 437 

proliferation and differentiation were observed. These data support the view that the microbiome 438 

may be associated with the development of the skin architecture since the EDC has been implicated 439 

in dermatological diseases such as psoriasis (reviewed in (100)). Various studies have shown that 440 

the microbiota is associated with the outcome of the healing response when wounding breaches the 441 

skin barrier. In broken skin the commensal microorganisms can behave as pathogens and 442 

colonisation of wound sites can result in release of microbial metabolites that can further damage 443 

host tissues (reviewed in (101)). It is therefore unsurprising that accelerated wound healing has been 444 

observed in the absence of microbiota (102, 103) but it is also the case that the commensal 445 

microbiota can produce antimicrobial peptides (AMPs) that can inhibit the invasion of wound sites 446 

by pathogens (104). There is also evidence that S. epidermidis can inhibit the uncontrolled 447 

inflammation sometimes associated with wounding. Part of the mechanism for this may involve the 448 

inhibition of cytokine release by keratinocytes (57).  449 

With respect to beneficial effects, S. epidermidis has been reported to augment tight junction 450 

function in keratinocytes (105) where the interaction of keratinocyte monolayers with S. 451 

epidermidis increased the trans-epithelial electrical resistance (a measure of tight junction function) 452 

within a short time of exposure to this bacterium. Furthermore, toll-like receptor (TLR) ligands such 453 

as lipoteichoic acid or peptidoglycan may augment tight junction function in keratinocyte 454 

monolayers (106). These data suggest that skin commensals, like those of the gut, are probably 455 

involved in many aspects of epithelial barrier homeostasis.  456 

MEASURING CHANGES IN MICROBIOME COMPOSITION  457 

Various data analysis methods are used in microbiome research that can objectively assess 458 

microbial changes. This section describes the information that each technique provides and how it is 459 

applied to characterise health and disease. 460 
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Metagenomic profiling  461 

Studies employing both ribosomal profiling and metagenomics have sought to identify microbes 462 

linked to either oral or cutaneous disease, whether at the community level or that of individual taxa. 463 

Several studies have reported changes in the proportion of bacteria on the skin in psoriasis (25, 26, 464 

89). Gao et al (25, 26) for example reported that Firmicutes were significantly overrepresented in 465 

psoriasis lesions compared to uninvolved skin, whilst the Actinobacteria and Propionibacterium 466 

species were reportedly present at significantly lower relative abundance in psoriatic lesions. Apart 467 

from bacteria, the fungal genus Malassezia has also been associated with psoriasis (89, 107-110). 468 

Altered microbial community profiles have also been reported in atopic dermatitis, where an 469 

increased proportion of Staphylococcus, particularly S. aureus and S. epidermidis, were observed 470 

during disease flares in comparison to baseline or post-treatment, and correlated with increased 471 

disease severity (111-113).  472 

In terms of the oral microbiota, changes in microbial composition have long been associated with 473 

dental caries and periodontitis. For caries, sequence analysis has confirmed that bacteria other than 474 

S. mutans are correlated with active caries (Lactobacillus and Bifidobacterium) and likewise several 475 

taxonomic groups of bacteria are associated with periodontitis (28, 114-117). It is also clear that the 476 

aetiology of disease also involves a complex interplay between the host and the resident microbial 477 

communities that is yet to be fully explored. Applied to the study of psoriasis, such approaches 478 

indicate that strain level features and associated functional variation may be pertinent to disease 479 

(118). 480 

This exploration of host-microbe interactions have been hindered by the fact that virulence and 481 

pathogenic determinants could be partitioned at the sub-species or strain level. It is well established 482 

that intra-species genomic features lead to phenotypic variability (113, 119-121). Ribosomal 483 

genera-based profiling approaches lack strain level resolution. Several recent computational tools to 484 
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taxonomically (122-124) and functionally (125, 126) characterise individual members of the 485 

microbiome at strain level resolution in metagenomic datasets have become available.  486 

Profiling of functional potential 487 

Whilst understanding the community structure of a microbiome and the relationship between 488 

specific taxa and health or disease can be informative, knowledge of community function will 489 

probably be most useful in understanding the effect of perturbing the microbiome. Shotgun 490 

metagenomics provides the potential to access strain level taxonomic features and the potential 491 

functional characteristics of the community which has until recently been computationally 492 

challenging. This approach can be used for the investigation of functional traits, although it can 493 

only reveal the functional potential of communities. It can also be used to profile viruses, which are 494 

not amenable to ribosomal-based profiling. The oral microbiome have assessed disease states such 495 

as caries or periodontal disease compared to healthy controls. Shi et al. (127) and Wang et al. (128) 496 

reported that community function around bacterial chemotaxis and cell motility are increased in 497 

disease compared to periodontal health. It has also been shown that in periodontal disease there is 498 

an increase in metabolic pathway genes associated with fatty acid metabolism (129), as well as an 499 

increase in genes associated with the metabolic degradation of nutrients (127) and those required for 500 

growth in anaerobic conditions (129). Healthy communities have been shown to exhibit increased 501 

functions in the areas of fatty acid biosynthesis, aspartate and homoserine metabolism, membrane 502 

transport and signal transduction. Metagenomic studies of the skin are more difficult due to the low 503 

bacterial density and small sample surfaces available (130). Mathieu et al. (131) consider the skin 504 

microbiota as a complete organism, reporting a predominance of catabolic genes and the ability of 505 

the skin bacteria to use the sugars, lipids and iron that are found on human skin. They also found 506 

genes related to antibiotic resistance, as well as some linked to acid resistance, clearly a mechanism 507 

for tolerance of the natural acidity of the skin. Oh et al. (17) have described a “functional core” of 508 

around 30% of the community that can vary depending on the diversity and biogeography of the 509 
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differing skin microenvironments, which drives the functional capacity that is required by that 510 

community. For example, dry sites were found to favour functional traits surrounding the citrate 511 

cycle, and sebaceous sites showed increased function around glycolysis and ATP/GTP/NADH 512 

dehydrogenase I.  Whilst these metagenomic approaches exceed a simple inventory of taxa and 513 

provide information on function and health/disease interrelationships, making judgements of 514 

community functional traits by reference genome comparison should be undertaken with care. 515 

There is a large genomic diversity that is just starting to be understood, for example the association 516 

of only some C. acnes strains with acne vulgaris (123) (130). Further complicating the search for a 517 

functional understanding of the microbiome is the identification of new genes from metagenomic 518 

analysis approaches that are associated with health or disease, but which cannot be assigned to any 519 

functional pathway.  520 

Metatranscriptomic analyses 521 

Shotgun transcriptomics can be used to determine the active functions of a microbiome (132), 522 

especially as the community composition of a microbiome alone is not necessarily reflective of its 523 

active community members (133). This is an emerging research area with less data available, and 524 

challenges remain, for example in sampling sufficient mRNA material to enable analysis. However, 525 

the transcriptomic profile of a community is dynamic and can easily change in the same biological 526 

sample at different times as the microbiome responds continually to changing environmental and 527 

host conditions. Metatranscriptomic studies applied to human microbiome are more limited in 528 

comparison to metataxonomic/metagenomics surveys.  529 

In comparison to the oral microbiome, metatranscriptomics of the skin is more challenging due to 530 

the limitations of microbial biomass in the sample material. Kang and colleagues (132) analysed the 531 

metatranscriptomics of patients with acne vulgaris versus healthy controls. C. acnes was reportedly 532 

the most transcriptionally active organism and was predominant in both the healthy and diseased 533 

samples. Further analysis of the gene expression profile of C. acnes in the samples identified that 534 
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the organism’s activity on acne-affected skin was distinct from its activity on healthy skin. 535 

Specifically, vitamin B12 biosynthesis pathway was observed to be significantly downregulated in 536 

acne. Additionally, a model of how vitamin B12 modulates the transcriptional and metabolic 537 

activities of C. acnes in acne pathogenesis was suggested. The model underlined how shotgun 538 

metatranscriptomic approaches can enhance the understanding of disease pathogenesis. One of the 539 

limitations of meta-transcriptome data is the final metabolic products generated by a microbial 540 

community are not captured (133). In this respect, techniques such as proteomics, metabolomics, 541 

and lipidomics can help to have a deeper functional characterisation of the microbiome. 542 

Metatranscriptomics has been used in conjunction with metagenomics to investigate saliva from 543 

individuals with caries and periodontitis to compare with saliva from orally disease-free individuals. 544 

Belstrom et al. (69) identified 15 differentially expressed KEGG Orthologs (KOs) between 545 

periodontitis or caries samples when compared with orally healthy controls. These included eight 546 

carbohydrate metabolism-associated KOs that were downregulated in periodontal disease and two 547 

KOs that were upregulated in caries associated with glycan biosynthesis and carbohydrate 548 

metabolism. In addition, the same study observed that lipid metabolism was increased in healthy 549 

samples when compared with dental caries and concluded that longitudinal studies may reveal that 550 

screening salivary metabolic gene expression can identify oral diseases preclinically. However, it is 551 

also clear that development of such diagnostics is at a very early stage and that overcoming the very 552 

significant differences in complexity between the salivary and plaque microbiomes would be a 553 

substantial technical and clinical challenge.  554 

Metabolomic analyses 555 

Microbial metabolites can have a direct impact on oral or skin health (e.g. short chain fatty acids 556 

and sulphides in periodontal diseases, organic acids in dental caries) or they can enter and modulate 557 

host metabolic processes. As such, metabolite exchange between the microbiome and host 558 
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represents one mechanism through which these systems communicate. Variation in the bacterial 559 

species present can modulate the genetic library of the microbiome, changing its overall functional 560 

capacity, its metabolite production, and the downstream impact on host health. However, different 561 

species are known to possess similar or even the same metabolic traits. This functional redundancy 562 

means that studying composition alone may be insufficient to accurately determine the overall 563 

biotransformation capabilities of the microbiome and therefore its potential to modify host health. 564 

Metabolic profiling (metabolomics/metabonomics) has emerged as a powerful tool for studying the 565 

microbiota because it can ascertain the metabolic profile via low molecular weight compounds in a 566 

sample. These metabolic signatures contain thousands of molecular small molecular weight 567 

compounds reflecting biochemical events. This includes host metabolic processes but also those 568 

performed by the resident microbes and products arising from interactions between the two. Studies 569 

using metabolomics to directly assess the functional status of the skin microbiota are limited. 570 

However, several studies have characterised the skin metabolome in a wider context. These have 571 

used a variety of sample types including skin swabs, hydrogel micropatches (134), punch biopsies 572 

and sweat. In one study analysing epidermal skin tissue, several bacterial-derived metabolites (135) 573 

and bacterial substrates were observed, including p-cresol, a bacterial metabolite of tyrosine. This 574 

demonstrates that these tissue samples can be informative for studying the skin microbiome. Skin 575 

surface liquid extracts (sweat) represent another sample type of potential utility. These are complex 576 

mixtures of secretions derived from eccrine, apocrine and/or sebaceous glands  (depending of body 577 

location) as well as from the microbiota inhabiting the skin (136). Attempts are being made to 578 

optimise and standardise the collection and analysis of sweat and this may prove to be a useful 579 

resource for studying the skin microbiota.  580 

Metabolic profiling of gingival crevicular fluid (GCF) has been used to study the importance of 581 

host-bacterial interactions in periodontal disease. Here, the depletion of anti-oxidants, degradation 582 

of host cellular components and accumulation of bacterial products were seen in the disease state 583 
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(137) (138). Attempts have been made to integrate salivary bacterial and metabolic datasets to 584 

identify metabolic products related to specific bacterial groups (139). Oral biofilms have also been 585 

studied by capillary electrophoresis-mass spectrometry (CE-MS)-based metabolomics. This has 586 

enabled the central carbon metabolic pathways to be investigated in the oral biofilm. One approach 587 

is to measure these pathways in supragingival plaque before and after a glucose rinse.  Glucose can 588 

be degraded by bacteria to several metabolic products, including acetate, formate, lactate, and 589 

succinate. Assessing the metabolic content of this plaque after the rinse provides information on the 590 

functional capacity of the biofilm.  591 

Mathematical modelling  592 

Oral and skin microbial community dynamics are shaped by three broad factors: the host, the 593 

environment and the community. The human host provides the microenvironment for the 594 

community and may alter this environment through hygiene and other behaviours. The genetic 595 

makeup of the host also influences the community's microenvironment. The surrounding 596 

environment offers a large species pool from which immigration into the local community may take 597 

place. Finally, community composition (richness, evenness and interactions) as well as history (e.g. 598 

previous exposure to perturbations) may impact its dynamics. 599 

A community model expresses in mathematical terms how selected factors influence community 600 

dynamics. Community models thus allow prediction of the response of the community to short-term 601 

(pulse) perturbations and altered conditions (press perturbations). Models can be coarse-grained or 602 

detailed, describing populations or individuals. A general distinction can be made between 603 

phenomenological models that predict community behaviour on the basis of immigration and 604 

mortality rates, interaction strengths, growth rates and other parameters, and metabolic models that 605 

take underlying molecular mechanisms of interactions into account. The generalized Lotka-Volterra 606 
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equation and its variants (140-142), but also individual-based models such as the neutral model 607 

(143) and its extensions are examples of the former.  608 

In the oral cavity, these models have to deal with the complication that most community members 609 

can exist in both a free-floating planktonic state, as well as part of a biofilm, which may have 610 

different growth rates, different access to nutrients and engage in different interactions. Previously, 611 

Schroeder and colleagues (144) proposed a discrete and continuous version of a model that 612 

describes the dynamics of both planktonic and sessile communities in drinking water pipes and 613 

which may be adapted to model community dynamics in the oral cavity. The programming 614 

language “gro”, which was designed for individual-based modelling of spatially structured 615 

microbial communities, may also be of interest in this respect (145). This facilitates the modelling 616 

of cell behaviours planktonically or in microcolonies or biofilms. A range of factors including 617 

growth rates, cell-signalling, diffusing and chemotaxis can be factored in.  618 

Metabolic models require the accurate reconstruction of each community member's metabolism 619 

(146), which is a major hurdle because of lack of reliable and complete genome annotations and the 620 

large percentage of unknown gene functions.  Metabolic reconstructions may be quickly generated 621 

automatically with tools such as ModelSEED or RAVEN (147) (148). This type of modelling 622 

present some disadvantages such as the requirement for a tedious manual curation to ensure an 623 

accurate reconstruction (149) and the assumption that community members are in a metabolic 624 

steady state. This assumption is relaxed by some dynamic metabolic models which require kinetic 625 

parameters such as compound uptake rates (146). The dynamic individual-based metabolic 626 

modelling tools COMETS (150) and BacArena (151) additionally take spatial structure into 627 

account, which is important to model biofilms. Metabolic models can also integrate meta-omics 628 

data as additional constraints on metabolic fluxes (152). For example, gene expression data has 629 

been used to validate metabolic models (153). Despite their promise, to the best of our knowledge, 630 

metabolic models have only been applied to communities consisting of a small number of species. 631 
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Metabolic models of species grown alone and in pairs can be exploited to predict ecological 632 

interactions (154). For instance, gut microbial interactions were predicted based on the semi-curated 633 

reconstruction of 773 gut species (155). The extension of dynamic and spatial metabolic models to 634 

more complex microbial communities is a promising field for future research.  635 

Community-level metabolic networks are a simpler form of metabolic models, where metabolites 636 

and reactions are represented as nodes and edges, respectively, but where stoichiometric 637 

coefficients are not taken into account (156). They offer a framework for the straightforward 638 

integration of meta-omics data as node or edge weights (157). While metabolic networks can handle 639 

larger communities, they do not allow quantitative modelling (158).  640 

Quantitative community models have parameters, which need to be determined through 641 

measurements in well-controlled conditions. For instance, growth assays in mono- and co-culture 642 

can provide growth rates and interaction strengths.  Once a model is parameterized, it needs to be 643 

validated experimentally. Such a validation consists of comparing the outcomes of experimental 644 

perturbations with the outcomes predicted by the model. The model may undergo several rounds of 645 

adjustment and validation until it reaches sufficient accuracy, or it may fail to be predictive because 646 

important but unknown factors are not taken into account or the community dynamics are chaotic or 647 

predominantly stochastic. A model that predicts community dynamics to an acceptable level of 648 

accuracy can be applied to simulate the effects of yet untested perturbations on the community. 649 

 650 

CONCLUSIONS 651 

Perturbations of the microbiome can have positive and negative consequences for human health. 652 

However, more knowledge is required to understand the extent of change that corresponds to the 653 

maintenance of health and the establishment of disease states. Microbiome research is still in its 654 

early stages and further studies to elucidate the nature of the functional and structural interactions 655 
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among microorganisms and with the host are required. Analysis of the gut microbiome is advancing 656 

faster than that of the skin and oral microbiomes, where increasing research investment would help 657 

to understand better the dynamics of those two specific body niches. Although mankind has been 658 

manipulating its microbiome, often beneficially, through diet, hand washing and oral hygiene 659 

practices both modern and historic, for hundreds if not thousands of years, the risks of manipulating 660 

the microbiome through new technology innovation should be properly assessed and the 661 

development of appropriate methods is required. Numerous factors should be considered when 662 

assessing the safety of novel approaches to microbiome perturbation, and approaches need to be 663 

developed to ensure that a compositional change delivers benefits whilst not compromising the 664 

stability, diversity and immunological state required for healthy functionality of the microbiome. 665 

These are summarised in Table 1 and Figure 1. To increase our understanding of the safety of 666 

microbiome changes, multi-disciplinary research needs to move to a mechanistic understanding to 667 

allow measurable elements specific to the oral and skin microbiome to be identified.  668 
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TABLE 1. Habitat parameters, microbiome functions and intervention strategies for human skin and oral cavity  1296 

 

Skin Oral cavity 

Conditions with 

microbiome 

associations 

Atopic 

dermatitis, 

psoriasis 

Acne Dandruff Axillary 

malodor 

Caries Gingivitis Periodontitis 

Routine 

perturbations 

Cleansing, 

moisturizing, 

use of cream, 

gels, lotions 

Cleansing, use 

of cream, gels, 

lotions 

Cleansing, use 

of shampoo 

Cleansing, use 

of 

antiperspirants 

and deodorants 

Toothbrushing, flossing, use of toothpaste, mouthwash 

Microbiome 

understanding and 

potential target 

mode of action for 

microbial 

interventions 

S. aureus load 

correlates with 

atopic 

dermatitis 

flares (18) 

Early 

colonization 

with 

commensal 

staphylococci 

provides 

protection 

(REF 18, 19) 

Abnormal 

expression of 

antimicrobial 

peptides (22) 

Changes in the 

proportion of 

bacteria 

Outgrowth of C. 

acnes and 

overproduction 

of sebum 

associated to 

acne (21, 93) 

Associated with 

specific strains 

of C. acnes (42, 

119, 129) 

Decrease in the 

Vitamin B12 

biosynthesis 

pathway (132) 

 

Associated with 

an imbalance of 

both bacterial 

and fungal 

species, with an 

increase in 

Staphylococcus 

sp. and M. 

restricta (40). 

Severity of 

dandruff 

dependent on 

the interactions 

between the host 

and 

microorganisms 

(43) 

Decreased 

Propionibacteri

um and 

increased 

Associated 

with 

Corynebactriu

m species (44) 

Malodour 

caused by 

short and 

medium chain 

volatile fatty 

acids (44) 

Changes in oral 

microbiota 

composition  

(28, 29) 

 

Outgrowth of acid-

tolerant 

Streptococcus 

mutans (30), S. 

sobrinus (96), 

Lactobacillus and 

Bifidobacterium 

(28, 114-117) 

Increased glycan 

synthesis and 

carbohydrate 

metabolism and 

reduced lipid 

metabolism (69) 

 

Changes in oral 

microbiota 

composition  

(28, 29) 

 

Subversion of 

host response at 

inflamed site, 

colonization of 

inflamed tissue by 

Porphyromonas 

gingivalis (33) 

Plaque load and 

maturity (60) 

 

 

Changes in oral 

microbiota 

composition (28, 29) 

Sub-gingival biofilm 

formation is 

associated with 

inflammation and 

bone loss (31) 

Translocation of oral 

microbiome to 

systemic circulation 

(34-36) 

 

Increased metabolic 

degradation of 

nutrients and fatty 

acid metabolism 

(126, 128) 

Increased gene 
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compared to 

healthy skin 

(25, 26) 

Associated to 

the fungus 

Malassezia 

(106) 

Staphylococcus 

abundance (43) 

 

 activity related to 

anaerobic growth 

conditions (128) 

Depletion of anti-

oxidants, degradation 

of host cellular 

components and 

accumulation of 

bacterial products 

(136, 137) 

Ecological factors 

specific to the 

human body site 

Bacteriocins and phenol soluble modulins contribute 

to the maintenance of the niche (56) 

Skin has a mixture of secretions from different 

glands and microbiota (137) 

Host physiological conditions such as sebum and 

water content are relevant in scalp (43)  

Higher exposure to moisture, changes in temperature 

and UV (88) 

Host factors including skin barrier protein mutations 

e.g. Filaggrin in AD (20) and mTORC1 changes 

(increase sebum formation) due, in part, to diet (21)  

Host immune/inflammatory status (23 - 27) 

Food intake, high intake of sugar correlated to production of lactic acid and 

acidification (REF 30,31) 

Biofilm formation by attaching to different surfaces (30, 31) 

Host susceptibility (32) 

Presence or absence of inflammation (33) 

Oxygen availability, mechanical stress and saliva flow (6, 61, 86) 

 

Antibiotic use (60) 

 

Exposure to tobacco smoke (79) 

Selected microbiota 

functions  

S. epidermis produces AMPs to control the growth 

of S. aureus (16), serine proteases to inhibit biofilm 

(16) and fermentation products to inhibit C. acnes 

(46) 

C. acnes converts sebum to free fatty acids, inhibit 

colonisation and maintains acidic pH of the skin 

(46) 

Some streptococci generate hydrogen peroxide to inhibit S. mutans (58) 

Nitrate-reducing bacteria can influence cardiovascular health and blood pressure 

(59) 

Some streptococci support enzymatic reactions for nutritional purposes (60) 
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FIG 1. Assessing the safety of perturbations of the skin and oral microbiome1298 
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