
 
 

University of Birmingham

Frequency-domain waveform approximants
capturing Doppler shifts
Chamberlain, Katie; Moore, Christopher J.; Gerosa, Davide; Yunes, Nicolás

DOI:
10.1103/PhysRevD.99.024025

License:
None: All rights reserved

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Chamberlain, K, Moore, CJ, Gerosa, D & Yunes, N 2019, 'Frequency-domain waveform approximants capturing
Doppler shifts', Physical Review D, vol. 99, no. 2, 024025. https://doi.org/10.1103/PhysRevD.99.024025

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 17/05/2019

Chamberlain, K., Moore, C.J., Gerosa, D. and Yunes, N., 2019. Frequency-domain waveform approximants capturing Doppler shifts.
Physical Review D, 99(2), p.024025. © 2019 American Physical Society.

https://doi.org/10.1103/PhysRevD.99.024025

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Mar. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/267316255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1103/PhysRevD.99.024025
https://doi.org/10.1103/PhysRevD.99.024025
https://research.birmingham.ac.uk/portal/en/publications/frequencydomain-waveform-approximants-capturing-doppler-shifts(ca7d0675-037a-49ff-864d-30ce4ef3b230).html


 

Frequency-domain waveform approximants capturing Doppler shifts

Katie Chamberlain,1,2,3,* Christopher J. Moore,4,5,† Davide Gerosa,2,‡ and Nicolás Yunes1,§
1eXtreme Gravity Institute, Department of Physics, Montana State University Bozeman,

Montana 59717, USA
2TAPIR 350-17, California Institute of Technology,

1200 E California Boulevard, Pasadena, California 91125, USA
3Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721, USA
4Centro de Astrofísica e Gravitação - CENTRA, Departamento de Física, Instituto Superior Técnico - IST,
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Gravitational-wave astrophysics has only just begun, and as current detectors are upgraded and new
detectors are built, many new, albeit faint, features in the signals will become accessible. One such feature
is the presence of time-dependent Doppler shifts, generated by the acceleration of the center of mass of the
gravitational-wave emitting system. We here develop a generic method that takes a frequency-domain,
gravitational-wave model devoid of Doppler shifts and introduces modifications that incorporate them.
Building upon a perturbative expansion that assumes the Doppler-shift velocity is small relative to the
speed of light, the method consists of the inclusion of a single term in the Fourier phase and two terms in
the Fourier amplitude. We validate the method through matches between waveforms with a Doppler shift in
the time domain and waveforms constructed with our method for two toy problems: constant accelerations
induced by a distant third body and Gaussian accelerations that resemble a kick profile. We find
mismatches below ∼10−6 for all of the astrophysically relevant cases considered and that improve further at
smaller velocities. The work presented here will allow for the use of future detectors to extract new, faint
features in the signal from the noise.

DOI: 10.1103/PhysRevD.99.024025

I. INTRODUCTION

The era of gravitational-wave (GW) astrophysics has only
just begun. The first observations of black hole (BH)
mergers [1,2] and of neutron star mergers [3] have already
revealed a trove of information about both astrophysics [4,5]
and extreme gravity [6,7], but they are just the tip of the
iceberg. Constructions are already underway to enhance the
current network of LIGO-Virgo GW detectors [8,9] through
the addition of instruments in Japan (KAGRA [10]) and
India (LIGO-India [11]). Future-generation ground-based
interferometers are currently being planned [12,13], with an
expected improvement in sensitivity ofmore than an order of
magnitude.Moreover, the space-basedGWdetector LISA is
now fully approved and scheduled for launch, opening up
the possibility of multiwavelength GW astrophysics [14].
These detectors will bemuchmore sensitive than the current
Advanced LIGO/Virgo detectors and will allow us to

characterize finer features of loud events and to uncover
broad features of quieter signals.
Among the plethora of finer features that future detectors

will be sensitive to, Doppler shifts encoded in the GWs
emitted by coalescing compact binaries have the potential to
unveil unprecedented (astro)physical information. Doppler
shifts naturally arise in a variety of circumstances. For
example, if the GW-emitting binary is in the neighborhood
of, or in orbit around, a third body [15–17], its motion in the
companion’s gravitational potential will be encoded in the
emitted GWas a Doppler shift [18–20]. Another possibility
is for the host galaxy of the binary to possess a peculiar
acceleration due to either gravitational attraction to another
neighboring galaxy [21] or the expansion of the Universe
[22–24]. Doppler shifts might also be caused by asymmetric
emission of linear momentum in GWs of an isolated binary
system [25], which imparts a recoil (or “kick”) velocity to
the system’s center of mass close to merger [26–30]. Some
proposed modifications of Einstein’s General Relativity
could also introduce Doppler shifts, e.g., when fundamental
constants of nature become time-dependent [23].
But not all Doppler shifts are created equal. Galilean

invariance, a founding block of Einstein’s General
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Relativity, prevents constant velocity Doppler shifts from
leaving an observable signature on GWs. Since physics
must be the same in all inertial frames, a binary whose
center of mass is moving at a constant velocity can always
be Lorentz-boosted into a frame that is stationary. This
leads to GWs that look functionally identical to the non-
boosted ones, but with masses that are rescaled by a
constant Doppler shift [31]. Constant Doppler shifts are
therefore nearly degenerate with the binary’s total mass.
This is, for instance, the case of the Universe’s cosmo-
logical expansion: the phase of the GWemitted by a binary
of massM at redshift z is identical to that of close binary of
mass Mð1þ zÞ. This degeneracy is broken for time-
dependent Doppler shifts, which do leave an imprint in
the emitted signal, as in the examples given above. In an
accelerated (i.e., noninertial) frame, Galilean invariance
holds locally, not globally.
In order to detect Doppler-shifts with GW interferom-

eters and extract their (astro)physical origin, one needs
waveform models able to capture them. Given a generic
velocity profile vðtÞ, can one construct a GW model for a
coalescing compact binary that includes the imparted
Doppler shift? We show in this paper that this is in fact
possible. We show that it can be done entirely in the
frequency-domain, and therefore is directly applicable to
GW parameter-estimation algorithms. In fact, one can take
a standard frequency-domain model in the rest frame of
the coalescing binary (non-Doppler-shifted) and apply
simple analytical modifications to produce an accelerated,
Doppler-shifted model. Our calculation leverages the sta-
tionary phase approximation (SPA) and results in a
straightforward “recipe” to capture Doppler shifts in any
preexisting frequency-domain GW template. The result we
derive consists of the addition of three simple analytic
terms in the Fourier amplitude and phase, which only
depend on the velocity profile, its first integral (the distance
profile), and its first derivative (the acceleration profile).
We verify the accuracy of our findings for two concrete

examples: a constant acceleration profile (meant to re-
present the effect of a far-away third body) and a generic
Gaussian velocity profile centered at merger (meant to
mimic the simple recoil model of Ref. [25]). Our model is
then validated through match calculations between wave-
forms where the Doppler shift is applied explicitly in the
time domain (and then discretely Fourier transformed) and
waveforms Doppler shifted through our frequency-domain
method. We find mismatches which improve exponentially
as the imparted velocity lies within the perturbative treat-
ment here implemented and are smaller than ∼10−6 for all
the astrophysically relevant examples considered.
The remainder of this paper illustrates the details of the

results summarized above. Section II presents our main
calculation and result. Section III applies our method to a
couple of concrete examples for validation. Section IV
concludes and points to future work. Henceforth, we use
geometric units in which c ¼ G ¼ 1.

II. DOPPLER-SHIFTED
GRAVITATIONAL-WAVE SIGNALS

In this section, we first set the stage of the calculation by
providing a road map of the mathematical steps that will be
required to the develop our frequency-domain method. We
then proceed by introducing our method broken up into two
parts: the inverse Fourier transform (FT−1) and the forward
Fourier transform (FT) that includes a shift. We conclude
this section with a simple recipe that summarizes our
frequency-domain method.

A. Setting the stage

The input to our calculation is a preexisting frequency-
domain waveform model. This is characterized by two real
functions of frequency, the amplitude AðfÞ and the phase
ϕðfÞ, which together give the complex frequency-domain
strain:

h̃ðfÞ ¼ AðfÞ exp½iϕðfÞ�: ð1Þ

One should think of this scalar function as the response
function of an interferometer due to an impinging GW, i.e.,
the contraction of the GW metric perturbation onto the
beam patter response tensor. From this frequency-domain
strain, we can compute the time-domain strain hðtÞ through
the FT−1 of h̃ðfÞ:

hðtÞ ¼
Z

AðfÞ expfi½ϕðfÞ − 2πft�gdf: ð2Þ

Let us now include the effect of a Doppler shift in the
time-domain strain. To do so, we define vðtÞ to be the
velocity imparted to the binary’s center of mass projected
along the line of sight, i.e., vðtÞ ¼ vðtÞ · n̂, where v is the
three-velocity of the center of mass and n̂ is a unit vector
directed along the line of sight pointing from the observer
to the source. We also define the acceleration [the derivative
aðtÞ ¼ dvðtÞ=dt] and the displacement of the source [the
integral dðtÞ ¼ R

t vðt0Þdt0; the lower limit of integration is
degenerate with the distance to the source, it can therefore
be set to any convenient reference time]. In the time
domain, including a Doppler shift can be phrased as
rescaling of the time coordinate. The relativistic Doppler
shift could be used here; however, in the next section it will
be necessary to expand to leading order in the velocity; here
we preempt this by using the simpler nonrelativistic
formula and rescale t → tDðtÞ, where

dtD ¼ dt × ½1þ εvðtÞ� ð3Þ

tDðtÞ ¼ tþ εdðtÞ: ð4Þ

This classical Doppler shift formula requires vðtÞ ≪ 1 is a
small perturbation parameter, and ε is a book-keeping
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parameter introduced to label the order of the perturbation.
This defines thenewDoppler shifted time-domainwaveform:

hDðtÞ ¼ h½tDðtÞ�: ð5Þ

The strategy of our calculation is shown schematically in
Fig. 1 and consists of the following steps:

(i) Perform a FT−1 of the input frequency-domain
waveform;

(ii) Implement the Doppler shift in the time domain on
the time-domain waveform that resulted from (1);

(iii) Compute a FT at leading order in ε to transform the
Doppler-shifted, time-domain waveform back to the
frequency domain.

We perform both the FT−1 and the FT integrals analytically
using the SPA. This allows us to obtain a simple analytical
prescription to transform directly from h̃ðfÞ to h̃DðfÞ for
any given velocity profile vðtÞ. Readers interested in the
final recipe can skip the next three subsections and proceed
to Sec. II E where our main finding is presented concisely.

B. Inverse Fourier transform

First, we tackle the FT−1 to transform h̃ðfÞ into hðtÞ, i.e.,
the integral in Eq. (2). We will assume that the amplitude of
the integrand varies much more slowly than the phase, so
that the SPA is valid. Due to the highly oscillatory nature of
the integrand the result is dominated by contributions close
to some critical frequency fsðtÞ where the phase has a
stationary point. To simplify the notation, from now on we
drop the argument of fsðtÞ and only indicate it explicitly in
some key equations. It is important to remember though
that fs is a function of time and not a fixed frequency value.
Let us now use the above to simplify the expressions that

appear in the integrand of Eq. (2). We begin by Taylor
expanding the phase of the integrand,

Xðf; tÞ≡ ϕðfÞ − 2πft; ð6Þ

to quadratic order about the critical frequency to find

Xðf; tÞ ≈ ½ϕðfsÞ − 2πfst� þ ðf − fsÞ
�
dϕ
df

����
fs

− 2πt

�

þ 1

2
ðf − fsÞ2

d2ϕ
df2

����
fs

: ð7Þ

Similarly, Taylor expanding the amplitude to zeroth order
we find

AðfÞ ≈ AðfsÞ: ð8Þ
The critical frequency fsðtÞ is the function of time at which
of the phase of the integrand Xðf; tÞ is slowly-varying, i.e.,
the function that sets the first-order term in the Taylor
expansion of Eq. (7) to zero, namely

dϕ
df

����
fs

¼ 2πt; ð9Þ

which is sometimes called the SPA condition [32,33].
With this at hand, the FT−1 of Eq. (2) becomes

hðtÞ ≈ AðfsÞ expfi½ϕðfsÞ − 2πfst�g

×
Z

exp

�
i
2
ðf − fsÞ2

d2ϕ
df2

����
fs

�
df; ð10Þ

hðtÞ ≈ AðfsÞ expfi½ϕðfsÞ − 2πfst�g

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

jd2ϕ=df2jfs j
r �

1þ isign

�
d2ϕ
df2

����
fs

��
; ð11Þ

where in the second line we have evaluated the standard
Gaussian integral. Now that the time domain waveform has
been obtained, the next step is to Doppler shift it, and
finally to perform a FT to return to the frequency domain. It
is illustrative, however, to first skip the Doppler-shift step
and just to apply the FT. This warm-up exercise will turn
out to be extremely useful to understand the more complex
result presented in Sec. II D.

C. Forward Fourier transform: No shift

The frequency-domain waveform is calculated by per-
forming a FT on the time-domain waveform, i.e.,

h̃ðfÞ ¼
Z

hðtÞ expð2πiftÞdt; ð12Þ

which, upon using Eq. (11), becomes

h̃ðfÞ ¼
Z

ZðtÞ exp ½iYðtÞ�dt; ð13Þ

where we have defined the phase and amplitude

FIG. 1. Schematic representation of the calculation presented in this paper. The blue arrows indicate the technical steps carried out in
Sec. II. The red arrow indicates the frequency-domain method we develop to modify a preexisting frequency-domain waveform
approximant to include Doppler shifts.
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ZðtÞ ¼ AðfsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

jd2ϕ=df2jfs j
r �

1þ i sign

�
d2ϕ
df2

����
fs

��
; ð14Þ

YðtÞ ¼ ϕðfsÞ þ 2πðf − fsÞt: ð15Þ

Let us now solve this integral using the SPA again. As
before, the integral is dominated by contributions close to
some critical time tsðfÞ, which is a function of frequency;
once again, we will drop the argument, i.e., the explicit
frequency dependence, from now on to simplify notation.
Let us now carry out our Taylor expansions to simplify

the integrand above. Taylor expanding the phase YðtÞ to
quadratic order about ts, we find

Yðf;tÞ≈fϕ½fsðtsÞ�þ2π½f−fsðtsÞ�tsg

þðt− tsÞ
�
dfs
dt

����
ts

�
dϕ
df

����
fsðtsÞ

−2πts

�
þ2π½f−fsðtsÞ�

	

þ1

2
ðt− tsÞ2

�
d2fs
dt2

����
ts

�
dϕ
df

����
fsðtsÞ

−2πts

�

−4π
dfs
dt

����
ts

þdfs
dt

����2
ts

d2ϕ
df2

����
fsðtsÞ

	
: ð16Þ

In this case, the SPA condition requires that the second term
in this expansion vanishes. Simplifying this through the
FT−1 SPA condition of Eq. (9), the new SPA condition is
equivalent to

fs½tsðfÞ� ¼ f: ð17Þ
Let us stress once more that in our notation t and f are
scalar quantities (time and frequency, respectively), while
quantities with subscript, like ts and fs, are functions. The
two SPA conditions in Eqs. (9) and (17) jointly imply that

tsðfÞ ¼
1

2π

dϕ
df

; ð18Þ

which is the familiar FT SPA expression of a stationary
point for the critical time ts. Using Eq. (17), the expansion
for the phase simplifies to

Yðf; tÞ ≈ ϕðfÞ − πðt − tsÞ2
dfs
dt

����
ts

; ð19Þ

where we used the relationship

d2ϕ
df2

����
fs

dfs
dt

¼ 2π; ð20Þ

which can be derived from Eq. (9). We note for later that
evaluating Eq. (20) at t ¼ tsðfÞ implies that

sign

�
d2ϕ
df2

����
fsðtsÞ

�
¼ sign

�
dfs
dt

����
ts

�
: ð21Þ

The amplitude of the integrand in Eq. (13) can be easily
expanded to zeroth order about ts to find

Zðf; tÞ ≈ A½fsðtsÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

jd2ϕ=df2jfsðtsÞ j

s

×

�
1þ isign

�
d2ϕ
df2

����
fsðtsÞ

��
: ð22Þ

The result can then be simplified using Eq. (17) to read

Zðf; tÞ ≈ AðfÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

jd2ϕ=df2j
r �

1þ isign

�
d2ϕ
df2

��
: ð23Þ

With the expansions for the amplitude and phase in hand,
the FT of Eq. (13) becomes

h̃ðfÞ ¼ AðfÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

jd2ϕ=df2j
r �

1þ isign

�
d2ϕ
df2

��
exp½iϕðfÞ�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2jdfs=dtjts j

s �
1 − isign

�
dfs
dt

����
ts

��
: ð24Þ

Using Eqs. (17), (20), and (21), this simplifies to

h̃ðfÞ ¼ AðfÞ exp½iϕðfÞ�: ð25Þ

which is equal to our starting point in Eq. (1).
What have we shown here? We first performed an FT−1

using the SPA. We then took a FT also using the SPA,
which resulted in recovering the frequency-domain wave-
form we started with. We therefore confirmed that the
approximations made in the SPA do not undermine the
Fourier inversion theorem, as expected. This is an impor-
tant point, because it implies that our recipe for Doppler
shifting a waveform leaves the input approximant
untouched in the vðtÞ ¼ 0 case.

D. Forward Fourier transform: Doppler shift

Let us now repeat the same FT calculation as in Sec. II C
but now including a Doppler shift in the time-domain
waveform. We return to the time-domain waveform of
Eq. (11), and, as described above in Sec. II A, we now need
to first make the substitution t → tDðtÞ and then perform a
FT. Put another way, the Doppler-shifted time-domain
waveform is

hDðtÞ ≈ A½fsðtDÞ� expðifϕ½fsðtDÞ� − 2πfsðtDÞtDgÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

jd2ϕ=df2jfsðtDÞj

s �
1þ isign

�
d2ϕ
df2

����
fsðtDÞ

��
;

ð26Þ

where tD ≡ tDðtÞ ¼ tþ εdðtÞ as defined in Eq. (4), and we
now need to compute the FT of Eq. (27), namely,
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h̃DðfÞ¼
Z

A½fsðtDÞ�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

jd2ϕ=df2jfsðtDÞj

s �
1þ isign

�
d2ϕ
df2

����
fsðtDÞ

��

×expðifϕ½fsðtDÞ�þ2π½ft−fsðtDÞtD�gÞdt: ð27Þ

The calculation closely mirrors the warm up exercise
of Sec. II C. First, the phase of the integrand, Yðf; tÞ, is
expanded to quadratic order about the critical time tsðfÞ:

Yðf; tÞ≡ ϕ½fsðtDÞ� þ 2π½ft − fsðtDÞtD� ð28Þ

Yðf; tÞ ≈ Yð0Þðf; tÞ þ ðt − tsÞYð1Þðf; tÞ

þ 1

2
ðt − tsÞ2Yð2Þðf; tÞ; ð29Þ

where the following coefficients in the Taylor expansion
have been defined,

Yð0Þðf; tÞ≡ ϕffs½tDðtsÞ�g þ 2πffts − fs½tDðtsÞ�tDðtsÞg

Yð1Þðf; tÞ≡ dtD
dt

����
ts

dfs
dt

����
tDðtsÞ

dϕ
df

����
fs½tDðtsÞ�

þ 2π

�
f − fs½tDðtsÞ�

dtD
dt

����
ts

	
− 2π

dtD
dt

����
ts

dfs
dt

����
tDðtsÞ

tDðtsÞ

Yð2Þðf; tÞ≡
�
d2fs
dt2

����
tDðtsÞ

�
dϕ
df

����
fs½tDðtsÞ�

− 2πtDðtsÞ
�
− 4π

dfs
dt

����
tDðtsÞ

þ dfs
dt

����2
tDðtsÞ

d2ϕ
df2

����
fs½tDðtsÞ�

	
dtD
dt

����2
ts

þ
�
dfs
dt

����
tDðtsÞ

dϕ
df

����
fs½tDðtsÞ�

− 2πfs½tDðtsÞ� − 2π
dfs
dt

����
tDðtsÞ

tDðtsÞ
	
d2tD
dt2

����
ts

: ð30Þ

As above, the SPA condition is equivalent to imposing

Yð1Þðf; tÞ ¼ 0; ð31Þ

and using Eq. (9), one obtains

fsftD½tsðfÞ�g
dtD
dt

����
tsðfÞ

¼ f: ð32Þ

Note that this correctly reduces to Eq. (17) if the function
tDðtÞ ¼ 1; i.e., if vðtÞ ¼ 0 at all times.
With the FT SPA condition in Eq. (32) at hand, we can

now simplify the remaining terms in the Taylor expansion
of the phase. Let us first use Eq. (32) to eliminate fs½tDðtsÞ�,
so that the constant term Yð0Þðf; tÞ becomes

Yð0Þðf; tÞ ¼ ϕ

�
f

dtD=dtjts

�
þ 2πf

�
ts −

tDðtsÞ
dtD=dtjts

�
: ð33Þ

Substituting for tDðtsÞ and dtD=dtjts from Eqs. (3) and (4),
respectively, and performing a Taylor expansion in powers
of ε to first order gives

Yð0Þðf; tÞ ¼ ϕðfÞ − fεvðtsÞ
dϕ
df

þ 2πfε½tsvðts − dðtsÞ� þOðε2Þ: ð34Þ

As stressed above, the leading-order FT SPA condition of
Eq. (32) is given by Eq. (17), i.e., fs½tsðfÞ� ¼ f þOðεÞ.
Combining this with the FT−1 SPA condition in Eq. (9)

yields dϕ=df ¼ 2πtsðfÞ þOðεÞ. We can therefore further
simplify Eq. (34) to

Yð0Þðf; tÞ ¼ ϕðfÞ − 2πfεdðtsÞ þOðε2Þ: ð35Þ

The quadratic term in Eq. (30) Yð2Þðf; tÞ may be
simplified using Eq. (9) and its derivative with respect to
t evaluated at t ¼ tDðtsÞ:

Yð2Þðf; tÞ ¼ −2π
�
dfs
dt

����
tDðtsÞ

dtD
dt

����2
ts

þ fs½tDðtsÞ�
d2tD
dt2

����
ts

	
:

ð36Þ

Using the FT SPA condition in Eq. (32) to eliminate
fs½tDðtsÞ�, one then finds

Yð2Þðf;tÞ¼−2π

�
dfs
dt

����
tDðtsÞ

dtD
dt

����2
ts

þ
�
d2tD=dt2jts
dtD=dtjts

�
f

�
: ð37Þ

Substituting dtD=dt ¼ 1þ εvðtÞ and d2tD=dt2 ¼ εaðtÞ,
and performing a Taylor expansion to first order in ε gives

Yð2Þðf; tÞ ¼ −2π
�
½1þ 2εvðtsÞ�

dfs
dt

����
tDðtsÞ

þ fεaðtsÞ þOðε2Þ
	
: ð38Þ

Finally, let us also expand the amplitude Zðf; tÞ from
Eq. (27) to zeroth order in time
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Zðf; tÞ ≈ Aðfs½tDðtsÞ�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

jd2ϕ=df2jfs½tDðtsÞ�j

s

×

�
1þ isign

�
d2ϕ
df2

����
fs½tDðtsÞ�

��
: ð39Þ

Notice, as before, that this result reduces to that of Eq. (23)
when vðtÞ ¼ 0.
We now have all the ingredients to perform the FT

integral of Eq. (12) in the SPAwithin a small ε expansion:

h̃DðfÞ ¼ Zðf; tÞ 1þ isign½Yð2Þðf; tÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jYð2Þðf; tÞj=π

q
× expfi½ϕðfÞ − 2πfεdðtsÞ�g; ð40Þ

where Zðf; tÞ and Yð2Þðf; tÞ are given by Eqs. (38) and
(39), and we carried out a standard Gaussian integral and
used Eq. (21). The expression above may be further
simplified using the SPA conditions and by Taylor expand-
ing in powers of ε to find

h̃DðfÞ ¼
�
AðfÞ −

�
AðfÞ þ f

dA
df

�
εvðtsÞ

−
fAðfÞ
4π

d2ϕ
df2

εaðtsÞ þOðε2Þ
	

× expfi½ϕðfÞ − 2πfεdðtsÞ þOðε2Þ�g: ð41Þ
Finally, at OðεÞ we can replace ts with ðdϕ=dfÞ=2π and
obtain our final result:

h̃DðfÞ ¼
�
AðfÞ −

�
AðfÞ þ f

dA
df

�
εv
�
dϕ=df
2π

�

−
fAðfÞ
4π

d2ϕ
df2

εa

�
dϕ=df
2π

�
þOðε2Þ

	

× exp

�
i

�
ϕðfÞ − 2πfεd

�
dϕ=df
2π

�
þOðε2Þ

�	
:

ð42Þ
The book keeping parameter ε is no longer needed and will
be set to unity henceforth. Equation (42) is an explicit
expression for the Doppler-shifted waveform in the fre-
quency domain.
As a sanity check, we can examine this result in the

simple case of constant velocity which, as is well known, is
degenerate with the total mass of the source: dðtÞ ¼ vt,
vðtÞ ¼ v, aðtÞ ¼ 0. A constant velocity gives the simple
Doppler-shift hDðtÞ ¼ h½tð1þ vÞ�. In the frequency
domain this becomes

h̃DðfÞ ¼
Z

h½tð1þ vÞ� expð2πiftÞdt

¼ ½1 − vþOðv2Þ�h̃ff½1 − vþOðv2Þ�g: ð43Þ

In the second line we have changed integration variables to
t0 ¼ tð1þ vÞ and used the definition of h̃ðfÞ in Eq. (12).
From Eq. (42) one can see that

h̃DðfÞ ¼
�
ð1 − vÞAðfÞ þ fv

dA
df

þOðv2Þ
�

× exp

�
i

�
ϕðfÞ − fv

dϕ
df

þOðv2Þ
�	

: ð44Þ

Equations (43) and (44) and can be put into agreement at
the required order in v using the expansion

X½fð1 − vÞ� ¼ XðfÞ − fv
dX
df

þOðv2Þ: ð45Þ

E. A simple recipe

To summarize, here is a simple recipe to add a Doppler-
shift to a GW waveform entirely in the frequency domain
(Fourier transforms are not required!):
(1) Start with an unkicked waveform model in the

frequency domain:

h̃ðfÞ ¼ AðfÞ exp½iϕðfÞ�; ð46Þ

and a velocity profile vðtÞ.
(2) Compute the derivatives dAðfÞ=df, dϕðfÞ=df, and

d2ϕðfÞ=df2 with respect to f.
(3) Compute the distance profile dðtÞ ¼ R

t vðt0Þdt0 and
the acceleration profile aðtÞ ¼ dvðtÞ=dt.

(4) Compute the leading order corrections to the am-
plitude and phase:

δϕðfÞ ¼ −2πfd
�
dϕ=df
2π

�
; ð47Þ

δAðfÞ ¼ −
�
AðfÞ þ f

dA
df

�
v

�
dϕ=df
2π

�

−
fAðfÞ
4π

d2ϕ
df2

a

�
dϕ=df
2π

�
; ð48Þ

(5) The Doppler-shifted frequency-domain waveform
model is then given by

h̃DðfÞ ¼ ½AðfÞ þ δAðfÞ� × expfi½ϕðfÞ þ δϕðfÞ�g:
ð49Þ

F. Approximations

In deriving the result in Eq. (42), the only two approx-
imations that have been made are the SPA and a linear-
order expansion in ε, which are deeply connected. Taking
the ε expansion to second order would require going
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beyond the SPA, which is a difficult but surmountable
technical challenge (see e.g., [34]). The leading-order
approximation in ε is expected to work as long as the
projected peculiar velocity vðtÞ is much smaller than the
speed of light. We anticipate one could reduce the error
from this approximation through a resummation tech-
nique, such as iterating over multiple stages of Doppler
shifts of increasing velocity or using a Padé fraction;
this will not be pursued in this paper because the
accuracy of the method at linear order is already pro-
bably sufficient for most future observations with third-
generation detectors.
The SPA is expected to work as long as the phase varies

much more rapidly than the amplitude, thus breaking
down near the merger. In particular, the SPA allows us to
write ts ∝ dϕ=df, but, near merger, the phase derivative
fails as a proper “clock”. There is a set of times near and
after merger at which dϕ=df ≤ 0 and the SPA time ts does
not advance forward (see e.g., Fig. 5 in [35]). In other
terms, at late times the phase of the emitted GWs is not a
good clock to parametrize the waveform signal. As we will
show below, the effect of the breakdown of the SPA has,
in practice, a very minor impact when comparing wave-
form models. We have tested various high-frequency
extensions of the phase derivative to better model the
SPA time and found negligible improvements over the
simpler treatment presented here. This is mostly because
very little signal-to-noise ratio is contained at those high
frequencies.

III. APPLICATIONS AND TESTS

In this section the frequency-domain method described
in Sec. II E is applied to two astrophysically motivated
situations where Doppler shifted GW signals can be
expected to occur. Section III A considers a merging stellar
mass BH binary accelerated relative to a distant observer by
the gravitational field of a nearby supermassive BH.
Section III B considers the acceleration a merging binary
can impact on itself via a merger recoil, or “kick”.
In both cases our primary focus will not be the

astrophysics giving rise to the acceleration, but rather,
it will be on testing the frequency-domain method
described above in Sec. II E by demonstrating that it
correctly describes the Doppler shifted gravitational
waves. This will be done by comparing against a time
domain method which explicitly includes the desired
Doppler shifting. For clarity, the procedure for perform-
ing the Doppler shift in the time domain is given here
explicitly:
(1) Evaluate h̃ðfÞ using Eq. (1) to obtain a numerical

frequency-domain waveform; H̃ ¼ f½jΔf; h̃ðjΔfÞ�j
j ¼ 0; 1…ng.

(2) Window the numerical waveform below the lower
starting frequency range that will be used to compute
the match.

(3) Evaluate the numerical inverse FT using a standard
Fast-Fourier-Transform algorithm to obtain the time-
domain waveformH ¼ f½jΔt; hðjΔtÞ�jj¼ 0;1…ng.

(4) Create an interpolant of the numerical time-domain
waveform HðtÞ.

(5) The numerical Doppler-shift time-domain waveform
is then obtained by evaluating this interpolant
at the redshifted times from Eq. (4), i.e., HD ¼
f½jΔt;HðtDÞ�jj ¼ 0; 1;…ng.

(6) Perform a numerical forward FT to obtain the
numerical frequency-domain waveform H̃D to be
compared against our analytical result.

We have checked that the discretization and multiple
Fourier transforms needed to generate this frequency-
domain waveform with the above time-domain Doppler
shifts do not introduce artificial numerical artifacts due to
aliasing, windowing or other undesirable features.
The input frequency-domain waveform model used in

the examples is PhenomD [35,36]. We stress that our
approach is entirely independent on the base waveform
model and can be applied to any frequency-domain
approximant.

A. Binaries in external gravitational potentials

First, we consider the case where a stellar-mass BH
binary resides close (a distance R) to a large third body,
such as a supermassive BH with mass M. The third body
accelerates the binary, relative to a distant observer on
Earth, at a rate

a ≈
GM
R2

¼ a0

�
M

109 M⊙

��
10−2 pc

R

�
2

; ð50Þ

where a0 ¼ 1.39 m=s2. We assume that this acceleration is
directed away from the observer on Earth and that, for
convenience, the relative velocity between the observer
and the binary is zero at merger (this need not be the case
but it makes the interpretation of our results easier). The
merger time t0 is taken to be equal to the coalescence time
of the underlying PhenomD model (tc in the notation of
[35,36]). Therefore, we have the following explicit expres-
sions for the acceleration, velocity, and displacement of
the binary;

aðtÞ≡ a ¼ constant; ð51Þ

vðtÞ ¼ a × ðt − t0Þ; ð52Þ

dðtÞ ¼ a
2
× ðt − t0Þ2: ð53Þ

Of course, the third-body acceleration will not remain
exactly constant during the inspiral. If r12 is the orbital
separation of the compact binary, then there will exist
differences in the accelerations of the two objects (tidal
accelerations) at the level Oðr12=RÞ; this ratio is less than
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10−9 when r12 < 103 km and R > 10−2 pc. Furthermore,
as the binary orbits the supermassive BH the component
of the acceleration along the line of sight will change by
Oðtobs=torbitÞ, where tobs is the duration of the GW signal
and torbit ≈MðR=MÞ3=2). This ratio is less than 10−6 when
R > 10−2 pc, M ≈ 109 M⊙, and for a typical LIGO/Virgo
source with tobs < 102 s.
For a constant acceleration, the longer the signal lasts

the greater the dephasing effect of the Doppler shift is.
For a merging binary that is quasicircular, with equal
masses (here we pick m1 ¼ m2 ¼ 10 M⊙) and zero
spins, the effect is then maximized when the detector’s
sensitivity curve can reach as low a frequency as
possible. We thus imagine that this system is observed
by the Einstein Telescope, with a lower starting GW
frequency of 5 Hz.

The GW signal for one system with a large acceleration
of a ¼ 104a0 is shown in Fig. 2. There are three curves
in this figure corresponding to the waveform as viewed
in its rest frame (inertial), the accelerated waveform as
computed using the frequency-domain method des-
cribed in Sec. II (Accelerated FD), and the time-domain
method described earlier in Sec. III (Accelerated TD).
Both accelerated waveform gradually dephase from the
inertial waveform, as would be expected, with a total
dephasing of just over a full cycle in the final 100 seconds
of the inspiral. The accelerated FD waveform, however,
remains closely in phase with the accelerated TD, with a
dephasing of less than 0.1 radians in the same amount of
inspiral time.
As described in Sec. II E, we expect that the FD method

will work best when the Doppler-shifting velocity is small.

FIG. 2. Gravitational-wave strains in the time-domain for an equal massm1 ¼ m2 ¼ 10 M⊙ nonspinning system as viewed from (i) an
inertial frame at rest with respect to the binary (black curve), (ii) an accelerating frame with a ¼ 104a0 computed exactly in the time
domain (blue curve; TD), and (iii) the same accelerating frame waveform computed with the frequency-domain expressions developed
in this paper (red curve; FD). The accelerated frame is chosen such that it coincides with the rest frame at the instant of merger.
Accelerated and inertial waveforms, therefore, are in phase near merger and drift out of phase in the early inspiral (this can be seen most
clearly in the inset plots). The bottom panel shows the (wrapped) phase difference between different pairs of waveforms. The black curve
shows the phase difference between the accelerated TD waveform and the inertial frame waveform; observe that they dephase by just
over one complete cycle in the 100 seconds before merger. The red curve shows the phase difference between the TD and FD methods of
computing the accelerated waveform; the fast FD method dephases from the exact TD method by less than 0.1 radians over this time
interval.
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Figure 3 confirms this expectation by showing the wave-
form mismatch as a function of the magnitude of the
acceleration (or, equivalently, as a function of the total
change in velocity between the source and observer during
the observation). The overlap between two waveforms h1
and h2 is here defined in the usual way

MM ¼ 1 −max
ϕ;t

ðh1jh2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þðh2jh2Þ
p ; ð54Þ

where the maximization is over an overall phase and time
offset and the signal inner product is defined by

ðh1jh2Þ ¼ 2

Z
h̃�1ðfÞh̃2ðfÞ þ h̃1ðfÞh̃�2ðfÞ

SnðfÞ
df; ð55Þ

where Sn is the spectral noise density curve of the detector
(here taken to be that of ET-D with a starting low frequency
of 5 Hz [37]). Observe that the mismatch between the
accelerated TD and the accelerated FD model remains
below 1% for all a0 considered, while the mismatch
between the inertial and the accelerated TD model grows
to Oð1Þ.
The parameter t0 in Eqs. (51)–(53) controls the time at

which relative velocity between the observer and the binary
vanishes. Changing t0 corresponds to the addition of a

constant velocity offset between the source and observer
which is degenerate with the source’s total mass. If t0 is
chosen to correspond to some point in the early inspiral
(instead of near merger as was done above), then the signal
has longer to drift out of phase and larger mismatch values
are obtained. However, most of this larger mismatch
will be absorbed into the measurement of a redshifted
value of the total mass, leaving behind the mismatches
reported in Fig. 3.

B. Black-hole merger recoils

We now consider Doppler shifts that resemble binary
BH recoil merger kicks [25,38] (other observables of BH
kicks have been proposed, see e.g., [39]). For simplicity,
we assume the acceleration profile that resembles a kick is
a Gaussian of constant width, centered at the time of
merger, and we just vary the final velocity, vk, of the
remnant BH:

aðtÞ ¼ vkffiffiffiffiffiffi
2π

p
σ
exp

�
−
1

2

�
t − t0
σ

�
2
�
; ð56Þ

vðtÞ ¼ vk
2

�
1þ erf

�
t − t0ffiffiffi
2

p
σ

��
; ð57Þ

dðtÞ ¼ σ2aðtÞ þ ðt − t0ÞvðtÞ; ð58Þ

where σ and t0 are two parameters describing the time span
over which the kick is imparted and its center. We set
σ ¼ 10M, as this was found to be a good approximation in
careful comparisons against numerical relativity simula-
tions [40]. The kick center t0 is set using the SPA time
corresponding to the last amplitude transition frequency of
PhenomD (i.e., fpeak in the notation of [35,36]). The
merging binary is taken to be a quasicircular, equal mass,
m1 ¼ m2 ¼ 10 M⊙, nonspinning system. In this case the
effect of the kick is confined to be close to merger, so it is
not necessary to have a very long signal. Therefore, we
imagine that this system is observed by Advanced LIGO at
design sensitivity (PSD from [41] with a lower starting
frequency of 30 Hz).
In reality, kick velocities are at most of Oð10−2cÞ. The

GW signal for one system with an unphysically large
kick velocity vk ¼ 0.1c away from the observer is shown
in Fig. 4. Again, there three curves in this figure,
corresponding to the original waveform without any
artificial kick (unkicked), the kicked waveform as com-
puted using the frequency-domain method described in
Sec. II (Kicked FD), and the time-domain method
described in Sec. III (Kicked TD). As expected, the
kicked waveforms dephase from the inertial waveform
during the merger. The accelerated FD and TD wave-
forms remain close in phase even during the late ring-
down. As described above, we expect that the FD method
will work best when the Doppler shifting kick velocity is

FIG. 3. Mismatch between the inertial and accelerated wave-
forms (blue dashed curve), and between the accelerated TD and
accelerated FD waveforms (solid red curve) as a function of the
magnitude of the acceleration or the accumulated velocity.
Mismatches are computed using the ET-D noise PSD [37] starting
from 5 Hz, for which the signal duration is T ¼ 240 s. During
this time, the accelerated frame accumulates a total change in
velocity of v ¼ aT relative to the inertial frame as reported on the
upper x-axis. Even at large values of the acceleration, the fast
frequency-domain approximation shows excellent agreement
with the exact time-domain method: mismatches are less than
10−2 in all cases and improve rapidly as the acceleration
decreases to more astrophysically realistic values.
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small. Figure 5 confirms this expectation by showing the
waveform mismatch as a function of the magnitude of the
kick velocity. Our FD procedure well reproduces the TD
result, with mismatches which are over an order of
magnitude smaller than those due to the kick.

IV. CONCLUSIONS

This paper presents advances in gravitational waveform
building to model effects that impact the signal at the level
of a Doppler shift. In particular, we present a frequency-
domain method that takes a gravitational waveform
model constructed in an inertial frame and lifts it to an
accelerated frame through the addition of a frequency-
dependent amplitude and phase correction. This method is
fast and straightforward to implement, requiring only
knowledge of the time-dependent velocity profile and the
frequency-domain gravitational-wave amplitude and phase.
Moreover, the method is faithful, resulting in matches well
above 99% for the cases investigated here.
The method developed here, therefore, is ready to be

implemented in data analysis investigations. One possible
future use is to study how well the presence of a third body,
through its acceleration of the center of mass of the GW-
emitting binary, can be determined with future observations

FIG. 5. Mismatch between the kicked and inertial waveforms
(blue dashed curve), and between the kicked TD and kicked FD
waveforms (solid red curve) as a function of the magnitude of the
recoil kick velocity. Mismatches were computed using the LIGO
noise PSD [41] starting from 30 Hz. Even at large values of the
recoil velocity, our frequency-domain recipe shows excellent
agreement with the exact time-domain method. Mismatches
improve exponentially as the velocity decreases to more astro-
physically realistic values.

FIG. 4. Plotted in black in the main panel is the normal, “unkicked” waveform for an equal mass m1 ¼ m2 ¼ 10 M⊙ nonspinning
waveform. The two colored curves show the same waveform but with an artificial recoil kick of vk ¼ 0.1c (unphysically large for testing
purposes) applied at merger computed exactly in the time-domain (blue; TD) and the frequency-domain approximation developed in this
paper (red; FD). The kick is only imparted for a period about σ ¼ 10ðm1 þm2Þ near merger. The kicked and unkicked waveforms are
therefore in phase in the early inspiral and drift out of phase during the merger and ringdown phase. The two methods of calculating the
kicked waveform signal (TD and FD) are in excellent agreement even for such a large value of the kick velocity. The difference between
the two is barely visible in the ringdown signal in the right hand inset plot.
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with third-generation detectors and space-borne detectors.
Similar studies could be carried out on the McVittie effect
due to the accelerated expansion of the universe [42], as
well on modified gravity effects that lead to an acceleration
of the center of mass [23]. One could e.g., investigate the
signal-to-noise ratio that would be required to extract these
effects from the GWs emitted by coalescing compact
binaries as a function of future detectors, which in turn,
could provide guidance toward instrument design.
Our frequency-domain method could also be improved

to obtain a more accurate representation of the acceleration
of the center of mass of GWemitting binaries. The method
does rely on an expansion of the center-of-mass velocity
relative to the speed of light, which we have carried out here
to leading order. An extension of this method to higher
order would be straightforward, although it would also
require going beyond the SPA, including the next-to-
leading order terms in the method of steepest descent
[34]. Moreover, one could also in principle carry out a
resummation of the expanded amplitude and phase cor-
rections, e.g., through a Padé approximant. Our match
calculation, however, suggests that any such improvements

may only be necessary for the highest signal-to-noise ratio
events of third-generation detectors.
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