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Abstract
Mixture proportion estimation is a building block in many weakly supervised classification tasks
(missing labels, label noise, anomaly detection). Estimators with finite sample guarantees help
analyse algorithms for such tasks, but so far only exist for Euclidean and Hilbert space data. We
generalise the framework of Blanchard, Lee and Scott to allow extensions to other data types, and
exemplify its use by deducing novel estimators for metric space data, and for randomly compressed
Euclidean data – both of which make use of favourable geometry to tighten guarantees. Finally we
demonstrate a theoretical link with the state of the art estimator specialised for Hilbert space data.
Keywords: Mixture proportion estimation, metric spaces, covering dimension, random projec-
tions, Gaussian width.

1. Introduction and background

The problem of mixture proportion estimation (MPE) is as follows: Suppose that there are three
Borel probability measures F,G and H supported on a topological space X and some κ ∈ [0, 1]
with

F = (1− κ) ·G+ κ ·H.
The learner is given access to i.i.d. samples from H and F only:

X1
0 , · · · , X

n0
0

i.i.d.∼ H; X1
1 , · · · , X

n1
1

i.i.d.∼ F.

and the goal is to estimate κ.
This problem was studied by Blanchard, Lee and Scott in their seminal work on semi-supervised

novelty detection Blanchard et al. (2010), and more recently by Blanchard et al. (2016) for classi-
fication with label noise. As noted there, the problem is ill-defined without assumptions – indeed,
if for some κ ∈ [0, 1] there exists a distribution G such that F = (1 − κ) · G + κ ·H then for any
κ̃ ∈ (0, κ) there exists another distribution G̃ such that F = (1− κ̃) · G̃+ κ̃ ·H . Since the learner
is only in possession of data from F and H (and not G) they are unable to distinguish between κ
and κ̃. The authors then introduce a minimal assumption (irreducibility condition) that allows them
to devise a consistent estimator. However they also prove that the convergence of κ̂BLS to κ may be
arbitrarily slow (Blanchard et al., 2010, Corollary 10) without stronger assumptions.

Irreducibility condition 1 We say that (G,H) satisfies the irreducibility condition if for any γ ∈
[0, 1] and distribution I with G = γ ·H + (1− γ) · I we must have γ = 0.

c© 2019 H.W.J. Reeve & A. Kabán.



GEOMETRIC STRUCTURE IN MIXTURE PROPORTION ESTIMATION

The construction of κ̂BLS is as follows. Take a sequence of subsets of X (Sk)k∈N with respective
VC dimensions (Vk)k∈N. The Blanchard-Lee-Scott estimator κ̂BLS for κ is defined by

κ̂BLS =̇ min

 inf
k∈N

 inf
S∈Sk

 F̂n1(S) + εVC(Vk, δ, n1)(
Ĥn0(S)− εVC(Vk, δ, n0)

)
+


 , 1

 .

where

εVC(q, δ, n) =̇

√
8q log(2en/q) + 8 log(4/δ)

n
.

is a quantity constructed to be a high probability (1 − δ) uniform upper bound on the deviation
between the probability of a set of VC dimension q and its empirical measure under an i.i.d. sample
(see (Mohri et al., 2012, Chapter 3)).

The first condition that allows a rate of convergence of κ̂BLS to κ is due to Scott (2015).

Irreducibility condition 2 We say that (G,H) satisfies Scott’s irreducibility condition if supp(H) 6⊂
supp(G).

In particular, there must be some open ball B ⊂ Rd with H(B) > 0 and G(B) = 0. Let Bd denote
the set of all open Euclidean balls in Rd. In the presence of condition 2 it suffices to consider the
following simplified variant of the Blanchard-Lee-Scott estimator due to Scott (2015),

κ̂Scott =̇ min

 inf
B∈Bd

 F̂n1(B) + εVC(d+ 1, δ, n1)(
Ĥn0(B)− εVC(d+ 1, δ, n0)

)
+

 , 1

 .

Theorem 1 (Scott (2015)) Suppose that (G,H) satisfies Scott’s irreducibility condition (2), with
ν =̇ supB∈Bd {H(B) : G(B) = 0}. Then, with probability at least 1− δ, we have

κ ≤ κ̂Scott ≤ κ+
8

ν
· εVC (d+ 1, δ,min{n0, n1}) .

The work of Scott (2015) concerned convergence rates, treating d as constant. This is of course
impractical for large d. A more practical estimator with the same convergence rate, specialised for
reproducing kernel Hilbert space, was proposed in Ramaswamy et al. (2016) under quite different
condition – we shall discuss this in a later section. Other approaches to MPE type problems assume
the availability of some additional information or data, these are outside our scope here.

From a theoretical perspective, we observe that the BLS estimator lends itself to extensions
to other probability spaces / data types in principle – including types that would incur too much
distortion to embed into a Hilbert space, for instance metric space data that has applications in
computer vision (Gottlieb and Kontorovich, 2014). We shall generalise the framework in Section 2,
and instantiate it in Sections 2 and 3, where we develop dimension-free uniform deviation bounds
exploiting favourable geometry. The final section will establish a connection with the approach in
Ramaswamy et al. (2016).
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2. Generalised Blanchard-Lee-Scott estimators

This section gives a construction to convert any uniform deviation bound into an BLS-type mixture
proportion estimator with a quantified estimation error, in a generic abstract setting. Let X be
a topological space. Let G,H,F be Borel probability measures on X , and κ ∈ [0, 1] such that
F = (1− κ) ·G+ κ ·H .

Given a Borel probability measureQ onX , we letQn denote the corresponding product measure
on X n. Equivalently, Qn denotes the probability measure over random samples {Xi}i∈[n] where
Xi are sampled i.i.d. fromQ. Let Q̂n denote the corresponding empirical measure defined for Borel
sets S ⊂ X , that is Q̂n(S) =̇ 1

n

∑
i∈[n] 1

{
Xi ∈ S

}
.

Definition 1 (Uniform deviation) Given a set Ω of real-valued Borel functions on X , we define
for each δ ∈ (0, 1) and n ∈ N,

εuni (Ω, δ, n) =̇ inf

{
ε > 0 : Qn

[
sup
ω∈Ω

{∣∣∣∣∫ ωdQ̂n −
∫
ωdQ

∣∣∣∣} > ε

]
< δ/2

}
.

Theorem 2 (Generalised Blanchard-Lee-Scott estimators) Let (Ωq)q∈N be a sequence of dis-
joint classes of Borel functions, along with a sequence (δq)q∈N ⊂ (0, 1). Suppose that ε∗ :
N × N → (0,∞) is a function such that for every q, n ∈ N we have εuni(Ωq, δq, n) ≤ ε∗(q, n).
Fix µ ∈ [0, 1], ν ∈ (0, 1] and q∗ ∈ N. Suppose we have two i.i.d. samples {Xi

0}i∈[n0] ∼ Hn0 and
{Xi

1}i∈[n1] ∼ Fn1 and let Ω∗ ⊆ [0,∞)X ∩
⋃
q∈N Ωq be a random (possibly data dependent) subset

of [0,∞)X ∩
⋃
q∈N Ωq. Suppose that with probability at least 1− δ∗ there exists ω∗ ∈ Ω∗∩Ωq∗ that

satisfies
∫
ω∗dG ≤ µ and

∫
ω∗dH ≥ ν. We define the following estimator:

κ̂GBLS =̇ min

 inf
q∈N

 inf
ω∈Ω∗∩Ωq


∫
ωdF̂n1 + ε∗(q, n1)(∫
ωdĤn0 − ε∗(q, n0)

)
+


 , 1

 .

Then, with probability at least 1− δ∗ −
∑

q∈N δq we have

κ ≤ κ̂GBLS ≤ κ+
µ

ν
+
(

1 +
µ

ν

)
· 8

ν
·max {ε∗(q∗, n0), ε∗(q∗, n1)} .

To use this theorem, one needs to choose the space X , specify the (sequence of) function class(es)
(Ωq)q∈N together with a convergent sequence of failure probabilities (δq)q∈N that allow uniform
deviation bounds ε∗(q, n) and then choose Ω∗. In contexts where functions are represented through
a sample, we may specify a nonzero value for δ∗.

Before giving the proof, let us illustrate the working of Theorem 2 by deducing from it a version
of Theorem 1 that shows that it exhibits graceful degradation with the violation of its condition. To
this end, consider the following relaxation of Scott’s irreducibility condition (2):

Irreducibility condition 3 We say that (G,H) satisfies the relaxed irreducibility condition with
constants µ ∈ [0, 1], ν ∈ (0, 1], if there exists an open ball B ∈ Bd such that G(B) ≤ µ and
H(B) ≥ ν.

3
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Corollary 3 (to Theorem 2) Suppose that (G,H) satisfies the relaxed irreducibility condition (3),
with constants µ, ν. Then, with probability at least 1− δ, we have

κ ≤ κ̂Scott ≤ κ+
µ

ν
+
(

1 +
µ

ν

)
· 8

ν
· εVC (d+ 1, δ,min{n0, n1}) .

Proof [Proof of Corollary 3] We let Ω1 = Ω∗ be Bd, the set of indicator functions for open balls
in Rd. This set has VC dimension d + 1 (Dudley, 1979). For q > 1 we let Ωq = ∅ and δq =
0. Hence, we may take ε∗ (q, n) =̇ εVC (d+ 1, δ, n). By standard results in VC theory we have
εuni(Ω1, δ1, n) ≤ ε∗(1, n) for all ω ∈ Ω∗ (Mohri et al., 2012, Chapter 3). Let δ∗ = 0. Under
these conditions κ̂Scott = κ̂GBLS. Moreover, the relaxed irreducibility condition (3) entails that the
assumptions of Theorem 2 apply. This completes the proof.

2.1. Proof of Theorem 2

To prove Theorem 2 we require the following lemma.

Lemma 4 Suppose that we have functions f, g, h : W → [0,∞) such that for some κ ∈ [0, 1]
we have f(w) = (1 − κ) · g(w) + κ · h(w). Suppose further that there exits error functions
εf , εh : W → (0,∞) along with approximation functions f̂ , ĥ : W → [0, 1] such that for all
w ∈ W we have ∣∣∣f̂(w)− f(w)

∣∣∣ ≤ εf (w);
∣∣∣ĥ(w)− h(w)

∣∣∣ ≤ εh(w).

In addition we define,

κ̂
(
f̂ , ĥ

)
=̇ min

 inf
w∈W

 f̂(w) + εf (w)(
ĥ(w)− εh(w)

)
+

 , 1

 .

Then letting ε(w) = max {εf (w), εh(w)},

κ ≤ κ̂
(
f̂ , ĥ

)
≤ inf

w∈W

{
f(w)

h(w)
+ max

{
1,
f(w)

h(w)

}
· 8ε(w)

h(w)

}
.

Proof We begin by showing that κ ≤ κ̂
(
f̂ , ĥ

)
. Take w ∈ W . If ĥ(w) > εh(w) then

f̂(w) + εf (w)(
ĥ(w)− εh(w)

)
+

=
f̂(w) + εf (w)

ĥ(w)− εh(w)
≥ f(w)

h(w)
= κ+ (1− κ) · g(w)

h(w)
≥ κ.

On the other hand, if ĥ(w) ≤ εh(w) then

f̂(w) + εf (w)(
ĥ(w)− εh(w)

)
+

= +∞ ≥ κ.
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Hence, given that κ ≤ 1 we have

κ̂
(
f̂ , ĥ

)
=̇ min

 inf
w∈W

 f̂(w) + εf (w)(
ĥ(w)− εh(w)

)
+

 , 1

 ≥ κ.
To prove the second inequality we first fix w ∈ W . Suppose first that h(w) ≤ 4 · ε(w). Then

we have

κ̂ ≤ 1 ≤ 4ε(w)

h(w)
≤ f(w)

h(w)
+ max

{
1,
f(w)

h(w)

}
· 8ε(w)

h(w)
.

since f(w), h(w) ≥ 0. Now suppose h(w) > 4 · ε(w). Then since |ĥ(w)− h(w)| < εh(w) ≤ ε(w)
we must have

ĥ(w)− εh(w) ≥ h(w)− 2 · ε(w) ≥ h(w)

2
> 0.

Thus, we have

κ̂ ≤
f̂(w) + εf (w)(
ĥ(w)− εh(w)

)
+

=
f̂(w) + εf (w)

ĥ(w)− εh(w)

=
f(w)

h(w)
+
f̂(w) + εf (w)− f(w)

ĥ(w)− εh(w)
+
f(w)

h(w)
·

(
h(w)

ĥ(w)− εh(w)
− 1

)

≤ f(w)

h(w)
+ max

{
1,
f(w)

h(w)

}
· 8ε(w)

h(w)
.

Taking the infimum over all w ∈ W completes the proof of the lemma.

We shall now prove Theorem 2 by deploying Lemma 4.
Proof [Proof of Theorem 2] By Definition 1 we see that for each q ∈ N with probability at least
1− δq the following holds uniformly for all ω ∈ Ωq∣∣∣∣∫ ωdĤn0 −

∫
ωdH

∣∣∣∣ ≤ εuni (Ωq, δq, n0) ≤ ε∗(q, n0) (1)∣∣∣∣∫ ωdF̂n1 −
∫
ωdF

∣∣∣∣ ≤ εuni (Ωq, δq, n1) ≤ ε∗(q, n1).

Let’s assume that (1) holds uniformly over all ω ∈ Ω∗ ⊆
⋃
q∈N Ωq, and ω∗ ∈ Ω∗ ∩ Ωq∗ satisfies∫

ω∗dG ≤ µ and
∫
ω∗dH ≥ ν. By the union bound this holds with probability at least 1 − δ∗ −∑

q∈N δq. We can then apply Lemma 4 with W = Ω∗, f(ω) =
∫
ωdF , g(ω) =

∫
ωdG, h(ω) =∫

ωdH and f̂(ω) =
∫
ωdF̂n1 , ĥ(ω) =

∫
ωdĤn0 . In addition for ω ∈ Ωq, εh(ω) = ε∗(q, n0),

εf (ω) = ε∗(q, n1). Note that εh, εf are well defined since the classes {Ωq}q∈N are pair-wise

disjoint. It follows that the conditions of Lemma 4 are satisfied with κ̂GBLS = κ̂(f̂ , ĥ). Hence, it
follows from Lemma 4 that

κ ≤ κ̂GBLS ≤ inf
q∈N

{
inf

ω∈Ω∗∩Ωq

{∫
ωdF∫
ωdH

+ max

{
1,

∫
ωdF∫
ωdH

}
· 8 max{ε∗(q, n0), ε∗(q, n1)}∫

ωdH

}}
.

(2)

5
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Moreover ω∗ ∈ Ω∗ ∩ Ωq∗ satisfies
∫
ω∗dG ≤ µ and

∫
ω∗dH ≥ ν. It follows that∫

ω∗dF∫
ω∗dH

= κ+ (1− κ) ·
∫
ω∗dG∫
ω∗dH

≤ 1 +
µ

ν
.

Plugging this into eq. (2), with q∗ selected for q and ω∗ for ω, we have w.p. 1− δ∗ −
∑

q∈N δq that:

κ ≤ κ̂GBLS ≤
∫
ω∗dF∫
ω∗dH

+ max

{
1,

∫
ω∗dF∫
ω∗dH

}
· 8 max{ε∗(q∗, n0), ε∗(q∗, n1)}∫

ω∗dH

≤ κ+
µ

ν
+
(

1 +
µ

ν

)
· 8

ν
·max {ε∗(q∗, n0), ε∗(q∗, n1)} .

The next sections instantiate Theorem 2 in more interesting scenarios, where we obtain new
estimators that exploit favourable geometry. To this end we introduce the following definition.

Irreducibility condition 4 We say that (G,H) satisfies the relaxed irreducibility condition with
margin, if there exist µ ∈ [0, 1], ν, λ ∈ (0, 1], and x0 ∈ X , r0 > 0 such thatG (B (x0, r0 + λ)) ≤ µ
and H (B (x0, r0)) ≥ ν. If so, we say the ordered pair (x0, r0) ∈ X × (0,∞) witnesses the relaxed
irreducibility condition with margin.

We point out that the newly introduced parameter λ, a latent margin, is crucial for our purposes,
while µ is inessential and can be simply put to 0 throughout if one is only interested in consistent
estimators. In addition, µ will facilitate the link to Ramaswamy et al. (2016) in Section 5.

3. Example: MPE on a metric space with finite covering dimension

Consider a metric space (X , ρ) with finite diameter diam(X ) < ∞ with finite covering dimension
i.e. there exists constants dimcov (X ), CX > 0 such that for all ε > 0 we have,

Mρ (X , ε) ≤ CX · ε− dimcov(X ), (3)

where Mρ (X , ε) =̇ min
{
m ∈ N : ∃{xj}j∈[m] such that X ⊂

⋃
j∈[m]Bρ (xj , ε)

}
.

Note that the assumption of finite covering dimension (3) is strictly weaker than the doubling
assumption which has received a lot of interest in statistical learning (Gottlieb and Kontorovich
(2014)). Examples of metric spaces which are doubling (and hence satisfy eq. (3)) include data
whose natural metric is the edit distance, or the earth-mover distance. In this section we obtain
the first MPE for general metric data. As we shall see, it exhibits the same convergence rate as
Scott’s estimator did for Euclidean data, but with the covering dimension dimcov (X ) in place of
the Euclidean dimension d. In particular, this means that if F is known to be supported on a subset
X ⊂ Rd with low covering dimension dimcov (X ) � d, such as a low-dimensional manifold in a
high-dimensional feature space, then the bound takes advantage of this low geometric complexity.

The uniform deviation bound required for applying our Theorem 2 will be obtained by Rademacher
analysis of carefully designed function class, as follows. For each x0 ∈ X , r0 > 0 define
Bρ (x0, r0) =̇ {z ∈ X : ρ(z, x0) < r0} to be the open ball and gx0,r0 : X → R as the signed

6
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distance to the surface of the metric ball gx0,r0 (x) =̇ ρ(x, x0)− r0.
Further, let Φ1 : R→ [0, 1] be the following 1-Lipschitz function:

Φ1(z) =̇


1 if z ≤ 0

1− z if 0 ≤ z ≤ 1

0 if z ≥ 1.

Now, for each q ∈ N we define

Ωq =̇ {Φ1 (q · gx0,r0) : x0 ∈ X , r0 ∈ [0, diam(X )]} .

to form our sequence of function classes. These functions are q-Lipschitz in g, so we are able to
bound the Rademacher complexity of each class Ωq:

Lemma 5 For each q ∈ N, δ ∈ (0, 1), n ∈ N, we have

εuni (Ωq, δ, n) ≤ 43 · (2CX diam(X ))
1

dimcov(X )+1 · q ·
√

dimcov (X ) + 1

n
+

√
log(2/δ)

2n
.

The proof uses Talagrand’s contraction lemma, and Dudley inequality (see Appendix B).
Remarkably, this deviation bound has a convergence rate of order n−1/2 – we note that for learn-

ing on metric spaces, previous work only considered the larger class of all q-Lipschitz functions, for
which such rate was only obtained in the large sample regime through fat shattering based analysis
(Gottlieb and Kontorovich (2014)), which is not applicable here as we need both upper and lower
bounds on the uniform deviation in the estimator.

We now construct our estimator κ̂X as follows. For each δ ∈ (0, 1) and q, n ∈ N we define

εX (q, δ, n) =̇ 43 · (2CX diam(X ))
1

dimcov(X )+1 · q ·
√

dimcov (X ) + 1

n
+

√
q + log(4/δ)

2n
,

so that, by Lemma 5 and a union bound we have εuni
(
Ωq, δ · 2−q−1, n

)
≤ εX (q, δ, n) for all q ∈ N.

We define κ̂X by

κ̂X =̇ min

 inf
x0∈{Xj

1}j∈[n1],r0∈[0,diam(X )],q∈N


∫

Φ1 (q · gx0,r0) dF̂n1 + εX (q, δ, n1)(∫
Φ1 (q · gx0,r0) dĤn0 − εX (q, δ, n0)

)
+

 , 1

 .

Combining Lemma 5 with Theorem 2 gives the following bound.

Theorem 6 Suppose that we have a bounded metric space (X , ρ) with finite covering dimension
(3). Suppose further that (G,H) satisfy the relaxed irreducibility with margin condition (4), with
constants µ ∈ [0, 1], ν, λ ∈ (0, 1] and witnessed by (x0, r0). Suppose that n1 ≥ log(2/δ)/F (B(x0, λ/3)).
Then, with probability at least 1− δ, we have

κ ≤ κ̂GBLS ≤ κ+
µ

ν
+
(

1 +
µ

ν

)
· 8

ν
· εX (d3/λe, δ,min{n0, n1}) .

7
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Proof [Proof of Theorem 6] For each q ∈ N we define δq = δ · 2−q−1 and we defined ε∗ : N2 →
(0,∞) by ε∗(q, n) = εX (q, δ, n). Lemma 5 implies that for every ω ∈ Ωq, εuni (Ωq, δq, n) ≤
ε∗(q, n). To complete the proof we must show that it suffices to consider functions parameterised
by points within the sample

{
Xj

1

}
j∈[n1]

. To see this, let δ∗ = δ/2, and let Ω∗ ⊂
⋃
q∈N Ωq be the

set

Ω∗ =̇
{

Φ1

(
q · g

Xj
1 ,r0

)
: x0 ∈ X , r0 ∈ [0, diam(X )], q ∈ N, j ∈ [n1]

}
Now take x0 ∈ X , r0 > 0 such that G (B (x0, r0 + λ)) ≤ µ and H (B (x0, r0)) ≥ ν and n1 ≥
log(2/δ)/F (B(x0, λ/3)). If µ = 1 the theorem is trivial, so we may assume that µ < 1, which in
turn implies that r0 + λ < diam(X ) since G (B (x0, r0 + λ)) ≤ µ. It follows that with probability
at least 1 − δ/2 = 1 − δ∗, that for some j ∈ [n1] we have Xj

1 ∈ B(x0, λ/3). This in turn

implies that G
(
B
(
Xj

1 , (r0 + λ/3) + λ/3
))
≤ µ and H

(
B
(
Xj

1 , r0 + λ/3
))
≥ ν. Hence, ω∗ =

Φ1

(
d3/λe · g

Xj
1 ,r0+λ/3

)
satisfies

∫
ω∗dG ≤ µ and

∫
ω∗dH ≥ ν. Thus, we may deduce the result

from Theorem 2.

4. Example: MPE with random projections

For this section, we consider the special case ofX ⊆ Rd, whereX need not be bounded. We develop
a compressive approach to MPE, whereby the data is only assumed to be available in randomly
projected form. Random projections (RP) are a powerful tool for overcoming the computational
challenges of high dimensional data, with a natural ability to exploit fortuitous geometry. In the
same spirit as the covering dimension replaced the ambient dimension d in the previous section,
here the squared Gaussian width Liaw et al. (2017) of an appropriate bounded subset of X will play
this role. Moreover, the estimator in this section can work without prior knowledge of this quantity.
For a set T the Gaussian width is defined as:

w (T ) =̇ Eg∼N(0,Id)

[
sup
x∈T
{〈g, x〉}

]
.

We also let rad (T ) =̇ supx∈T {‖x‖2} denote the radius of T .
Recall that a random variable Z is said to be sub-Gaussian if it has finite Orlicz norm:

||Z||ψ2
=̇ inf

{
K > 0 : E

[
exp

(
|Z|2/K2

)]
≤ 2
}
.

The Orlicz norm of a random vectorW ∈ Rd is ||W ||ψ2
=̇ sup

{
||〈W,u〉||ψ2

: u ∈ Sd−1
}

, and for

random matrices M ∈ Rk×d it is defined as ||M ||ψ2
=̇ maxi∈[k]

{∣∣∣∣MT
i:

∣∣∣∣
ψ2

}
, where Mi: denotes

the ith row ofM . A random matrixM ∈ Rk×d is said to be isotropic if every rowMi: ofM satisfies
E
[
MT
i: Mi:

]
= Id and

∣∣∣∣MT
i:

∣∣∣∣
ψ2
≤ K.

Conditional on the RP matrix M ∈ Rk×d, we have two i.i.d. compressive samples :

M(X1
0 ), · · · ,M(Xn0

0 )
i.i.d.∼ H ◦M−1; M(X1

1 ), · · · ,M(Xn1
1 )

i.i.d.∼ F ◦M−1.
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With these preliminaries in place, we first give Lemma 8, which shows that the relaxed irre-
ducibility with margin condition (4) in the original space ensures the relaxed irreducibility condi-
tion (3) in the compressed space. We then construct the compressive MPE in Theorem 9 by an
appropriate specialisation of Theorem 2.

Definition 2 (Projection onto a ball) Given x ∈ Rd, r > 0 we define Px,r : Rd → B(x, r) to be
the map from points z ∈ Rd to the closest point within B(x, r), i.e.

Px,r(z) = x+ min

{
r

‖z − x‖2
, 1

}
· (z − x) .

We extend the definition to sets A ⊂ Rd by Px,r (A) = {Px,r(z) : z ∈ A}.

We will also need the following result of Liaw et al. Liaw et al. (2017).

Theorem 7 (Liaw et al. (2017)) There exists a universal constant CLiaw ≥ 1 such that the follow-
ing holds. Given any random projection matrix M , which is both isotropic and sub-Gaussian with
||M ||ψ2

≤ K, along with a set T ⊆ Rd and some δ > 0, with probability at least 1− δ we have

sup
x∈T

{∣∣∣‖Mx‖2 −
√
k · ‖x‖2

∣∣∣} ≤ CLiaw ·K2
(
w(T ) +

√
log(1/δ) · rad (T )

)
.

Lemma 8 Suppose that (G,H) satisfies the relaxed irreducibility with margin condition (4), with
constants µ, ν, λ, witnessed by (x0, r0) ∈ X × (0,∞). Suppose that k ∈ [d] satisfies

k ≥
(

2

λ
· CLiaw ·K2 ·

(
w (Px0,r0+λ (supp(F ))) +

√
log(2/δ) · (r0 + λ)

))2

, (4)

where CLiaw is a universal constant. Suppose that M : Rd → Rk is a random projection which
is both isotropic and sub-Gaussian with ||M ||ψ2

≤ K. Then, with probability at least 1 − δ,(
G ◦M−1, H ◦M−1

)
satisfies the relaxed irreducibility condition (3), with constants µ, ν.

Proof [Proof of Lemma 8] Firstly, since (G,H) satisfies the relaxed irreducibility with margin con-
dition (4), with constants µ, ν, λ, witnessed by (x0, r0) ∈ X×(0,∞), we haveG (Bd (x0, r0 + λ)) ≤
µ and H (Bd (x0, r0)) ≥ ν.

Let T =̇ {z = y − x0 : y ∈ Px0,r0+λ (supp(F ))} so that w(T ) = w (Px0,r0+λ (supp(F ))) and
rad (T ) ≤ r0 + λ. Hence, by Liaw’s theorem (Theorem 7) with probability at least 1 − δ over M
we have

sup
z∈Px0,r0+λ(supp(F ))

{∣∣∣‖Mz −Mx0‖2 −
√
k · ‖z − x0‖2

∣∣∣} = sup
z∈T

{∣∣∣‖Mz‖2 −
√
k · ‖z‖2

∣∣∣}
≤ CLiaw ·K2

(
w(T ) +

√
log(1/δ) · rad (T )

)
≤
√
k · λ

2
, (5)

whenever k satisfies eq. (4).

9
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Let us suppose that eq. (5) holds and take x1 = M(x0) and r1 =
√
k ·
(
r0 + λ

2

)
. Now

suppose z ∈M−1 (Bk(x1, r1))∩ supp(G), so M(z) ∈ Bk(x1, r1). Now, take z′ = Px0,r0+λ (z) ∈
Px0,r0(supp(F )) and we have:

√
k · ‖z′ − x0‖2 ≤ ‖Mz′ −Mx0‖2 +

√
k · λ

2

≤ ‖Mz −Mx0‖2 +
√
k · λ

2
<
√
k · (r0 + λ) ,

where the second inequality uses the fact that z′ − x0 = c · (z − x0) for some c ∈ [0, 1] and the
third inequality uses the definition of r1. It follows that z′ = Px0,r0+λ (z) ∈ Bd(x0, r0 + λ), so
z ∈ Bd(x0, r0 + λ). Hence, we have

G
(
M−1 (B(x1, r1))

)
≤ G (B(x0, r0 + λ)) ≤ µ.

To show the condition on the H measure, take z ∈ B(x0, r0) ∩ supp(H) ⊂ Px,r0+λ (supp(F )),
then we have

‖Mz −Mx0‖2 ≤
√
k · ‖z − x0‖2 +

√
k · λ

2
<
√
k ·
(
r0 +

λ

2

)
= r1.

Thus, H
(
M−1 (Bk(x1, r1))

)
≥ H (Bd(x0, r0)) ≥ ν. Thus, provided (5) holds, G ◦M−1 satisfies

the relaxed irreducibility condition (3) with respect toH ◦M−1, with constants µ, ν. Since (5) holds
with probability at least 1− δ this completes the proof.

We are now ready to construct our compressive MPE. Consider an ensembleM = (Mk)k∈[d]

consisting of random projection matrices Mk : Rd → Rk. We assume that for some K > 0 each
random matrix Mk is both isotropic and sub-Gaussian with ||Mk||ψ2

≤ K. We define a random
ensemble estimator by

κ̂RPE (M) =̇ min

{
min
k∈[d]

{
inf
B∈Bk

{
F̂ ◦ (Mk)

−1 (B) + εVC(k + 1, δ · 2−k−1, n1)

(Ĥ ◦ (Mk)
−1 (B)− εVC(k + 1, δ · 2−k−1, n0))+

}}
, 1

}
.

Theorem 9 Suppose that (G,H) satisfies the relaxed irreducibility with margin condition (4),
with constants µ, ν, λ ∈ [0, 1]. We let M = (Mk)k∈[d] where Mk : Rd → Rk is isotropic and
sub-Gaussian with ||Mk||ψ2

≤ K, where K ≥ 1. Then, with probability at least 1− δ, we have

κ ≤ κ̂RPE (M) ≤ κ+
µ

ν
+
(

1 +
µ

ν

)
· 64

ν · λ
· CLiaw ·K2 · · ·

·
(
w (Px0,r+λ (supp(F ))) + 2

√
log(4/δ) · (r0 + λ+ 1)

)
·

√
log(2emin{n0, n1})

min{n0, n1}
.

Proof [Proof of Theorem 9] For each k ∈ [d] we let

Ωk = {x 7→ 1{Mk(x) ∈ B} : B ∈ Bk} .

Observe that the sets Ωk depend upon the random projections Mk, but not the data. Let k∗ be as
in eq. (4), then by Lemma 8 with probability at least 1 − δ/2, G ◦ (Mk∗)

−1 satisfies the relaxed

10
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irreducibility condition (3) with respect toH ◦(Mk∗)
−1, with constants µ, ν. Thus, with probability

at least 1− δ/2 there exists ω∗ ∈ Ωk∗ such that
∫
ω∗dG ≤ µ and

∫
ω∗dH ≥ ν. Let us assume that

such an ω∗ ∈ Ωk∗ exists.
For each k ∈ [d] we let δk = δ · 2−k−1 and for k > d we let δk = 0 and Ωk = ∅. Thus, we have

ε∗ (k, n) =

{
εVC

(
k + 1, δ · 2−k−1, n

)
for k ∈ [d]

0 for k > d.
(6)

For each k ∈ [d], the set Ωk has VC dimension k + 1 Dudley (1979), so

ε∗ (k, n) = εVC

(
k + 1, δ · 2−k−1, n

)
≥ εuni(Ωk, δk, n).

For k > d, Ωk = ∅, so ε∗ (k, n) ≥ εuni(Ωk, δk, n) holds vacuously. Observe that with these choices
of (Ωk)k∈N, (δk)k∈N and ε∗, κ̂GBLS is equal to κ̂RPE.

We let Ω∗ =
⋃
k∈N Ωk and δ∗ = 0. Thus, by Theorem 2, provided ω∗ ∈ Ωk∗ exists, with

probability at least 1−
∑

k∈N δk ≥ 1− δ/2 we have

κ ≤ κ̂RPE ≤ κ+
µ

ν
+
(

1 +
µ

ν

)
· 8

ν
·max {ε∗(k∗, n0), ε∗(k∗, n1)}

≤ κ+
µ

ν
+
(

1 +
µ

ν

)
· 8

ν
· ε∗(k∗, n∗),

where n∗ = min{n0, n1}. Thus, under the assumption that ω∗ ∈ Ωk∗ exists, w.p. 1− δ/2, we have

ε∗(k∗, n∗) = εVC

(
k∗ + 1, δ · 2−k∗−1, n∗

)
(7)

≤ 8

λ
·

√
log(2en∗)

n∗
· CLiaw ·K2 ·

(
w (Px0,r+λ (supp(F ))) + 2

√
log(4/δ) · (r0 + λ+ 1)

)
,

where the inequality follows from plugging in eq. (4) for k∗. Moreover, the existence of ω∗ ∈ Ωk∗

with
∫
ω∗dG ≤ µ and

∫
ω∗dH ≥ ν holds with probability at least 1 − δ/2. Thus, by the union

bound (7) holds w.p. 1− δ. Substituting back in to the bound on κ̂RPE above completes the proof.

Finally, for a known value of k that satisfies eq. (4), the estimator simplifies to Scott’s estimator,
applied to the randomly projected data:

Corollary 10 Suppose that (G,H) satisfies the relaxed irreducibility with margin condition (4),
with constants µ, ν, λ, witnessed by (x0, r0) ∈ X × (0,∞). Fix k so that eq. (4) holds, and let
M : Rd → Rk be a random projection which is both isotropic and sub-Gaussian with ||M ||ψ2

≤ K.
Let

κ̂RP(M) =̇ min

 inf
B∈Bk

 F̂n1 ◦M−1(B) + εVC(k + 1, δ/2, n1)(
Ĥn0 ◦M−1(B)− εVC(k + 1, δ/2, n0)

)
+

 , 1

 .

Then, with probability at least 1− δ, we have

κ ≤ κ̂RP(M) ≤ κ+
µ

ν
+
(

1 +
µ

ν

)
· 8

ν
· εVC (k + 1, δ/2,min{n0, n1}) .

11
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5. BLS-type methods under Ramaswamy’s Condition

We conclude by demonstrating a theoretical link between the BLS framework and the existing state
of the art approach of Ramaswamy et al. (2016) specialised to reproducing kernel Hilbert spaces.
Specifically, we derive a BLS-type estimator under the assumption of Ramaswamy et al. (2016),
achieving the same guarantees as the specialised method. We refer to our estimator as being of
BLS-type since, whilst it isn’t quite a generalised BLS estimator (Section 2), it is similar in spirit.

In this section we assume the existence of a kernel function k : X × X → R which is both
continuous and positive semi-definite. We let Hk denote the associated reproducing kernel Hilbert
space consisting of continuous real valued functions and let ‖ · ‖Hk denote the corresponding norm
(see (Mohri et al., 2012, Chapter 5)). In this setting we shall consider the following irreducibility
condition introduced by Ramaswamy et al. (2016).

Irreducibility condition 5 We say that (G,H) satisfies the relaxed Hilbert space irreducibility
condition with kernel k and constants α > 0, β ≥ 0 if there exists h ∈ Hk with ‖h‖Hk ≤ 1 such
that ∫

hdG ≤ inf
x∈X
{h(x)}+ β ≤

∫
hdH − α.

For each (i1, i2) ∈ {0, 1}2 we define a matrix Kiaib ∈ Rnia×nib by

Kiaib =
(
k
(
Xja
ia
, Xjb

ib

))
(ja,jb)∈[nia ]×[nib ]

.

In addition we define a matrix K ∈ R(n0+n1)×(n0+n1) by

K =

[
K00 K01

K10 K11

]
.

In addition, we let 1n ∈ Rn denote an n × 1 vector consisting entirely of 1s. Let us suppose that
for all x ∈ X we have k(x, x) ≤ B2. We define an estimator κ̂HS for κ as follows. Firstly, we
let ξ(δ) = 2 supx∈X

{√
k(x, x)

}
+
√

log(10/δ)/2, and let A (K) ⊂ Rn0+n1 denote the set of

vectors θ ∈ Rn0+n1 satisfying both θTKθ ≤ 1 and

n−1
0 1Tn0

[K00 K01]θ −min (Kθ) ≥ ξ(δ)/
√
n0 + (log n1)−

1
2 ,

where min (Kθ) denotes the minimum element of the column vector Kθ. Finally, we define κ̂HS by

κ̂HS =̇ min

{
inf

θ∈A(K)

{
n−1

1 1Tn1
[K10 K11]θ −min (Kθ) + ξ(δ)/

√
n1

n−1
0 1Tn0

[K00 K01]θ −min (Kθ)− ξ(δ)/√n0

}
, 1

}
. (8)

Theorem 11 Suppose that we have a bounded, continuous and positive semi-definite kernel k and
(G,H) satisfies the relaxed Hilbert space irreducibility condition (5) with constants α > 0, β ≥ 0.

Suppose further that n0 ≥
(

8ξ(δ)
α

)2
and

n1 ≥ max

{
8 log(5/δ)/min

{
(1− κ), log

(
α+ 2β

κ · α+ 2β

)}
, exp(16/α2)

}
.

12
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Then, with probability at least 1− δ we have

κ− ξ(δ) ·
√

2 log n1

n1
≤ κ̂HS ≤ κ+

2β

α
+

(
1 +

β

α

)
· 16 · ξ(δ)
α
√

min{n0, n1}
. (9)

In the interest of space, the proof is deferred to Appendix A. Unlike Theorems 6 and 9, Theorem
11 is not a corollary to Theorem 2, owing to the data dependent minimum in the construction of κ̂HS
(9). Two observations are worth noting. Firstly, by comparing the guarantees in (9) with those of the
original estimator of Ramaswamy et al. (2016), we see they are of the same order. Secondly, from
the form of the obtained estimator, eq. (8) we can see that the parameters α and β play similar roles
to those of ν and µ of the previous sections respectively. This suggests that the BLS framework
lends itself to further extensions beyond those obtainable by its original irreducibility condition.

A worthwhile avenue for future work is to extend and instantiate the framework to MPE for
structured data types such as graphs, trees, through semimetric spaces.
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Appendix A. Proof of Theorem 11

Proof [Proof of Theorem 11] Firstly, we let φ : X → Hk denote the canonical embedding given by
φ(x1)(x2) = k(x1, x2) for x1, x2 ∈ X . We define a data dependent mapping w : Rn0+n1 → Hk by

wK(θ) =̇
∑

i∈{0,1}

∑
j∈[ni]

θi·n0+j · φ
(
Xj
i

)
.

For all θ ∈ Rn0+n1 we have ‖wK(θ)‖Hk =
√
θTKθ. We also have∫

wK(θ)dF̂n1 = n−1
1 · 1

T
n1

[K10 K11]θ∫
wK(θ)dĤn0 = n−1

0 · 1
T
n0

[K00 K01]θ.

The Rademacher complexity Rn

(
H1
k

)
of H1

k =̇ {h ∈ Hk : ‖h‖Hk ≤ 1} of an average sample of
size n is bounded above by

Rn

(
H1
k

)
≤

supx∈X

{√
k(x, x)

}
√
n

.

See, for example, (Mohri et al., 2012, Theorem 5.5). Hence, it follows standard Rademacher theory
(Mohri et al., 2012, Theorem 3.1) with probability at least 1− δ/5 the following holds h ∈ H1

k,

∣∣∣∣∫ hdF̂n1 −
∫
hdF

∣∣∣∣ ≤ 2 supx∈X

{√
k(x, x)

}
√
n1

+

√
log(10/δ)

n1
=
ξ(δ)
√
n1
. (10)

In particular, for all θ ∈ A (K),∣∣∣∣n−1
1 · 1

T
n1

[K10 K11]θ −
∫
wK(θ)dF

∣∣∣∣ ≤ ξ(δ)
√
n1
.

Similarly, with probability of 1− δ/5,∣∣∣∣∫ hdĤn0 −
∫
hdH

∣∣∣∣ ≤ ξ(δ)
√
n0
. (11)

In particular, for all θ ∈ A (K) we have∣∣∣∣n−1
0 · 1

T
n0

[K00 K01]θ −
∫
wK(θ)dH

∣∣∣∣ ≤ ξ(δ)
√
n0
.

Suppose that we have a sample
{(
X̃j , Z̃

)}
j∈[n1]

generated i.i.d. with each Z̃j ∈ {0, 1} with

E
[
Z̃j
]

= κ and

P
[
X̃j |Z̃j

]
=

{
G(X̃j) if Z̃j = 0

H(X̃j) if Z̃j = 1.

14
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By the multiplicative Chernoff bound, given the assumption that n1 ≥ 8 log(5/δ)/(1 − κ), with
probability at least 1−δ/5 we have #

{
j ∈ [n1] : Z̃j = 0

}
≥ n1(1−κ)/2. Moreover, conditioned

on this event then with probability at least 1− δ/5, for all θ ∈ A (K) we have

min

({
wK (θ)

(
X̃j
)}

j∈[n1]

)
≤

∑
j∈[n1] 1

{
Z̃j = 0

}
· wK (θ)

(
X̃j
)

∑
j∈[n1] 1

{
Z̃j = 0

}
≤
∫
wK(θ)dG+ ξ(δ) ·

√
2

(1− κ)n1
.

By the union bound this event holds with probability at least 1−2δ/5. Now note that F = (1− κ) ·
G+κ ·H , so {Xj

1}j∈[n1] and {X̃j
1}j∈[n1] share the same distribution. Thus, with probability at least

1− 2δ/5 we have,

min (Kθ) ≤ min

({
wK (θ)

(
X̃j
)}

j∈[n1]

)
≤
∫
wK(θ)dG+ ξ(δ) ·

√
2

(1− κ)n1
. (12)

Take h∗ ∈ Hk with ‖h‖Hk ≤ 1 and∫
h∗dG ≤ inf

x∈X
{h∗(x)}+ β ≤

∫
h∗dH − α.

Let h∗(z) = h∗(z)− infx∈X {h∗(x)}. It follows that

PX∼F
[
h∗(X) ≥ inf

x∈X
{h∗(X)}+ β +

α

2

]
= PX∼F

[
h∗(X) ≥ β +

α

2

]
= 1− PX∼F

[
h∗(X) < β +

α

2

]
≤ 1− (1− κ) · PX∼G

[
h∗(X) < β +

α

2

]
= κ+ (1− κ) · PX∼G

[
h∗(X) ≥ β +

α

2

]
≤ κ+ (1− κ) ·

∫
h∗dG− infx∈X {h∗(X)}

β + α
2

≤ α · κ+ 2β

α+ 2β
.

Since n1 ≥ log(5/δ)/ log
(

α+2β
κ·α+2β

)
, with probability at least 1− δ/5 we have

min

({
h∗
(
Xj

1

)}
j∈[n1]

)
≤ inf

x∈X
{h∗(X)}+ β +

α

2
. (13)

By the union bound, (10), (11), (12), (13) hold simultaneously with probability at least 1 − δ.
Henceforth, we assume that (10), (11), (12), (13) all hold.
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By (10), (11), (12), for any θ ∈ A (K) we have

n−1
1 1Tn1

[K10 K11]θ −min (Kθ) + ξ(δ)/
√
n1

n−1
0 1Tn0

[K00 K01]θ −min (Kθ)− ξ(δ)/√n0

≥
∫
wK(θ)dF −min (Kθ)∫
wK(θ)dH −min (Kθ)

≥ κ+ (1− κ) ·
∫
wK(θ)dG−min (Kθ)∫
wK(θ)dH −min (Kθ)

≥ κ− (1− κ) · ξ(δ) ·

√
2 log n1

(1− κ)n1
≥ κ− ξ(δ) ·

√
2 log n1

n1
.

Hence,

κ̂HS ≥ κ− ξ(δ) ·
√

2 log n1

n1
.

We now prove the upper bound. We start by following the method of the representer theorem (Mohri
et al., 2012, Theorem 5.4) and choose θ∗ ∈ Rn0+n1 and f∗ ∈ span ({wK(θ) : θ ∈ Rn0+n1})⊥

so that we can write h∗ = wK(θ∗) + f∗. Since f∗ ∈ span ({wK(θ) : θ ∈ Rn0+n1})⊥ we have
h∗
(
Xj
i

)
= wK(θ∗)

(
Xj
i

)
for i ∈ {0, 1}, j ∈ [ni]. Hence,

n−1
1 1Tn1

[K10 K11]θ∗ =

∫
h∗dF̂n1 ≤

∫
h∗dF + ξ(δ)/

√
n1

n−1
0 1Tn0

[K00 K01]θ∗ =

∫
h∗dĤn0 ≥

∫
h∗dH − ξ(δ)/

√
n0.

Note also that

0 ≤ min (Kθ∗)− inf
x∈X
{h∗(x)}

= min

({
h∗
(
Xj

1

)}
j∈[n1]

)
− inf
x∈X
{h∗(x)} ≤ β +

α

2
.

Combining this with the definition of h∗ gives∫
h∗dF −min (Kθ∗)∫
h∗dH −min (Kθ∗)

= κ+

∫
h∗dG−min (Kθ∗)∫
h∗dH −min (Kθ∗)

≤ κ+

∫
h∗dG− infx∈X {h∗(x)}
(α+ β)− (β + α/2)

≤ κ+
2β

α
.

In addition, given that n0 ≥
(

8ξ(δ)
α

)2
we have

n−1
0 1Tn0

[K00 K01]θ∗ −min (Kθ∗)− ξ(δ)/
√
n0

≥
∫
h∗dH − 2ξ(δ)/

√
n0 −min (Kθ∗)

≥ α

2
− 2ξ(δ)/

√
n0 ≥

α

4
.
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In particular, since n1 ≥ exp(16/α2) we have

n−1
0 1Tn0

[K00 K01]θ −min (Kθ) ≥ ξ(δ)/
√
n0 + (log n1)−

1
2 ,

so θ∗ ∈ A (K∗).
Moreover, piecing the above together we have

n−1
1 1Tn1

[K10 K11]θ∗ −min (Kθ∗) + ξ(δ)/
√
n1

n−1
0 1Tn0

[K00 K01]θ∗ −min (Kθ∗)− ξ(δ)/√n0

≤
∫
h∗dF −min (Kθ∗) + 2ξ(δ)/

√
n1∫

h∗dH −min (Kθ∗)− 2ξ(δ)/
√
n0

≤
∫
h∗dF −min (Kθ∗)∫
h∗dH −min (Kθ∗)

+

(
1 +

∫
h∗dF −min (Kθ∗)∫
h∗dH −min (Kθ∗)

)
·

2ξ(δ)/
√

min{n0, n1}∫
h∗dH −min (Kθ∗)− 2ξ(δ)/

√
n0

≤
∫
h∗dF −min (Kθ∗)∫
h∗dH −min (Kθ∗)

+

(
1 +

∫
h∗dF −min (Kθ∗)∫
h∗dH −min (Kθ∗)

)
· 8ξ(δ)

α
√

min{n0, n1}

≤ κ+
2β

α
+

(
1 +

β

α

)
· 16 · ξ(δ)
α
√

min{n0, n1}
.

Therefore, with probability at least 1− δ we have

κ− ξ(δ) ·
√

2 log n1

n1
≤ κ̂HS ≤ κ+

2β

α
+

(
1 +

β

α

)
· 16 · ξ(δ)
α
√

min{n0, n1}
.

17



GEOMETRIC STRUCTURE IN MIXTURE PROPORTION ESTIMATION

Appendix B. Proof of Lemma 5

Proof [Proof of Lemma 5] We begin by bounding the ε-covering number of Ωq as follows

M‖·‖∞ (Ωq, ε) ≤ (2CX diam(X )) · ((2q)/ε)−(dimcov(X )+1) . (14)

By assumption for each ε > 0 we have Mρ (X , ε) ≤ CX · ε− dimcov(X ). Moreover, for each ε > 0
we have M|·| ([0, diam(X )], | · |, ε) ≤ 2diam(X )/ε. Hence, by the triangle inequality we have

M‖·‖∞

(
{gx0,r0}x0∈X ,r∈[0,diam(X )] , ε

)
≤ 2CX diam(X ) · (2/ε)dimcov(X )+1

The bound (14) now follows since z 7→ Φ1(q · z) is q-Lipschitz. We now apply Dudley’s inequality
Dudley (1967) to bound the Rademacher complexity,

Rn (Ωq) ≤
12√
n
·
∫ 1

0

√
loge

(
M‖·‖∞ (Ωq, ε)

)
dε

≤
12
√

dimcov (X ) + 1√
n

·
∫ 1

0

√
loge

(
(2CX diam(X ))

1
dimcov(X )+1 · (2q)/ε

)
dε

= 24 (2CX diam(X ))
1

dimcov(X )+1 · q ·
√

dimcov (X ) + 1

n
·
∫ 1

0

√
loge(1/θ)dθ

≤ 21.5 (2CX diam(X ))
1

dimcov(X )+1 · q ·
√

dimcov (X ) + 1

n
.

The result now follows immediately from the Rademacher concentration bound (Mohri et al., 2012,
Theorem 3.1).
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