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Maximal Information Coefficient Based Two-Stage
Feature Selection Method For Railway Condition

Monitoring
Tao Wen, Deyi Dong, Qianyu Chen, Lei Chen, and Clive Roberts

Abstract—In railway condition monitoring, feature classifica-
tion is a very critical step, the extracted features are used to
classify the types and levels of the faults. To achieve a better
accuracy and efficiency in the classification, the extracted features
must be properly selected. In this paper, Maximal Information
Coefficient (MIC) is employed in two different stages to establish
a new feature selection method. By using this proposed two-stage
feature selection method, the strong features with low redundancy
are reserved as the optimal feature subset, which makes the
classification process have a moderate computational cost and
also maintain a good overall performance. To evaluate this
proposed two-stage selection method and prove its advantages
over others, a case study focusing on the rolling bearing is carried
out. The result shows that the proposed selection method can
achieve a satisfied overall classification performance with a low
computational cost.

Index Terms—Railway condition monitoring, Maximal infor-
mation coefficient, Feature selection, Bearing fault

I. INTRODUCTION

W ITH the rapid development of rail transit, increased
demand in traffic capacity is obvious, which is fol-

lowed by more accurate and efficient condition monitoring
techniques including railway assets fault detection and diag-
nosis. The state-of-the-art model-free diagnosis approach is to
feed the extracted features into classifiers and demonstrates
the corresponding faults after evaluations and tests. In terms
of feature extraction and selection techniques applied to ma-
chine status monitoring in railway engineering field, there
exists some research regarding fault detection and diagnosis.
[1] investigates track-circuits diagnosis by using neuro-fuzzy
method, the features of which were captured through the
trained networks. [2] extracts rail defects parameters from
time-domain and time-frequency domain features, the opti-
mized feature parameters are then applied to classify individual
rail defects by supporting vector machine method. In railway
fault diagnosis, classification is a very critical step, because it
can not only enable the major faults attract enough attention,
but also can make the railway service not be stopped just
by the minor faults. It cannot be denied that heterogeneous

This work was supported in part by the National Natural Science Foundation
of China under Grant (61806064), in part with the National Key Research and
Development Program under Grant 2016YFE0200900.

Tao Wen, Qianyu Chen, Lei Chen and Clive Roberts are with the Birming-
ham Centre for Railway Research and Education at University of Birmingham,
Edgbaston, Birmingham, B15 2TT, United Kingdom.

Deyi Dong is with the School of Automation, Hangzhou Dianzi University,
Hangzhou, 310018, China.

The corresponding author: Tao Wen(t.wen.uk@outlook.com)

feature extraction methods result in distinct features containing
discriminative evidence. However, in feature classification, if
there is no correlation, weak correlation or redundant cor-
relation in the selected features, the following consequences
can be resulted in: 1) When the greater number of features
selected, analyse these features will be time-demanding; 2)
too many features selected can cause ”dimension disaster”, as
a result, the corresponding model could be very complex and
not universal [3]. Therefore, feature selection process is needed
to filter out the most useful information from the captured
features, which is aimed to reduce the computation complexity
by removing the irrelevant or redundant features and therefore
enhance the diagnosis accuracy [4].

There are many existing feature selection methods, for
example, in [5], Wang put forward a feature selection method
based on feature clustering (FSFC) for unsupervised feature
selection; in [6], Meng proposed a new selection algorithm
e-GA-MTL based on the gene data; in [7], Ding proposed
minimum Redundancy Feature Selection (mRMR) on microar-
ray gene; in [8], Ge proposed the a two-step feature selection
method based on maximal information coefficient (McTwo),
the maximal information coefficient (MIC) is used for the first
step feature selection, and the k-nearest neighbors algorithm
(kNN) is utilized at the second step on the gene field. As
a very important part of the mechanical components, like
the wheel, bogie and pantograph in railway systems, feature
selection techniques have been widely applied to bearings. [9]
forms a pattern space by using selected statistical parameters,
followed by nonlinear transformation and linear discriminant
functions, the severity and location of bearing defects are
proved to be accurately determined. [10] provides a generic
methodology for machine diagnosis by introducing feature
extraction and selection. The classification accuracy largely
depends on the selection of right frequency band in terms
of spectrum comparison, this proposed method enjoys the
advantage of dealing with rather complicated rolling bear-
ings signals with various locations, shaft speeds and bearing
housing structures. [11] focuses on the feature selections of
bearing vibration acceleration time signal, by taking time-
domain vibration peaks and bandpass filter cut-off frequencies
into considerations, the corresponding results are promising
as a result of zero classification error. Finally, [12] provides
a comprehensive comparison of different features from time,
frequency and time-frequency domains for detecting rolling
bearings defects, the measurement quality is defined as the
mutual information between the bearing defects and feature
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parameters, the performance of the selection method is as-
sessed using neural network with a rather high classification
accuracy.

However, there are some weaknesses in the existing feature
selection methods. Although the machine learning based and
evolutionary based methods can improve the accuracy and
performance of the classification in fault diagnosis, they are
very dependent on a large number of data samples with a high
complexity, an accurate but inefficient result searching could
be caused, such as Xgboost [13] and e-GA-MTL. For the
general correlation methods, they have a rapid classification
capability, which can help to identify the function of the
relationship between the signals in a very quick way, but, the
downside is that the result accuracy could be compromised,
only strong features can be selected, moreover, due to the
presence of redundant features, a reduced overall efficiency of
the classification process could be caused. Therefore, in this
paper, we have a strong motivation to solve the aforementioned
problems by proposing a two-stage feature selection method.
In this proposed method, the linear and nonlinear relationships
between the signals can be identified, the strong correlation
features can be extracted without involving the redundant
features, which improves both the accuracy and computational
efficiency of the classification process.

The following sections are arranged: Section II gives the
background knowledge about the existing feature extrac-
tion, selection and classification methods; in Section III, the
methodology of the proposed MIC-based two-stage feature
selection method is presented, the detailed algorithm and
flowchart are illustrated; Section IV provides the performance
evaluation of the feature selection result generated by the
proposed approach; finally, the conclusion is drawn in Section
V.

II. BACKGROUND KNOWLEDGE

Three main steps are involved in fault diagnosis including
feature extraction, feature selection and classification. In this
section, some of the existing methods of the three steps are
briefly introduced.

A. Feature Extraction

There are different types of methods used to obtain the
time-domain, frequency-domain and time-frequency analysis
features from the raw data captured samples respectively [14].
All these methods can be grouped into either the stationary
signal analysis methods or the non-stationary signal analysis
methods [15]. Time-domain method is a statistical analysis of
the time-domain signal, which are known as the time-domain
features, such as Mean, Peak or Kurtosis in the field of rolling
bearing [16], this type of features are useful in fault detecting,
but cannot separate the fault types. Frequency-domain signal
is the Fourier transform of the time-domain signal, which is
used to describe the global characteristics of the signal, such
as gravity frequency. Time-frequency features deal with the
local characteristics of the signal, such as wavelet transform.
Compared to the standard Fourier transform, wavelets are well
localized in both time and frequency [17] [18]. Making use of

the advantages of wavelet analysis to decompose signal into
multiple layers, then the signal is reconstructed and its energy
can be calculated. In the following part, the feature extraction
methods are presented in detail.

1) Time and Frequency-domain Features Extraction: The
formulas of the time-domain and frequency-domain features
are shown in Table I.

TABLE I: Feature Extraction Formulas

Feature Abbre. Formula

Mean x̄ 1
2

∑n
i=1 |xi|

Root Mean-square xrms

√∑n
i=1 xi

2

n

Peak xp
max |xi|
xrms

Standard Dev. xstd

√∑n
i=1(xi−x̄)2

n−1

Kurtosis xkur
∑n

i=1(xi−x̄)4

(n−1)xstd
4

Gravity Freq. fg

∑f2
f=f1

[P (f)×f ]∑f2
f=f1

P (f)

Mean-square Freq. fH

∑f2
f=f1

[P (f)×f2]∑f2
f=f1

P (f)

1 xi is the amplitude signal in time-domain;
2 n is the number of sampling points in the time-domain;
3 f is the frequency;
4 P (f) is the amplitude after the Fourier transform

2) Wavelet and Wavelet Packet Analysis: Wavelet analysis
is to decompose a signal into two parts, namely the low-
frequency part and the high-frequency part, layer by layer,
only the low-frequency parts (A1-A3) of the upper layer
are decomposed, the high-frequency parts (D1-D3) are kept.
During the decomposition, the information contained by the
low-frequency parts could be captured by the high-frequency
parts. The energy of the high-frequency parts will be the
eigenvalues of the feature. A typical 3 layer wavelet analysis
is illustrated in Fig. 1.

Fig. 1: The wavelet analysis process
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The wavelet packet analysis is a more complex, which is
widely used in signal processing. Different with the wavelet
analysis, both the high-frequency part and the low-frequency
part are decomposed. A typical wavelet packet analysis process
is shown in Fig. (2). In this wavelet packet analysis, three
layer signals (AAA3, AAD3, ADA3, DDD3, AAD3, DAD3,
ADD3, and DDD3) are used to obtain 8 frequency bands
(S0

3 , S
1
3 , S

2
3 , S

3
3 , S

4
3 , S

5
3 , S

6
3 , S

7
3 ), the energy of each frequency

band will be the feature eigenvalues.

Fig. 2: The wavelet packet analysis process

B. Classification and Feature Selection Methods

In this section, some existing popular feature methods based
on different criteria will be briefly reviewed.

1) Classification Methods: Support Vector Machine (SVM)
is a statistical model supervised by the associated statistical
learning theory and the structural risk minimization principle,
which is used to analyze data used for classification and
regression analysis. In [19][20][21], SVM has shown a good
performance in mechanical fault classification and diagnosis.

As a widely used non-parametric method, the k-Nearest
Neighbors (kNN) algorithm was firstly proposed in 1968 by
Cover and Hart [22][23][24]. kNN is one of the simplest
machine learning methods, which has been very matured in
classification and regression. By calculating the distance of the
measured test samples and the known samples to determine
the class of test samples. The quality of algorithm depends on
the selection of k value, improper setting of the k value can
result in a high-demand in the amount of the samples and a
high-complexity processing.

In this paper, to evaluate the proposed two-stage feature se-
lection method, these two aforementioned classification meth-
ods, SVM and kNN, will be employed to test the performance
of the feature selection result.

2) Feature Selection Methods: Pearson correlation analysis
is a measure of the linear correlation between two features,
which extracts the pole-strong features from the primary
feature. However, Pearson correlation analysis is only useful
in linear functions. Moreover, for the Pearson method, it is
difficult to filter the redundant features.

To avoid the redundance, mRMR (Min-Redundancy and
Max-Relevance) is applied in feature selection, which is
based on MI (mutual information)[25]. There are two steps
in implementing mRMR: get max-relevance and get min-
redundancy respectively. Firstly, select the features with the
strong correlation based on the maximal relevance criterion

[26] [27] [28]. When two features are highly dependent on
each other, there will be not big difference if any of them
is removed, therefore, the min-redundancy criterion is added
to select the exclusive features. However, there are some
defects in this MI-based correlation analysis. For example,
it is difficult to recognize the characteristics of continuous
data or the data with small dispersion, some prior process
need to be carried out, such as data discretion, relevance
and redundancy measurement among variables, which could
result in incorrect selection result. To process continuous
data and identify the nonlinear function, a two-step feature
selection algorithm based on maximal information coefficient
(MIC) [20] has been proposed, which is known as McTwo
[8]. In the first step, McTwo measures all the features for
the MIC associations with the class labels, and only those
with strong correlations will be reserved for further screening;
in the next step, kNN is employed to further reduced the
number of features. By using McTwo, a small number features
with a good classification performance are selected, which is
very suitable for processing the high-dimensional biomedical
datasets.

In this paper, there three aforementioned feature selection
methods, Pearson, mRMR and McTwo, will be used as the
control groups of the proposed two-sage feature selection
method to compare the classification performance.

III. METHODOLOGY

In this section, a new maximal information coefficient
(MIC) based two-stage feature selection method is introduced.
The relevant parameters are listed in Table II.

TABLE II: List of The Parameters

Parameter Definition

D The dataset contains two-variable samples

C The class labels

σ1 The first threshold of MIC to select strong
relation feature

σ2 The second threshold of MIC to eliminate
redundancy

fi The i− th feature in the first-stage selection

mj The j−th feature in the second-stage selection

xi The vector about the samples with feature i

yj The vector about the samples with feature j

MIC(fi, fj) Calculate the MIC of the coupled feature i and
j

S The set of features after first selection

F The optimal subset of the features after second
selection

A. Maximal Information Coefficient

MIC tests the dependence between two variables. In this
paper, to achieve a better feature selection result, a new
two-stage feature selection method based on two-time MIC
calculations is proposed. MIC was introduced by Reshef et al.
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in 2011, which was designed to discover and classify the data
with complicated associations, no matter they have a linear
or other functional relationships [20]. The measurement value
of the MIC is symmetric and normalized into a range [0, 1].
A higher MIC value indicates a more dependent relationship
between the investigated variables, on the contrary, a lower
MIC value means a less dependent relationship [8]. MIC can
handle both numeric and category data, which makes it can
be adapted to a wide range applications.

The calculation of MIC is on the basis of MI. To solve the
MI, the variable x, y is divided into k-by-l grids in a X-Y
coordinates. In practice, Y axis is divided into a number of
equal parts, the X axis is divided dynamically. Therefore, the
formulation of the MI is [25],

I(x, y) = H(x)−H(x, y) =

nk∑
i=1

p(xi) log2
1

p(xi)

+

nl∑
j=1

p(yj) log2
1

p(yj)
−

nk∑
i=1

nl∑
j=1

p(xi, yj) log2
1

p(xi, yj)

=
∑
xi yj

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
(1)

where p(xi, yj) is the joint probability density, p(xi) and
p(yj) are the marginal density. However, as the MI value is
not normalized, which makes the MI values are difficult to
compare.

With the motivation to overcome the problem of MI, MIC
was introduced. To calculate the MIC value of a two-variable
dataset D= (x1, y1), ..., (xn, yn), the maximal achievable MI
in the k-by-l grid should be computed in advance, the integers
(k,l) could be any pair. The calculation of the MIC(D) is shown
in eq.(2) and eq.(3):

MIC(D) =
max I(D, k, l)

logmin(nk, nl)
(2)

I(D, k, l) = max I(D |G) (3)

where G presents the different partitions of D, k × l ≤ B(n),
B is a function of the sample size n expressed as B(n) = n0.6.
As a result, the MI values can be normalized to [0-1], which
enables a fair comparison between the grids are with different
dimensions. When k and l change, the MIC will be the largest
normalized MI value. By calculating the MIC value achieved
by any grid in the X-Y coordinates, the characteristic matrix
M = (mx,y) is drawn, the maximal element of M is defined as
the statistic MIC, the calculation process of the characteristic
matrix M is illustrated in Algorithm 1

By introducing the (D |G), continuous data is able to be
well processed, which is difficult for MI.

B. Two-stage Feature Selection Method

The proposed MIC-based feature selection method is imple-
mented in two stages: 1) Select the features that have strong
correlations with the class labels; 2) select the features that
have low redundancy with each other [29].

In the first stage, to extract the strong features, the correla-
tions between the class labels of every feature and the samples

Algorithm 1: MIC Calculation
1 Require:D = (x1, y1), ..., (xn, yn) is a set of pair about

feature and category;σ1 is the threshold, which is less than
0.9;B ≥ 3;

2 for (x, y) ≤ B do
3 Calculate Px,Py ,Px,y;
4 Ix,y ←− max I(D,x, y));
5 Mx,y ←− Ix,y/min(log x, log y);
6 end

7 Return Mx,y;

(a)

(b)

Fig. 3: (a) The process of strong feature selection; (b) The process
of low-redundancy feature selection



5

need to be investigated. Using the class labels as a horizontal
coordinate and the corresponding eigenvalues of the samples
as the ordinate, an indicative example result is drawn in Fig.
3. For the same type of fault, if the feature is strong, the
corresponding eigenvalues will fluctuate just within a certain
small range; for the different types of fault, the corresponding
eigenvalues of the samples will be fluctuating in separate
ranges. More formally, if the samples satisfy the condition
of eq.(4), the feature i will be assumed as a strong feature.

MICi(fi, C) ≤ σ1 (4)

where xi represents the samples of the feature i, C is the class
labels containing the information of the different types of fault,
σ1 is the threshold, which is expressed as:

σ1 = max(
1

N

N∑
i=1

MICi,MICi(i =
2

3
N)) (5)

If the feature is not strong feature, it will be removed the from
the primary feature set, the left features will form the strong
features set S following a descending order.

In the second stage, it is assumed that there are k features
left in the set S, namely m1, . . . ,mi, . . . ,mj , . . . ,mk with a
descending order, where 1 ≤ i ≤ j ≤ k. The MIC values
between any two features in S are required to be measured,
one of these two features is set as the abscissa, and the other as
the ordinate. Then, a grid on the scatterplot can be drawn, as
Fig. 3(b) shows. The ratio between the number of the scattered
points fall into the grid and the total number of the samples
is taken as the probability,

p(x, y) = nx,y/n (6)

where nx,y is the number of scatters in the grid, n is the total
number of the scatters. By taking the probability p(x, y) into
eq. (1), the MI can be obtained, and therefore, the correspond-
ing MIC of the two features can be deduced by using eq. (2)
and (3). After measuring the MIC values between every pair
of the features in S, a similarity matrix is established:

H =


1(m11) . . . m1j . . . m1k

...
. . .

...
...

mj1 1(mjj) mik

...
...

. . .
...

mk1 . . . mkj . . . 1(mkk)

 (7)

The similarity matrix is required to be sorted as the same
order as the features in set S. However, if mi and mj are
equal, the following calculation will be carried out,

Mj =

k∑
p=1

mpj , Mi =

k∑
p=1

mpi (8)

where Mj and Mi represents the contribution of the feature j
and i to the whole system respectively, the feature with a larger
M will has a higher rank in the similarity matrix. Due to the

symmetry of the MIC measurement, only the upper triangular
of the similarity matrix need to be considered,

H ′ =


1(m11) . . . m1j . . . m1k

. . .
...

...
1(mjj) mik

. . .
...

1(mkk)

 (9)

To eliminate the redundant features, a self-customised
threshold σ2 is applied. For the off-diagonal elements, if
mij ≥ σ2, (i ≤ j), remove the feature j (set the mij = 0),
then the updated matrix H ′′ will be,

H ′′ =


1(m11) . . . 0 . . . m1k

. . .
...

...
0 mik

. . .
...

1(mkk)

 (10)

From eq. (10) we can see that the corresponding diagonal
value becomes 0 and all retained features have a diagonal
value of 1. Finally, in eq. (10) all diagonal features with the
value of 1 are selected as the optimal subset of the features,
which is marked as F . The algorithm of the MIC-based two-
stage feature selection method is described in Algorithm 2.
The flowchart of this algorithm is illustrated in Fig.5.

Algorithm 2: Two-Stage Feature Selection
1 get 18 features from sample data as primary set
2 for j ←− 1 to 18 do
3 mj ←− MIC(X,C)
4 if mj ≥ σ1 then
5 add j to S;

6 end

7 sort the value of mj in descending way
8 for i ←− 1 to k do
9 for j ←− i to k do

10 mij ←− MIC(Xi, Xj);
11 end

12 end

13 for i ←− 1 to k do
14 for j ←− i to k do
15 if mij ≥ σ2 then
16 set mij = 0, i = 1, 2, . . . , j and

mji = 0, i = j, j + 1, . . . ,k
17 end

18 end

19 F=j, if mjj = 1

IV. NUMERIC EVALUATION

In this section, to evaluate the proposed two-stage MIC-
based feature selection method, two widely used classifiers,
kNN and SVM, are employed to test the classification perfor-
mance. Both the kNN and SVM are implemented by using
the built-in knnclassify and svmtrain functions in MATLAB
R2014b with the default setting. All the raw data samples are
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Fig. 4: The flowchart of the MIC-based two-stage feature selection method

captured from a rolling bearing, which is provided by Case
Western Reserve University Bearing Data Center in USA.

A. Classification Performance Evaluation of the Two-stage
Feature Selection Method

The data collection specification used in this evaluation
is shown in Table III. There are 840 samples that form the
primary dataset, half of samples are used as the training
set, and the others form the testing set. For the samples, 18
features: Wavelet Packet Decomposition Energy (8 frequency
bands), Wavelet Decomposition Energy (3 layers), Mean,
Standard Deviation, RMS, Peak, Kurtosis, Gravity Frequency,
Sample Entropy, are extracted, which are labeled as f1-f18
respectively.

TABLE III: Data Collection Specification

Bearing states Category Samples

Normal 1 240

Ball fault 2 120

Inner Race fault 3 120

Outer Race fault-3 oclock 4 120

Outer Race fault-6 oclock 5 120

Outer Race fault-12 oclock 6 120

At the first-stage, selection process is implemented to
find the strong features. According to the steps described
in Algorithm 2, the MIC values between the samples in
the primary dataset and the class labels of the features are
calculated, the result is shown in Table IV. In this selection,
in order to eliminate 1/3 of the features in the primary dataset,
the threshold σ1 is set as 0.9378. Therefore, 12 features
are reserved in the subset S, 6 features are eliminated. The
selection result is shown in Table V

To further remove the redundant features from the subset S,
in the second-stage selection, a similarly matrix is established.
In this stage, the MIC value between any two features in

TABLE IV: The MIC Value For Each Feature

Class Labels MIC value Class Labels MIC value

1 0.9989 10 0.8631

2 0.9989 11 0.9985

3 0.7922 12 0.7054

4 0.9378 13 0.9984

5 0.8573 14 0.9984

6 0.8783 15 0.8376

7 0.9378 15 0.9990

8 0.9632 17 0.9990

9 0.9378 18 0.9990

TABLE V: Strong Feature Selection Result

Amount Feature

Strong 12 f1,f2,f4,f7,f8,f9,f11,f13,f14,f16,f17,f18

Weak 6 f3,f5,f6,f10,f12,f15

the subset S is calculated, and by using the self-customised
threshold σ2, the redundancy in the features can be eliminated,
the left features form the set F , which is the optimal subset
of the 18 features. The selection result shows that only three
features are in the optimal feature subset, which are f1, f13
and f17 respectively.

To verify the accuracy of the strong feature selection process
in the first-stage. The correlation relations between the class
labels, three selected features, f1, f13, f17, and one of elim-
inated weak features, f3, are plotted in Fig. 5, where shows
that f1, f13 and f17 have smaller fluctuations with the class
label (in red color), therefore, these three features are classified
as the strong features; while features f3 has a much bigger
fluctuation with the class label (in green color), which makes
it concluded as a weak feature.

To test the classification performance with using the features
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Fig. 5: Strong correlation features f1, f13, f17 are in red and weak
correlation feature f3 is in green.

selected by the proposed two-stage feature selection method,
kNN and SVM are employed to do the classification. The
classification accuracy result is illustrated in Table VII, it can
be concluded that the feature combination of f1, f13, f17 or
f1, f14, f17 are optimal with a lower feature redundancy and
the highest classification accuracy. Moreover, by comparing
the second column and other columns, we can know that
feature f13 or f14 is essential for the classification; compare
the first column, third column and forth column, we know that
features f13 or f14 is redundant features. As a result, we can
choose f1,f13,f17 or f1,f14,f17 as the optimal feature subset.
Therefore, the proposed feature selection method reduces the
18 features to 3.

TABLE VI: Classification Accuracy Performance For Differ-
ent Feature Selection

Features 1, 13, 17 1, 17 1, 14, 17 1,13,14,17

kNN 96.15% 90.5% 96.15% 96.15%

SVM 100% 68.3% 100% 100%

B. Comparison with Other Feature Selection Methods

To prove that the proposed two-stage feature selection
method has advantages over other selection methods, by using
kNN as the classifier, the classification performances of the
features selected by the proposed feature selection method and
other three feature selection methods, namely mRMR, Pearson
and McTwo, are evaluated and compared.

In binary classification problems, we can define that there
are two samples sets, namely the Positive (P ) set and Negative
(N ) set respectively. The number of P and N are set as
P = n and N = m respectively. The total number of samples
is s = n + m. Each sample contains p features. A binary
classifier assigns each sample to a feature by either P or N .
Precision (R), Recall (P ), Harmonic (F1) and accuracy (Acc)
are widely used to measure how well a binary classification
model performs [30], which define that TP and FN are the

total number of the positive samples that are predicted by the
model as positive and negative respectively, TN and FP are
the total number of the negative samples that are predicted
by the model as negative and positive respectively. Therefore,
there is 

R = TP
TP+FN

P = TP
TP+FP

F = 2×P×R
P+R

Acc = TP+TN
TP+FN+TN+FP = TP+TN

P+N

(11)

where precision (R) is the ratio of positive samples that are
correctly predicted, and Recall (P ) is the ratio of positive
samples are correctly predicated, harmonic (F ) is the indicator
of the balance between R and P , the models overall accuracy
is defined as Acc [31].

In the evaluation, 580 samples are used as the training set
and 260 samples are used as the testing set. To assess the
complexity of each feature selection method, EI is introduced,

EI =
(Acc− p)

100
(12)

The Acc and EI of each feature selection method are shown
in Fig. 6. From the figure we can see that MIC, McTwo and
Pearson all show a good performance in terms of classification
accuracy; however, in terms of EI, the proposed two-stage
MIC-based feature selection method shows the best perfor-
mance. As a result, it can be concluded that the MIC has the
best overall performance.

In Table VII, the selected feature number of each methods
are illustrated. For Pearson, due to there is no consideration for
the redundancy elimination, the selected features are always
f1, f2, f11, f16 and f17, which is more than other methods and
makes the model efficiency is limited; mRMR can select the
fewest feature, only one, and the selected feature will be f13 or
f17 alternatively; for the McTwo and the proposed two-stage
MIC, the selected features are a subset of f11, f14, f16 and
f17. Compared to the Pearson, MIC and McTwo can achieve
a high accuracy with fewer features; compared to mRMR, MIC
and McTwo can achieve a much higher classification accuracy,
which shows MIC and McTwo are more cost-effective.

To further evaluate the performance of the different feature
selection methods in processing multi-class classification prob-
lems, instead of using P , R and F , macro− P , macro−R
and macro− F are considered [32],

macro− P = 1
n

∑
Pii

macro−R = 1
n

∑
Rii

macro− F1 = 2×macro−P×macro−R
macro−P+macro−R

(13)

where ii is the binary classification times. The SVM is
employed as the classifier, the test data is divided into 6
categories, 15 times binary classification are implemented. The
evaluation result of macro− P , macro−R and macro− F
achieved by SVM is shown in Fig.7. The overall perfor-
mance of SVM is good, the main error of classification is
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Fig. 6: The Acc and EI of kNN classification with four different select methods

TABLE VII: The Number of Feature Selected of Different Selection Methods

Times 1 2 3 4 5 6 7 8 9 10

MIC 3 3 2 4 3 3 3 3 4 3

mRMR 1 1 1 1 1 1 1 1 1 1

Pearson 5 5 5 5 5 5 5 5 5 5

McTwo 4 4 4 3 4 3 3 4 4 3

concentrated in label 3 and 4, label 5 and 6, especially the
error between the fault 5 and 6. For the proposed MIC-
based two-stage feature selection method, it achieves the
best performance for all the metrics, including macro − P ,
macro−R and macro− F1.

V. CONCLUSION

In this paper, a new feature selection method using two-
time MIC calculations in different stages is proposed. This
proposed feature selection method has a strong identification
capability on a wide range of relationships for both continuous
or discrete data. By using this method, strong features that
contain more useful information can be identified and reserved,
which makes the high classification accuracy is guaranteed; on
the other hand, the features with redundant information can
be eliminated, which reduces the complexity, computational
cost and the storage demand of the classification process. A
rolling bearing focused case study is carried on, the result
shows that the proposed feature selection method has a very
good overall performance for both accuracy and efficiency.
It is worthy mentioning that the proposed feature selection
method is generic, which can be applied to many types of

feature classification problems, especially for using in railway
condition monitoring, such as bogie, track, point machine,
switch and wheel. Apart from the railway filed, this method
can also be adapted to other areas, such as condition monitor-
ing in intelligent transportation systems, fault detection in lager
industrial equipment. In our future work, more methodology
applications will be investigated.
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