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Improved Bounds for Randomly Sampling Colorings via Linear

Programming

Sitan Chen∗ Michelle Delcourt † Ankur Moitra‡ Guillem Perarnau §

Luke Postle ¶

October 30, 2018

Abstract

A well-known conjecture in computer science and statistical physics is that Glauber
dynamics on the set of k-colorings of a graph G on n vertices with maximum degree ∆
is rapidly mixing for k ≥ ∆ + 2. In FOCS 1999, Vigoda [Vig99] showed that the flip
dynamics (and therefore also Glauber dynamics) is rapidly mixing for any k > 11

6 ∆. It
turns out that there is a natural barrier at 11

6 , below which there is no one-step coupling
that is contractive with respect to the Hamming metric, even for the flip dynamics.

We use linear programming and duality arguments to fully characterize the obstruc-
tions to going beyond 11

6 . These extremal configurations turn out to be quite brittle,
and in this paper we use this to give two proofs that the Glauber dynamics is rapidly
mixing for any k ≥ (11

6 − ε0)∆ for some absolute constant ε0 > 0. This is the first
improvement to Vigoda’s result that holds for general graphs. Our first approach an-
alyzes a variable-length coupling in which these configurations break apart with high
probability before the coupling terminates, and our other approach analyzes a one-step
path coupling with a new metric that counts the extremal configurations. Additionally,
our results extend to list coloring, a widely studied generalization of coloring, where the
previously best known results required k > 2∆.
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1 Introduction

1.1 Background

Here we study the problem of sampling random proper colorings of a bounded degree graph. More
precisely, let k be the number of colors and let ∆ be the maximum degree. A long-standing open
question is to give an algorithm that works for any k ≥ ∆ + 2, when the space of proper colorings is
first connected. Despite a long line of intensive investigation [Jer95, SS97, DF03, DFHV13, Hay03,
HV03, Mol04, HV05, FV06, FV07], the best known bounds are quite far from the conjecture.

In fact, there is a natural Markov chain called the Glauber dynamics that is widely believed to
work: in each step, choose a random node and recolor it with a random color not appearing among
its neighbors. It is easy to see that its steady state distribution is uniform on all proper k-colorings,
again provided that k ≥ ∆ + 2. It is even conjectured that on an n node graph, the mixing time is
O(n log n) which would be tight [HS05]. We remark that rapidly mixing Markov chains for sampling
random colorings immediately give a fully polynomial randomized approximation scheme (FPRAS)
for counting the number of proper colorings. There is also interest in this question in combinatorics
[BW02] and in statistical physics, where it corresponds to approximating the partition function of
the zero temperature anti-ferromagnetic Potts model [Pot52].

Jerrum [Jer95] gave the first significant results and showed that when k > 2∆ the Glauber
dynamics mixes in time O(n log n). The modern proof of this result is easier and proceeds through
path coupling [BD97], whereby it is enough to couple the updates between two colorings σ and τ
that differ only at a single node v and show that the expected distance between them is strictly
decreasing. Then Jerrum’s bound follows by comparing how often the distance between the colorings
decreases (when v is selected and after the update has the same color in both) vs. how often it
increases (when a neighbor of v is selected and recolored in one but not the other). This result
is closely related to work in the statistical physics community by Salas and Sokal [SS97] on the
Dobrushin uniqueness condition.

In a breakthrough work, Vigoda [Vig99] gave the first algorithm for sampling random colorings
that crossed the natural barrier of 2∆. His approach was through a different Markov chain that
in addition to recoloring single nodes also swaps the colors in larger Kempe components (which
are also called alternating components). His chain was a variant of the Wang-Swendsen-Kotecký
(WSK) algorithm [WSK89]. The key insight is that the bottleneck in Jerrum’s approach — when
the neighbors of v all have distinct colors — can be circumvented by flipping larger components.
More precisely, when a neighbor of v is recolored in one chain in a way that would have increased
the distance, one can instead match it with the flip of a Kempe component of size two in the other
chain that keeps the distance the same. But now one needs to couple the flips of larger Kempe
components in some manner. Vigoda devised a coupling and a choice of flip parameters that works
for any k > 11

6 ∆. His Markov chain mixes in time O(n log n) and one can also connect it to Glauber
dynamics and prove an O(n2) mixing time under the same conditions. This is still the best known
bound for general graphs.

Subsequently, there was a flurry of work on getting better bounds for restricted families of graphs.
Dyer and Frieze [DF03] considered graphs of maximum degree Ω(log n) and girth Ω(log log n) and
proved that the Glauber dynamics mixes rapidly whenever k > α∆ where α is the solution to α =
e1/α and numerically α = 1.763 · · · . Their approach was to show that under the uniform distribution
on proper colorings, the number of colors missing from the neighborhood of v is roughly k(1− 1

k )∆

with high probability. Results like these were later termed local uniformity properties. They were
improved in many directions in terms of reducing the degree and/or the girth requirements to be
independent of n [Hay03, Mol04, HV05, FV06, LM06], culminating in two incomparable results.
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Dyer et al. [DFHV13] showed that Glauber dynamics mixes rapidly whenever k > β∆ where β is
the solution to (1 − e−1/β)2 + βe−1/β = 1 and numerically β = 1.489 · · · for girth g ≥ 6 and the
degree ∆ being a sufficiently large constant. Hayes and Vigoda [HV03] showed rapid mixing for
any k > (1 + ε)∆ for any ε > 0 provided that the girth g ≥ 11 and the degree is logarithmic, using
an intriguing non-Markovian coupling.

On the hardness side, Galanis et al. [GŠV14] showed that for triangle-free graphs, unless
NP = RP, it is NP-hard to approximately sample k-colorings for d-regular graphs G when k < d,
even when G is triangle-free.

There have also been many other algorithmic improvements, but all for special graph fam-
ilies. Through an eigenvalue generalization of the Dobrushin condition, Hayes [Hay06] showed
that Glauber dynamics mixes rapidly for k > ∆ + c

√
∆ on planar graphs and graphs of constant

treewidth. Berger et al. [BKMP05] showed rapid mixing on graphs of logarithmic cutwidth, which
was strengthened by Vardi [Var17] to graphs of logarithmic pathwidth. Some recent papers have
studied settings such as bipartite or random graphs [DFFV06, MS10, EHŠV18], where it is possible
to mix with fewer colors than the maximum degree. Hayes et al. [HVV15] notably improved the
abovementioned result of [Hay06] to show that Glauber dynamics in fact mixes rapidly for planar
graphs when k = Ω(∆/ log ∆). [TVVY12] established that the mixing time of Glauber dynamics
for sampling colorings of trees undergoes a phase transition at the reconstruction threshold (up to
first order). Given that there has been progress in so many restricted graph families, it is natural to
wonder why there hasn’t been any further progress on the general case since Vigoda’s results.

1.2 Our Results

Our main result is the first improvement on randomly sampling colorings on general bounded degree
graphs since the FOCS 1999 paper of Vigoda [Vig99]. Specifically, we prove:

Theorem 1.1. The flip dynamics for sampling k-colorings is rapidly mixing with mixing time
O(n log n), for any k ≥ (11

6 − ε0)∆ where ε0 > 0 is an absolute constant that is independent of ∆.

As in Vigoda’s paper [Vig99], we obtain the following as implications of our main result1:

Theorem 1.2. The Glauber dynamics for sampling k-colorings is rapidly mixing with mixing time
O(n2), for any k ≥ (11

6 − ε0)∆ where ε0 > 0 is the same constant from Theorem 1.1.

Theorem 1.3. The k-state zero temperature anti-ferromagnetic Potts model on Zd lies in the
disordered phase when k ≥ (11

3 − 2ε0)d where ε0 > 0 is the same constant from Theorem 1.1.

Our proof is guided by linear programming and duality arguments. The starting point is the
observation that choosing the best flip parameters in the flip dynamics (i.e. the probability of
flipping Kempe components of each possible size), when utilizing Vigoda’s greedy coupling [Vig99],
can be cast as a linear program. In this manner, Vigoda’s analysis provides a feasible solution and
it is natural to wonder if choosing the flip parameters differently or flipping larger size components

1In order to prove rapid mixing of Glauber dynamics, one can use the comparison technique of Diaconis and Saloff-
Coste [DSC93]. Vigoda [Vig99] directly used the results in [DSC93] to show that the mixing time of the Glauber
dynamics is O(n2 logn). It has been observed (see e.g. [FV07]) that τmix(ε) = O(n(logn+ log ε−1)) for flip dynamics
implies mixing time O(n2) for Glauber dynamics. This can be shown using spectral bounds on the mixing time for
ε = 1/n [Sin92] and observing that the spectral gaps of Glauber dynamics and flip dynamics are the same up to a
constant factor. The same argument applies to our case, so Theorem 1.1 implies Theorem 1.2.

Regarding Theorem 1.3, it is known (see e.g. Lemma 7 of [Vig99]) that it holds provided that under any boundary
configuration, the flip dynamics mixes in time O(n logn) on QL the d-dimensional cube of Zd with side length 2L+ 1.
Theorem 1.4 below implies this is the case for k ≥ (11/6− ε0)∆ (note that the degree of QL is ∆ = 2d).
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would lead to an improvement. As it turns out, the answer is no in a strong sense. Not only are
Vigoda’s choice of parameters an optimal solution to the linear programming relaxation2, but we
use extremal configurations, which correspond to tight constraints in the linear program, to build a
small family of hard instances showing that 11

6 is a natural barrier for a class of analyses. Specifically,
for all n and infinitely many ∆ we can exhibit two graphs G1 and G2, together with a pair of proper
colorings (σi, τi) for each Gi that differ at a single node, such that the following holds: for any
choice of flip parameters and one-step coupling of the flip dynamics, (σ1, τ1) and (σ2, τ2) cannot
both contract in Hamming distance under the coupling provided k < 11

6 ∆ (see Construction 3.1
and Lemma 3.3).

At this juncture, there are two potential approaches for circumventing the 11
6 barrier:

(1) Instead of using a one-step coupling, use a multi-step coupling, still with respect to the
Hamming metric.

(2) Use a one-step coupling but change the metric.

As it turns out, both approaches work and we are able to give two separate proofs of Theorem 1.1.
The present work is a merger of [CM18] and [DPP18], and we chose to present the results together
because there are parallels between the two proofs.3 The main idea behind both approaches is
that any extremal configuration is quite brittle, and if there are few enough extremal configurations
present, there is a choice of flip parameters for which we can go below the 11/6 barrier. To get
an idea for just how brittle these configurations are, suppose v is the unique node of disagreement
between two colorings σ and τ . For every color c, there is an extremal configuration which if present
in σ, τ would require that in σ, the maximal connected induced subgraph colored only with c and
σ(v) and containing v is a tree of size 7 and moreover that v has degree exactly 2 in this tree. There
are many possible transitions in the flip dynamics that would break this rigid pattern, for instance,
flipping the color of a descendant of v in the tree.

In our first proof of Theorem 1.1, we run a multi-step coupling which terminates when the
Hamming distance between the two colorings changes. We argue that by the time the coupling
terminates, extremal configurations like the one above are likely to break apart. In the above
example, regardless of the choice of flip parameters, at any point there is an Ω(1/n) chance of
breaking it (Lemma 4.6) and a Θ(1/n) chance the coupling terminates (Lemma 4.2). What remains,
and this is the most delicate part of the proof, is to upper bound the probability that configurations
that are not extremal transition to ones that are, and the key point is that this is also O(1/n)
(Lemma 4.8). These three bounds together imply that by the end of the coupling, the number of
non-extremal configurations around v will be at least some constant times the number of extremal
configurations in expectation. This is enough to show that for some tuning of the flip dynamics,
even if the expected change in Hamming distance after one step of coupling is still positive when k
is slightly below 11

6 ∆, the expected change by the time the coupling terminates will be negative.
In our second proof of Theorem 1.1, the main idea is essentially the same: we want to win on

colorings like G1 and G2 at the expense of losing on the other possible types of colorings. However
we accomplish this by changing the metric. More precisely, we choose d to be the Hamming metric
dH minus a small correction factor dB that counts the number of extremal configurations around
the node v of disagreement. We show that even when k is slightly less than 11

6 ∆, there is a choice
of flip parameters for which the following win-win analysis shows d contracts in expectation in one
step. For pairs of colorings with few non-extremal configurations around v, dH will stay the same

2Several approximations are made along the way in reaching this linear program, such as restricting to flipping
components of size at most 6 and replacing certain infinite sets of constraints with a finite set of stronger constraints.

3The ε0 obtained in Theorem 1.1 is slightly different under the two proofs, but both roughly on the order of 10−5.
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in expectation in one step (Corollary 5.1). When most of the configurations around v are extremal,
we show that even though dH does not contract in expectation in one step, dB does (Corollary 5.2).
It is here that our proofs bear a sharp resemblance: The proof that dB is contractive revolves
around the exact same types of reasoning about lower bounding the probability that an extremal
configuration breaks apart, and upper bounding the probability that a non-extremal configuration
becomes extremal (Lemma 5.2).

While we have chosen to present the technical pieces in both proofs separately because of the
subtle differences in their structure and relevant definitions4, we believe that presenting both of
them and drawing analogies when possible gives a more complete picture about the different ways
to circumvent bottlenecks in one-step coupling with respect to the Hamming metric, and what the
conceptual relationship is between these different techniques.

Lastly, we are able to extend our techniques to the problem of sampling list colorings, a natural
and well-studied generalization of coloring. Jerrum’s proof for k > 2∆ carries over immediately
for list-coloring, and while there have been subsequent works studying this problem in the case of
triangle-free graphs when k > 1.763∆ [GMP05, GK07, GKM15], there had been no known improve-
ment on 2∆ for general bounded degree graphs. Given that Vigoda’s algorithm for sampling random
colorings with 11

6 ∆ colors has been known for many years, it is somewhat surprising that it (and our
subsequent improvements) can be extended to the list-coloring setting in a fairly straightforward
manner:

Theorem 1.4. The Glauber dynamics for sampling k-list-colorings is rapidly mixing with mixing
time O(n2), for any k ≥ (11

6 − ε0)∆ where ε0 > 0 is the same constant from Theorem 1.1.

The key step in our proof is to introduce a notion of flip dynamics for list colorings where a
Kempe component is flipped only if both colors appear in all lists of vertices of the component;
we call such components flippable. While such a chain seems natural in hindsight, we are not
aware of it appearing anywhere in the literature. Roughly speaking, introducing this distinction
between flippable and un-flippable Kempe components requires introducing additional constraints
to Vigoda’s linear program. The point is that none of these extra configurations are extremal under
the flip parameters used to prove Theorem 1.1, so both proofs of Theorem 1.1 carry over to prove
Theorem 1.4.

1.3 Further Discussion

Here we survey some previous uses of multi-step coupling, alternative metrics, and linear program-
ming in approximate sampling. In terms of multi-step coupling for sampling colorings, the first
improvements to Vigoda’s bound for graphs of large degree and girth by Dyer and Frieze [DF03]
used a burn-in method. Hayes and Vigoda [HV03] gave a sophisticated method based on looking
into the future to prevent singly blocked updates in Jerrum’s maximal coupling. Non-Markovian
couplings have also been used to get O(n log n) mixing time — rather than O(n2) — for Glauber
dynamics with k = (2− ε)∆ colors [DGG+01, HV07]. The crux of these last results is to terminate
the coupling at a random stopping time corresponding to the first point at which something inter-
esting happens in the coupled evolution, e.g. the Hamming distance changing. This variable-length
coupling approach is also one of the approaches we take.

On the other hand, to our knowledge alternative metrics have found only one application in
previous works on sampling colorings, namely in the analysis of the “scan” chain for sampling
colorings of bipartite graphs in [BDK06]. That said, path coupling using alternative metrics has

4See Remark 4.2 for a discussion of some of these differences.
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found success in other problems in the approximate sampling literature [LV99, BD98, BDK06].
Bordewich et al. [BDK06] gave evidence that the multi-step stopping time-based approach can be
captured by one-step coupling with an appropriate metric, though the metric they use to establish
this connection is itself based on stopping times. In an orthogonal direction, another take on the
question of designing metrics for one-step coupling is given in [HVV15] via the spectral radius of
the adjacency matrix and in [EHŠ+16] via the Jacobian of the belief propagation operator.

Lastly, we remark that before Vigoda’s work [Vig99], Bubley et al. [BDG98] used linear program-
ming to show that Glauber dynamics is rapidly mixing with five colors on graphs with maximum
degree three. Their approach however required solving several hundred linear programs, and was
subject to “combinatorial explosion” as a function of the degree.

Organization

In Section 2 we review the basics of path coupling, briefly summarize Vigoda’s Markov chain and
coupling analysis, and recall some basic notions in variable-length coupling. In Section 3, we
interpret Vigoda’s one-step coupling analysis as implicitly solving a linear program and identify
a family of worst-case neighborhoods which is tight at k > 11

6 ∆ for one-step coupling of the flip
dynamics with respect to the Hamming metric. In Section 4, we give a proof of Theorem 1.1 via
variable-length coupling. In Section 5, we give a proof via one-step coupling with an alternative
metric. In Section 6, we overview how to extend our techniques to prove Theorem 1.4.

In Appendix A, we give a self-contained exposition of the details of Vigoda’s coupling analysis.
In Appendix B, we provide the set of configurations in Vigoda’s analysis that are extremal under
his choice of flip parameters. In Appendix C and D, we supply proofs of technical lemmas that
appeared in Sections 4 and 5 respectively. In Appendix E, we complete the proof of Theorem 1.4
that was sketched in Section 6.

2 Preliminaries

Let N0 denote the set of non-negative integers. In a graph G = (V,E), for vertex v ∈ V define
N(v) to be the set of neighbors of v and ∆(v) to be the degree of vertex v. Given a (proper or
improper) coloring σ : V → [k], define Aσ(v) to be the set of colors available to v, i.e. the set of
colors c for which no neighbor of v is colored c. Given a Markov chain with transition probability
matrix P on finite state space Ω and initial state σ(0), denote the distribution of state σ(t) at time
t by P t(σ(0), ·). Denote the stationary distribution of an ergodic Markov chain by π, let

τmix(ε) := max
σ(0)∈Ω

min{t : dTV(P t
′
(σ(0), ·), π) ≤ ε ∀t′ ≥ t},

where dTV(·, ·) is the total variation distance, and define the mixing time τmix to be τmix(1/2e).
The state spaces we will be interested in are Ω = [k]V the set of all colorings (or labellings) of

G, and Ω∗ the set of proper colorings of G.

2.1 The Flip Dynamics

The Markov chain we use is a variant of the Wang-Swendsen-Kotecký (WSK) algorithm [WSK89]
studied in [Vig99], which we define below. In a (proper or improper) coloring σ of a graph G, for
vertex v and color c let the Kempe component Sσ(v, c) denote the set of vertices w for which there
exists an alternating path between v and w using only the colors c and σ(v). Under this definition,
Sσ(v, σ(v)) = ∅. The motivation for this definition is that if σ is proper, then if one flips Sσ(v, c),
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i.e. changes the color of all σ(v)-colored vertices in Sσ(v, c) to c and that of all c-colored vertices
in Sσ(v, c) to σ(v), the resulting coloring is still proper.

Definition 2.1. Let p = {pα}α∈N0 be a collection of flip parameters. The flip dynamics is a
random process generating a sequence of colorings σ(0), σ(1), σ(2), . . . of G where σ(0) is an arbitrary
coloring in Ω and σ(t) is generated from σ := σ(t−1) as follows:

1. Select a random vertex v(t) and a random color c(t).

2. Let α = |Sσ(v(t), c(t))| and flip Sσ(v(t), c(t)) with probability pα/α.

The reason for the pα/α term is that we have a nice equivalent way of formulating the flip
dynamics. Let Sσ denote the family of all Kempe components in G under the coloring σ, i.e. all
S ⊂ V for which there exist v, c such that S = Sσ(v, c). Here we emphasize that Sσ is a multiset.5

Then, σ(t) is generated from σ := σ(t−1) as follows:

1. Pick any component S(t) ∈ Sσ, each with probability 1/nk.

2. Let α = |S(t)| and flip S(t) with probability pα.

Because the flip dynamics embeds Glauber dynamics, it is ergodic on the space of proper color-
ings for every k ≥ ∆ + 2. As every improper coloring has a positive probability of eventually being
transformed into a proper one, the space of proper colorings is the only closed subset of the space
of all colorings. The following holds as a consequence:

Lemma 2.1 ([Vig99]). The stationary distribution of the flip dynamics is the uniform distribution
over proper colorings of G.

The WSK algorithm corresponds to the choice of pα = α for all α ∈ N0. For the purposes of
path coupling, it turns out one only needs to flip Kempe components of size at most some absolute
constant Nmax (in Vigoda’s chain, Nmax = 6), and this “local” nature of the flip dynamics will
simplify the analysis. Henceforth, we will take p0 = 0, p1 = 16, and 0 ≤ pα+1 ≤ pα ≤ 1 for all α ≥ 1.

2.2 Path Coupling

Coupling is a common way to bound the mixing time of Markov chains. A T -step coupling for a
Markov chain with transition matrix P and state space Ω defines for every initial (σ(0), τ (0)) ∈ Ω2 a
stochastic process (σ(t), τ (t)) such that the distribution of σ(T ) (resp. τ (T )) is the same as P T (σ(0), ·).
(resp. P T (τ (0), ·)). The coupling inequality states that for any starting point σ(0) for the Markov
chain,

dTV(σ(t), π) ≤ max
τ (0)

P[σ(T ) 6= τ (T )]. (1)

We will think of T -step couplings as random functions Ω2 → Ω2, so we will denote them by
(σ(0), τ (0)) 7→ (σ(T ), τ (T )), or more succinctly, (σ, τ) 7→ (σ′, τ ′). For an initial pair of colorings σ, τ ,
we say that a coupling γ-contracts for (σ, τ) for some γ ∈ (0, 1) and metric d on Ω if it satisfies

E[d(σ′, τ ′)] ≤ γ d(σ, τ). (2)

If there exist α > 0 and a coupling that (1 − α)-contracts for all (σ, τ), then one can show that
τmix = O(T log(D)/α), where D is the diameter of Ω under d.

5For each color c not in the neighborhood of v, there exists a distinct component Sσ(v, c) = {v} in Sσ.
6Note that one must set p1 = 1 because otherwise, by rescaling all flip parameters by a factor of 1/p1, the mixing

time simply scales by a factor of 1/p1.

6



For the rest of this subsection, we specialize our discussion of coupling to the setting of sampling
colorings. Fix any Markov chain over Ω whose stationary distribution is the uniform distribution
over Ω∗, e.g. the Glauber or flip dynamics, and denote it by σ 7→ σ′.

In complicated state spaces like the space of all proper colorings of a graph, it is often tricky to
construct couplings that give good bounds on mixing time. Path coupling, introduced in [BD97],
is a useful tool for simplifying this process: rather than define (σ, τ) 7→ (σ′, τ ′) for all (σ, τ) ∈ Ω2, it
is enough to do so for a small subset of initial pairs in Ω2. This subset is specified by a pre-metric.

Definition 2.2. A pre-metric on Ω is a pair (Γ, ω) where Γ is a connected, undirected graph with
vertex set Ω, and ω is a function that assigns positive, real-valued weights to edges στ of Γ such
that for every edge στ , ω(στ) is the minimum weight among all paths between σ and τ .

We will often refer to a pair of adjacent colorings σ, τ in Γ as a neighboring coloring pair, denoted
by (G, σ, τ). Where the context is clear, we omit G and refer to neighboring coloring pairs as (σ, τ).

For any σ̃, τ̃ ∈ Ω, let Pσ̃,τ̃ denote the set of simple paths φ = (φ0, . . . , φs) in Γ where φ0 = σ̃ and
φs = τ̃ . The metric d induced by the pre-metric (Γ, ω) is defined by d(σ̃, τ̃) := minφ∈Pσ̃,τ̃

∑s
i=1 ω(φi−1φi).

Example 2.1. If Γ is the graph with vertex set Ω and edges between colorings σ, τ which differ on
exactly one vertex, and ω assigns weight 1 to all edges of Γ, then the metric induced by (Γ, ω) is
simply the Hamming distance dH , i.e. the total number of vertices on which two colorings differ.

Theorem 2.1 ([BD97]). Let (Γ, ω) be a pre-metric on Ω where ω takes on values in (0, 1], and
let d be the metric it induces. If the Markov chain σ 7→ σ′ has a coupling (σ, τ) 7→ (σ′, τ ′) defined
for all neighboring coloring pairs (σ, τ) that (1 − α)-contracts for some α > 0, then there exists a
coupling defined for all pairs of colorings (σ, τ) ∈ Ω2 which (1− α)-contracts.

Remark 2.1. The reason we need to extend the state space from Ω∗ to Ω is already apparent in the
context of path coupling with the Hamming metric. Given two colorings σ, τ for which dH(σ, τ) = `,
there does not necessarily exist a sequence of proper colorings σ = σ0, σ1, . . . , σ` = τ of length ` for
which (σi, σi+1) are neighboring coloring pairs for all 0 ≤ i < `. However, there certainly exist such
sequences if we allow the colorings to be improper.

2.3 Variable-Length Coupling

In this section we review the basics of variable-length coupling. This will only be relevant to
Section 4 which gives the first of our two proofs of Theorem 1.1.

Jerrum’s k > 2∆ bound [Jer95] and Vigoda’s k > 11
6 ∆ bound [Vig99] can both be proved via

one-step path couplings. Yet there is evidence that multi-step couplings can sometimes be stronger
than one-step couplings. As shown in [KR01], there exist Markov chains for some sampling problems
where one-step coupling analysis is insufficient. [CKKL99] used multi-step coupling for a tighter
analysis of a Markov chain for sampling random permutations, and the celebrated k ≥ (1 + ε)∆
result of [HV03] for Ω(log n)-degree graphs uses a multi-step coupling which is constructed by
looking into future time steps.

There are also several other works that carried out a multi-step coupling analysis by looking at
one-step coupling over multiple time steps [DGG+01, DGM02, HV07] and obtained slight improve-
ments over Jerrum’s k > 2∆ bound by terminating path coupling of the Glauber dynamics at a
random stopping time. In the literature, this is known as variable-length coupling, and this is the
approach we take in Section 4, but for the flip dynamics.

Definition 2.3. [Definition 1 in [HV07]] For every initial neighboring coloring pair (σ(0), τ (0)),
let (σ, τ , Tstop) be a random variable where Tstop is a nonnegative integer, and σ, τ are sequences

7



of colorings (σ(0), . . . , σ(Tstop)) ∈ ΩTstop and (τ (0), . . . , τ (Tstop)) ∈ ΩTstop respectively. We say that
(σ, τ , Tstop) is a variable-length path coupling if σ, τ are faithful copies of the Markov chain in the
following sense.

For (σ(0), τ (0)) and t ≥ 0, define the random variables σt, τt via the following experiment: 1)
sample (σ, τ , Tstop), 2) if t ≤ T , define σt = σ(t), τt = τ (t), 3) if t > Tstop, then sample σt and τt
from P t−Tstop(σ(Tstop), ·) and P t−Tstop(τ (Tstop), ·) respectively.

We say that σ (resp. τ) is a faithful copy if for every neighboring coloring pair (σ(0), τ (0)) and
t ≥ 0, σt and τt defined above are distributed according to P t(σ(0), ·) and P t(τ (0), ·) respectively.

When Tstop is always equal to some fixed T , this is just the usual notion of T -step path coupling.
The following extends the path coupling theorem of [BD97] to variable-length path coupling.

Theorem 2.2 (Corollary 4 of [HV07]). Let ε > 0. For a variable-length path coupling (σ, τ , Tstop),
let

α := 1− max
σ(0),τ (0)

E[dH(σ(Tstop), τ (Tstop))], W := max
σ(0),τ (0),t≤Tstop

dH(σ(t), τ (t)), β := max
σ(0),τ (0)

E[Tstop].

If α > 0, then τmix(ε) ≤ 2 d2βW/αe · dln(n/ε)/αe .

2.4 Vigoda’s Greedy Coupling

In Appendix A, we give a self-contained review of the one-step path coupling analysis from [Vig99].
We encourage readers unfamiliar with his analysis to simply read the entirety of Appendix A in
place of this subsection, as here we only introduce relevant notation and state the parts of his
analysis that are essential to our proofs.

Fix a neighboring coloring pair (G, σ, τ). For c ∈ [k], let Uc denote the set of neighbors of v (in
either coloring) that are colored c, and let δc = |Uc|. We will sometimes denote the vertices in Uc
by {uc1, . . . , ucδc}; where c is clear from context, we will simply denote these by {u1, . . . , uδc}.

Note that the symmetric difference D = Sσ∆Sτ is precisely the Kempe components Sσ(uci , τ(v))
and Sσ(v, c) in σ and the Kempe components Sτ (uci , σ(v)) and Sτ (v, c) in τ , for all colors c appearing
in the neighborhood of v and all i ∈ [δc]. All other Kempe components are shared between σ and
τ , so for those, it is enough to use the identity coupling. Note that for colors c 6= σ(v), τ(v) not
appearing in N(v), the identity coupling then matches the flip of Sσ(v, c) to that of Sτ (v, c) so that
the two colorings of G become identical.

So the main concern is how to couple the flips of components in D. It is easy to see that for
c 6= σ(v), τ(v),

Sσ(v, c) =

(
δc⋃
i=1

Sτ (uci , σ(v))

)
∪ {v} Sτ (v, c) =

(
δc⋃
i=1

Sσ(uci , τ(v))

)
∪ {v}, (3)

Purely for simplicity of exposition, we will assume that the sets Sσ(uci , τ(v)) are distinct as i
varies, and likewise for Sτ (uci , σ(v)), and we will only consider c 6= σ(v), τ(v), referring the reader
respectively to Remarks A.1 and A.2 in Appendix A for the missing details. We remark that the
extra cases of c = σ(v), τ(v) are the primary place where one needs to be careful about the fact
that neighboring coloring pairs σ, τ need not be proper.

For c such that δc > 0, define Ac := |Sσ(v, c)|, Bc := |Sτ (v, c)|, aci = |Sτ (uci , σ(v))|, and
bci = |Sσ(uci , τ(v))|. Define the vectors ac := (aci : i ∈ [δc]) and bc := (bci : i ∈ [δc]). We say
that a neighboring coloring pair (G, σ, τ) has configuration (Ac, Bc; a

c,bc) of size δc for color c.
Also define acmax = maxi a

c
i and denote a maximizing i by icmax. Likewise define bcmax = maxj b

c
j
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and denote a maximizing j by jcmax. When the color c is clear from context, we refer to these as
A,B, ai, bi,a,b, amax, imax, bmax, jmax.

When c 6= σ(v), τ(v), note that

Ac = 1 +
∑
i

aci , Bc = 1 +
∑
i

bci . (4)

While Sσ(v, c) and Sτ (v, c) can be quite different, we do know that Sσ(v, c) ⊃ Sτ (ui, σ(v)). The idea
of Vigoda’s coupling is thus to greedily couple the flips of the largest components, i.e. Sσ(v, c), Sτ (v, c),
to the flips of the next largest components, i.e. Sτ (uimax , σ(v)), Sσ(ujmax , τ(v)), and then to couple
together as closely as possible the flips of Sσ(ui, τ(v)) and Sτ (ui, σ(v)) for each i ∈ [δc]. Henceforth,
we will refer to this coupling as the greedy coupling.

For any configuration (A,B; a,b), define

H(A,B; a,b) := (A− amax − 1)pA + (B − bmax − 1)pB +
∑
i

aiqi + biq
′
i −min(qi, q

′
i), (5)

where qi = pai − pA · 1i=imax and q′i = pbi − pB · 1i=jmax . In [Vig99] it is shown that under this
greedy coupling, for c 6= σ(v), τ(v) appearing in the neighborhood of v,

kn · E[1Xc · (dH(σ′, τ ′)− 1)] ≤ H(Ac, Bc; a
c,bc), (6)

where Xc is the event that the coupling flips components in Dc in both colorings. Therefore:

Lemma 2.2 ([Vig99]). Let (σ, τ) 7→ (σ′, τ ′) be the greedy coupling. Then

E[dH(σ′, τ ′)− 1] ≤ 1

nk

−|{c : δc = 0}|+
∑
c:δc 6=0

H(Ac, Bc; a
c,bc)

 . (7)

The function H implicitly depends on the choice of flip parameters {pα}, while (Ac, Bc; a
c,bc)

depends on (G, σ, τ). The remaining analysis in [Vig99] once (7) has been deduced essentially boils
down to picking a good set of flip parameters.

3 Linear Programming and Choice of Flip Parameters

The key idea to choose the flip parameters is to cast the problem as an instance of linear program-
ming with variables {pα}α∈N0 to minimize the right-hand side of (7) over all neighboring coloring
pairs (G, σ, τ) where G has maximum degree ∆ and σ, τ are k-colorings. The following gives termi-
nology for quantifying over all such (G, σ, τ).

Definition 3.1. A configuration (A,B; a,b) is realizable if there exists a neighboring coloring pair
(G, σ, τ) and color c such that (A,B; a,b) = (Ac, Bc; a

c,bc).

Vigoda’s remaining analysis can thus be interpreted as solving the following linear program.

Linear Program 1. For variables {pα}α∈N0 and λ, minimize λ subject to: p0 = 0 ≤ pα ≤ pα−1 ≤
p1 = 1 for all α ≥ 2, and H(A,B; a,b) ≤ −1 + λ ·m for all realizable (A,B; a,b) of size m.

There are three minor issues with this linear program: (a) the linear program has an infinite
number of variables, (b) it has an infinite number of constraints, and (c) given a,b, it is not
immediately obvious how to enumerate all A,B for which (A,B; a,b) is realizable.
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Vigoda handles (a) by restricting to flips of components of size at most Nmax, i.e. by fixing
some small constant Nmax and insisting that

pα = 0 ∀α > Nmax. (8)

We emphasize that this still leaves an infinite number of constraints as m can be unbounded.
He handles (b) by shrinking the feasible region via the following observation.

Lemma 3.1 ([Vig99]). H(A,B; a,b) ≤ (A− 2)pA + (B − 2)pB +
∑

i(aipai + bipbi −min(pai , pbi)).

Whereas f(ui) are linear functions of pai , pbi , pA, pB, the summands in the upper bound of
Lemma 3.1 are simply linear functions of pai , pbi . So we can pick some m∗ ([Vig99] picks m∗ = 3)
and replace the infinitely many constraints for which m ≥ m∗ in Linear Program 1 with finitely
many constraints to optimize the right-hand side of Lemma 3.1.

Finally, Vigoda implicitly handles (c) as follows. To cover all constraints corresponding to
realizable (Ac, Bc; a

c,bc) with c 6= σ(v), τ(v) include

H(A,B; a,b) ≤ −1 + λ ·m, (9)

for all 1 ≤ m < m∗ and (A,B; a,b) for which a,b ∈ {0, 1, . . . , Nmax}m\{(0, 0, . . . 0)} and A,B
satisfy (4). As we will discuss in Appendix A.2, to cover all constraints corresponding to c = σ(v)
and c = τ(v), it is enough to include

(B − bm)pB +

m−1∑
i=1

bipbi ≤ −1 + λ ·m, (10)

for all 2 ≤ m < m∗, 0 ≤ b1 ≤ · · · ≤ bm ≤ Nmax where bm > 0, and B =
∑

i bi, as well as

α · pα ≤ 1, for all α ∈ N0. (11)

Concretely, we have the following relaxation of Linear Program 1.

Linear Program 2. Fix some Nmax ≥ 1 and m∗ ≥ 2. For variables {pα}α∈N0 and λ, and dummy
variables x, y, minimize λ subject to the following constraints: p0 = 0 ≤ pα ≤ pα−1 ≤ p1 = 1 for all
α ≥ 2, constraint (8), constraint (9) for all a,b ∈ {0, 1, . . . , Nmax}m\{(0, . . . , 0)} with 1 ≤ m < m∗

and A,B satisfying (4), constraint (10) for all 2 ≤ m < m∗ and 0 ≤ b1 ≤ · · · ≤ bm ≤ Nmax where
bm > 0 and B =

∑
i bi, constraint (11), and constraints

x ≥ (A− 2)pA

y ≥ a · pa + b · pb −min(pa, pb)

−1 + λ ·m∗ ≥ 2x+m∗ · y (12)

for every A, a, b satisfying 0 ≤ A ≤ 1 +Nmax and 0 ≤ a < b ≤ Nmax.

Remark 3.1. Note that we only add in constraints for the upper bound of Lemma 3.1 in the case of
m = m∗ (constraint (12)) because the constraints for m = m∗ implies the constraints for m > m∗.

Lemma 3.2. Let λ∗2 be the objective value of Linear Program 2. If λ∗2 ≥ 1 and k > λ∗2d, then there
exist flip parameters {pα}α∈N0 for which E[dH(σ′, τ ′) − 1] < 0 for all neighboring coloring pairs
(G, σ, τ), where (σ, τ) 7→ (σ′, τ ′) is the greedy coupling.
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Proof. Let {pα}α∈N0 be flip parameters achieving objective value λ∗2. By (7) and Lemma 3.1, we
have that

nk · E[dH(σ′, τ ′)− 1] ≤ −|{c : δc = 0}|+
∑
c:δc 6=0

H(Ac, Bc; a
c,bc) ≤ −k + λ∗2 · d < 0.

In [Vig99], Vigoda shows that for m∗ = 3, Nmax = 6, and the following flip parameters, Linear
Program 2 attains a value λ∗2 = 11/6:

p1 = 1, p2 = 13/42, p3 = 1/6, p4 = 2/21, p5 = 1/21, p6 = 1/84 and pα = 0 ∀α ≥ 7. (13)

Not only is this assignment a feasible solution to Linear Program 2, but it happens to be an optimal
solution of Linear Programs 1 and 2. We will be interested in which constraints are tight under
such optimal solutions, as they will guide us to the configurations key to our proofs.

Definition 3.2. Given a feasible solution p of Linear Program 1 with objective value λ, a configu-
ration (A,B; a,b) of size m is p-extremal (or simply extremal if the flip parameters are clear from
the context) if H(A,B; a,b) = −1 + λ ·m under the assignation p.

Vigoda’s proof in [Vig99] already implicitly gives a collection of six extremal configuration
under the assignment (13) (see Observation B.1 in Appendix B). It turns out that among these
tight constraints, two of them are already enough to force the objective value of Linear Program 2
to be 11/6.

Consider the following linear program obtained by restricting to constraints (9) associated with
configurations (3, 2; (2), (1)) and (7, 3; (3, 3), (1, 1)), which are both realizable.

Linear Program 3. For variables {pα}α∈N0 and λ, minimize λ subject to: p0 = 0 ≤ pα ≤ pα−1 ≤
p1 = 1 and

p1 + p2 − 2p3 −min(p1 − p2, p2 − p3) ≤ −1 + λ,

2p1 + 5p3 −min(p1 − p3, p3 − p7) ≤ −1 + 2λ.

It is easy to check that Linear Program 3 also has objective value 11/6, and its constraints are
a strict subset of those of Linear Programs 1 and 2, from which we conclude that

Corollary 3.1. The objective values of Linear Program 1, Linear Program 2 with Nmax ≥ 6 and
m∗ = 3, and Linear Program 3 are all equal to 11/6.

Corollary 3.1 allows us to exhibit a family C of just two neighboring coloring pairs (G, σ, τ)
for which no one-step coupling, greedy or otherwise, simultaneously contracts with respect to the
Hamming metric for k < (11/6)∆ for all (G, σ, τ) ∈ C. To clarify, this lemma is not used in the
proofs of our main result, but provides intuition for the limitations of one-step coupling with respect
to the Hamming metric and motivates our two approaches for circumventing them.

Construction 3.1. Let G1 be the tree of height 2 rooted at vertex v with ∆ path graphs, each
consisting of 2 other vertices, attached to v. Let u1, . . . , u∆ be the neighbors of v. In colorings
σ1, τ1, assign two different colors to v, σ1(v) and τ1(v), assign each ui the color ci 6= σ1(v), τ1(v),
and assign the child of ui the color σ1(v).

For ∆ even, let G2 be the tree of height two rooted at a vertex v with exactly ∆ children u1, . . . , u∆

such that each ui has exactly two children wi1 and wi2. In colorings σ2, τ2, assign two different colors
to v, σ2(v) and τ2(v), assign u2j−1 and u2j the color cj 6= σ2(v), τ2(v) for j ∈ {1, . . . ,∆/2}, and
assign all wi` the color σ2(v).

Let C∗ = {(G1, σ1, τ1), (G2, σ2, τ2)} (see Figure 1).
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(G2, σ2, τ2)

Figure 1: Neighboring coloring pairs defined in Construction 3.1 for ∆ = 8.

Lemma 3.3. If k < (11/6)∆, there exists no choice of flip parameters {pα} and one-step coupling
(σ, τ) 7→ (σ′, τ ′) for which E[dH(σ′, τ ′) − 1] < 0 for all (G, σ, τ) ∈ C∗, where C∗ is defined in
Construction 3.1.

We defer the proof of this to Appendix B. Lemma 3.3 states that it is impossible to design
a one-step coupling analysis of the flip dynamics with the Hamming metric that crosses Vigoda’s
11/6 barrier for general graphs (or even for the family of two trees defined by C∗). There are two
natural strategies to overcome this problem: use a multi-step coupling analysis with the Hamming
metric, or use a one-step coupling with an alternative metric. In the remainder of the paper we
present two independent proofs of Theorem 1.1. In Section 4, we present the multi-step coupling
approach to the proof as devised by Chen and Moitra [CM18]. In Section 5, we use the alternative
metric approach to the proof as devised by Delcourt, Perarnau and Postle [DPP18]. For the sake
of clarity, we defer the proof of some technical lemmas to Appendices C and D.

4 Proof of Theorem 1.1 using Variable-Length Coupling

In this section, we prove Theorem 1.1 by arguing that a suitably defined variable-length coupling
contracts with respect to the Hamming metric dH . Recall from Definition 2.2 that under the pre-
metric inducing the Hamming metric, (G, σ, τ) is a neighboring coloring pair if σ, τ are colorings of
G that differ on exactly one vertex v.

4.1 Modifying the LP

For a color c, the condition that (Ac, Bc; a
c,bc) for a neighboring coloring pair (G, σ, τ) be extremal

is a very stringent condition on (G, σ, τ). The hope is that for a suitable notion of “typical,” this
condition holds for few colors c for a “typical” neighboring coloring pair.

Definition 4.1. Given a neighboring coloring pair (G, σ, τ) and a color c appearing in the neigh-
borhood of v, then the pair σ, τ is in the state
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1. Singc if δc = 1 and c 6= σ(v), τ(v)7

2. Badc if (Ac, Bc; a
c,bc) is either (7, 3; (3, 3), (1, 1)) or (3, 7; (1, 1), (3, 3))

3. Goodc otherwise.

Moreover, define Nsing(σ, τ), Nbad(σ, τ), and Ngood(σ, τ) to be the number of c for which (G, σ, τ)
is in state Singc, Badc, Goodc respectively.

Observation 4.1. Let (G, σ, τ) be any neighboring coloring pair. For c = σ(v), τ(v), if δc > 0,
then σ, τ are in state Goodc.

Proof. If δc = 1, then by definition σ, τ are in state Goodc. If δc ≥ 2, then because Ac = 0 for
c = σ(v), τ(v) by Remark A.2, σ, τ must be in state Goodc.

Nsing(σ, τ) can be large even for a “typical” neighboring coloring: consider any (G, σ, τ) where
the neighbors of v form a clique. Indeed, this example is the reason that all existing results
on sampling colorings that proceeded [Vig99] needed to at least assume triangle-freeness of G,
otherwise the local uniformity properties they leverage simply do not hold. Instead of avoiding
state Singc, we want “typical” neighboring coloring pairs to avoid Badc for many c. Specifically,
we want Nbad(σ, τ) to be at most a constant times Ngood(σ, τ).

Remark 4.1. At this point the reader may be wondering: why can we get away with only analyzing
what happens to the extremal configurations of size 2 and not those of size 1? The reason is that
neighboring coloring pairs where v is surrounded by many configurations of size 1 are precisely
the kinds of examples on which Vigoda’s analysis does particularly well: under Jerrum’s maximal
coupling, it is impossible to go beneath k > 2∆ for any one-step coupling of the Glauber dynamics
with respect to the Hamming metric, but under Vigoda’s greedy coupling of the flip dynamics, one
can perfectly couple the flips of Kempe components in Dc for any c with δc = 1 if Nmax is big
enough. The reason Vigoda’s analysis doesn’t get all the way down to k > (1 + ε)∆ is simply that
if Nmax is too big and the flip parameters too tuned to configurations of size 1, one cannot closely
couple flips corresponding to configurations of size at least 2. For this reason, what we really care
about is actually the fraction of configurations of size at least 2 around v that are extremal.

Consider the following thought experiment. Let C consist of all neighboring coloring pairs such
that for every (G, σ, τ) ∈ C,

Nbad(σ, τ) ≤ γ ·Ngood(σ, τ) (14)

for some absolute constant γ > 0. Suppose k = (11/6 − ε)∆ for some small absolute constant
ε > 0, and our goal is just to pick flip parameters so every pair in C contracts. Observation B.1
and complementary slackness intuitively suggest that this should be possible for small enough ε
depending only on γ. To get an effective estimate for ε, we encode (14) into Linear Program 2:

Linear Program 4. Introduce into Linear Program 2 the additional variables λsing, λbad, λgood. In
constraints (12) and (10), replace λ with λgood. In the constraints (9) corresponding to configura-
tion (A,B; a,b), replace λ with λsing if m = 1, λbad if (A,B; a,b) is either (7, 3; (3, 3), (1, 1)) or
(3, 7; (1, 1), (3, 3)), or λgood otherwise. Lastly, introduce the constraints

λ ≥ λsing, λ ≥ λgood, λ ≥ γ

γ + 1
· λbad +

1

γ + 1
· λgood.

7For c 6= σ(v), τ(v), Singc corresponds to the extremal configuration of size 1, as well as all other configurations
which satisfy δc = 1. We include these latter configurations just for simplicity of analysis; if we did not do this, it
would yield additional improvements upon our main result. Also note that we exclude the cases of c = σ(v), τ(v)
from Singc because in those cases, we have that Ac = 0 in which case (Ac, Bc;a

c,bc) is not extremal.
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Call this the γ-mixed coupling LP and denote its objective value by λ∗γ.

The following is straightforward to prove; see Appendix C.1 for a formal proof.

Lemma 4.1. If k > λ∗γ∆, then under the greedy coupling (σ, τ) 7→ (σ′, τ ′), E[dH(σ′, τ ′)− 1] < 0 for
any (G, σ, τ) ∈ C.

Next, we go from the intuition of this thought experiment to a rigorous notion of “typical”
neighboring coloring pairs avoiding the state Badc. Having already reduced finding a coupling for
all of C to analyzing the γ-mixed coupling LP, in the sequel we will reduce finding a coupling for
all neighboring coloring pairs to analyzing the γ-mixed coupling LP.

4.2 Variable-Length Coupling

The key idea is that regardless of what neighboring coloring pair (G, σ, τ) one starts with, the
probability that σ′, τ ′ derived from one step of greedy coupling has changed in distance is Θ(1/n)
(see Lemma 4.2 below). So in expectation, one can run Θ(n) steps of greedy coupling before the
two colorings either coalesce to the same coloring or have Hamming distance greater than 1, but
by that time the set of colors around v will have changed substantially. This is the main insight
of [DGG+01, HV07], who leverage it to analyze the Glauber dynamics and slightly improve upon
Jerrum’s k ≥ 2d bound under extra girth and degree assumptions. We leverage this insight to
analyze the flip dynamics under no extra assumptions.

Our variable-length coupling simply runs greedy coupling until the distance between the color-
ings changes: start with neighboring colorings σ(0), τ (0), initialize t = 1, and repeat the following.

1. Run the greedy one-step coupling of Section 2.4 to flip components St in σ(t−1) and S′t in
τ (t−1), producing σ(t), τ (t) (note that St or S′t might be empty, e.g with probability 1− pα, a
component of size α that is chosen to be flipped is not actually flipped).

2. If dH(σ(t), τ (t)) 6= dH(σ(t−1), τ (t−1)), terminate and define Tstop = t. Else, increment t.

We call any subsequence of pairs of flips (Si, S
′
i), . . . , (Sj , S

′
j) a coupling schedule starting from

the neighboring coloring pair (G, σ(i−1), τ (i−1)).
It is easy to see that this satisfies the conditions of being a variable-length coupling as in

Definition 2.3. Indeed it is the same coupling as in [HV07], except for the flip dynamics instead
of the Glauber dynamics. Note that we can characterize which pairs of flips (St, S

′
t) terminate the

coupling: at least one of them must belong to the symmetric difference D defined in Section 2.4.

Definition 4.2. Given a neighboring coloring pair (G, σ, τ), a pair of components S in σ and S′ in
τ is terminating if S = Sσ(v, c) or S′ = Sτ (v, c), or there exists u ∈ N(v) for which S = Sσ(u, τ(v))
or S′ = Sτ (u, σ(v)).

Note that for any t, St and/or S′t may be the empty set. Moreover, because flips of components
outside of D are matched via the identity coupling, if (St, S

′
t) is not terminating, then St = S′t.

Lemma 4.2. Let components S in σ and S′ in τ be chosen according to the greedy coupling. Then

k −∆− 2

nk
≤ P[(S, S′) terminating] ≤ k + 2p2∆

nk
,

where p2 is the flip parameter for components of size 2.
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Proof. For the lower bound, note that the pair (Sσ(v, c), Sτ (v, c)) is terminating for any c. In
particular, for c 6= {σ(v), τ(v)} such that δc = 0, Sσ(v, c) = Sτ (v, c) = {v} — note that while the
vertex sets for these components are all {v}, the flips are all distinct as they vary with c. Each such
pair of flips has probability mass (1/nk) · p1 = (1/nk), and there are at least k−∆− 2 such choices
of c, giving the lower bound. We defer the proof of the upper bound to Appendix C.2.

Corollary 4.1. maxσ(0),τ (0) E[Tstop] ≤ nk
k−∆−2 .

We now give a reduction from analyzing the expected change in distance under our variable-
length coupling to proving that the relation (14) from our thought experiment holds in expectation
by the end of the coupling.

Lemma 4.3. Suppose there exists a constant γ > 0 for which

E[Nbad(σ
(Tstop−1), τ (Tstop−1))] ≤ γ · E[Ngood(σ

(Tstop−1), τ (Tstop−1))] (15)

for any initial neighboring coloring pair (G, σ(0), τ (0)).
Let λ∗Cγ be the objective value of the Cγ-mixed coupling LP, where C := k+2p2∆

k−∆−2 . Then

E[dH(σ(Tstop), τ (Tstop))− 1] ≤
−k + λ∗Cγ∆

k −∆− 2
.

This mainly just follows by linearity of expectation and the calculation done in the proof of
Lemma 4.1. The only complication is that the probability that the coupling terminates at any given
point is not fixed, but this is fine because it is still the same up to constant factors, which only leads
to the loss of a factor of C as defined in the lemma. We defer the full proof to Appendix C.3.

Remark 4.2. (15) is one way to say that a typical coloring has few extremal configurations around
v. This is slightly different from the analogous notion in the second proof of Theorem 1.1 in Sec-
tion 5. There, the goal is to show that the number of extremal configurations around v of size 1 or
2 goes down in one step of Vigoda’s greedy coupling. In contrast, we only choose to upper bound
the fraction of configurations of size at least 2 at the end of our variable-length coupling which are
extremal. That we don’t attempt to analyze how extremal components of size 1 break apart is purely
out of technical convenience, and as we discuss in Remark 4.1, still enough to break the 11

6 barrier.

4.3 Few Extremal Configurations When Coupling Terminates

We are left with proving the main technical lemma that (15) holds. Throughout this subsection,
assume that k ≥ 1.833∆.

Lemma 4.4. Suppose flip parameters {pα}α∈N0 satisfy p0 = 0 ≤ pα ≤ pα−1 ≤ p1 = 1 for all α ≥ 2,

constraint (11), and additionally αpα−2 ≤ 3 for all α ≥ 3. Then for γ := (6k−∆−2)(k+2p2∆)
4(k−∆−2)(k−∆−1) , we have

that (15) holds for any initial neighboring coloring pair (G, σ(0), τ (0)).

Remark 4.3. The additional constraint that αpα−2 ≤ 3 already holds for the solutions to the
γ-mixed coupling LP, so we assume it just to obtain better constant factors in our analysis.
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We first make a simple reduction. Fix any initial neighboring coloring pair (G, σ(0), τ (0)), and
for every color c denote by pbad(c) and pgood(c) the probability that σ(Tstop), τ (Tstop) is in state Badc
and Goodc, respectively.

By linearity of expectation we have that

E[Nbad(σ
(Tstop), τ (Tstop))] =

∑
c

pbad(c), E[Ngood(σ
(Tstop), τ (Tstop))] =

∑
c

pgood(c).

Therefore to show Lemma 4.4, it is enough to show the following.

Lemma 4.5. pbad(c) ≤ γ · pgood(c) for every color c.

This is certainly true for c = σ(0)(v), τ (0)(v), in which case pbad(c) = 0 and pgood(c) = 1 by
Observation 4.1. We point out that while the case of c = σ(0)(v), τ (0)(v) is the one for which the
fact that our state space includes all colorings, improper and proper, introduces complications in the
definition of the greedy coupling (see Remark A.2), it happens to be the easiest case of Lemma 4.5.

So henceforth assume c 6= σ(0)(v), τ (0)(v). We proceed via a fractional matching argument. Take
any coupling schedule Σpre = (S1, S1), (S2, S2), . . . , (ST−1, ST−1) consisting of pairs of identical flips,
and define W to be the set of all coupling schedules of the form (S1, S1), (S2, S2), . . . , (ST−1, ST−1),
(ST , S

′
T ) for (ST , S

′
T ) terminating. In other words, W consists of all T -step coupling schedules

whose first T − 1 steps are fixed to Σpre and which only changes the distance between the colorings
in the last step (ST , S

′
T ). We will match to the collection of schedules W an (infinite) collection of

schedules of the following form.

Definition 4.3. Fix S1, . . . , ST−1. A coupling schedule Σ∗ starting from the neighboring coloring
pair (G, σ(0), τ (0)) is satisfying if it is of the form

Σ∗ = (S1, S1), . . . , (ST−1, ST−1), (S∗T , S
∗
T ), . . . , (S∗T ∗−1, S

∗
T ∗−1), (S∗T ∗ , S

′∗
T ∗) (16)

for (S∗T ∗ , S
′∗
T ∗) terminating, and gives rise to a sequence of colorings

(σ(0), τ (0)), (σ(1), τ (1)), . . . , (σ(T−1), τ (T−1)), (σ
(T )
∗ , τ

(T )
∗ ), . . . , (σ

(T ∗)
∗ , τ

(T ∗)
∗ )

for which

1. σ
(T ∗−1)
∗ , τ

(T ∗−1)
∗ are in state Goodc

2. σ
(t)
∗ , τ

(t)
∗ is not in state Badc for any T ≤ t < T ∗.

In Definition 4.3, Property 2) ensures that from any satisfying Σ∗, we can uniquely decode the
collectionW to which it is being fractionally matched: in Σ∗, take the last pair of colorings in state
Badc, and Σpre is the subsequence of Σ∗ starting from (σ(1), τ (1)) and ending at that pair.

If we can show for any Σpre that∑
Σ∗ satisfying

P[(S∗T , S
∗
T ), . . . , (S∗T ∗−1, S

∗
T ∗−1), (S∗T ∗ , S

′∗
T ∗)|Σpre] ≥

1

γ
· k + 2p2∆

nk
,

then this will imply that pbad(c) ≤ γ · pgood(c) because the upper bound of Lemma 4.2 tells us that

P[(ST , S
′
T ) terminating|Σpre] ≤ k+2p2∆

nk .
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To exhibit such a collection of satisfying coupling schedules Σ∗, we first define a coarsening of
the state space as follows. Starting from the neighboring coloring pair (G, σ(T−1), τ (T−1)) which is
in state Badc, take any subsequent coupling schedule

(S∗T , S
∗
T ), . . . , (S∗T ∗ , S

′∗
T ∗) (17)

with (S∗T ∗ , S
′∗
T ∗) terminating which gives rise to a sequence of pairs of colorings

(σ
(T )
∗ , τ

(T )
∗ ), . . . , (σ

(T ∗)
∗ , τ

(T ∗)
∗ ), (18)

where (G, σ
(t)
∗ , τ

(t)
∗ ) is a neighboring coloring pair for all t except t = T ∗. Define the following

auxiliary states. To avoid confusion with the states in Definition 4.1, we will refer to the auxiliary
states defined below as stages.

Definition 4.4. Let c be any color, not necessarily one appearing in the neighborhood of v. We

say that σ
(t)
∗ , τ

(t)
∗ is in stage GoodEndc if σ

(t−1)
∗ , τ

(t−1)
∗ is in state Goodc and the pair of flips

(S, S′) giving rise to σ
(t)
∗ , σ

(t)
∗ from σ

(t−1)
∗ , τ

(t−1)
∗ is terminating.

We say σ
(t)
∗ , τ

(t)
∗ is in stage BadEndc if, intuitively, we choose to quit looking for satisfying

coupling schedules among those of which (σ
(0)
∗ , τ

(0)
∗ ), . . . , (σ

(t)
∗ , τ

(t)
∗ ) is a prefix. Formally, σ

(t)
∗ , τ

(t)
∗ is

in stage BadEndc if least one of the following conditions holds (note that these conditions aren’t
necessarily mutually exclusive):

(i) t = T and the pair of flips (S, S′) giving rise to σ
(T )
∗ , σ

(T )
∗ from the initial pair σ(T−1), τ (T−1)

is terminating (i.e. if (S1, S1), . . . , (ST−1, ST−1), (S, S′) ∈ W).

(ii) t = T and σ
(t)
∗ , τ

(t)
∗ is not in state Goodc.

(iii) σ
(t−1)
∗ , τ

(t−1)
∗ is in state Goodc but σ

(t)
∗ , τ

(t)
∗ is not in state Goodc or stage GoodEndc (this

includes the case that c does not appear in the neighborhood of v in σ
(t)
∗ , τ

(t)
∗ ).

(iv) t > T and σ
(t−1)
∗ , τ

(t−1)
∗ is in stage BadEndc.

If σ
(t)
∗ , τ

(t)
∗ is not in stage BadEndc or GoodEndc and is in state Badc (resp. Goodc), then

we say it is also in stage Badc (resp. stage Goodc).

Note that if a sequence of the form (18) contains a pair of colorings in stage GoodEndc, that

pair must be σ
(T ∗)
∗ , τ

(T ∗)
∗ . Furthermore, given any sequence (18) for which σ

(T ∗)
∗ , τ

(T ∗)
∗ is in stage

GoodEndc with associated coupling schedule (17), note that the corresponding coupling schedule
Σ∗ defined in (16) is satisfying, by definition of stage BadEndc.

So it is enough to show that if we start from a neighboring coloring pair (G, σ(T−1), τ (T−1))
which is in state Badc and evolve a sequence of pairs of colorings (18) according to the greedy
coupling at each step, then

P[σ
(T ∗)
∗ , τ

(T ∗)
∗ are in stage GoodEndc|σ(T−1), τ (T−1)] ≥ 1

γ
· k + 2p2∆

nk
. (19)

It remains to bound the probabilities of the transitions between the different stages of Definition 4.4
under the flip dynamics and the greedy coupling (see Figure 2 for a depiction of the transitions
that can occur). A key point is that these bounds will be independent of the specific colorings or
structure of G.
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Badc

BadEndc GoodEndc

Goodc

Figure 2: Possible transitions among stages of Definition 4.4

For σ
(T ∗)
∗ , τ

(T ∗)
∗ to be in stage GoodEndc, σ

(t)
∗ , τ

(t)
∗ cannot be in stage Badc for any t ≥ T . In

other words, because σ
(T−1)
∗ , τ

(T−1)
∗ is in state Badc, the pair of colorings must escape from Badc

in the very first step of (17) and never return. The following says that this probability of escape is
comparable to the total probability mass of W. We defer its proof to Appendix C.4.

Lemma 4.6. Let σ, τ be any neighboring coloring pair in state Badc, and let σ′, τ ′ be derived from
one step of greedy coupling. Then P [σ′, τ ′ in state Goodc] ≥ 4(k−∆−1)

nk .

Once a pair of colorings has escaped from state Badc into state Goodc, at every step it can
only stay at Goodc, end at stage GoodEndc, or get absorbed into stage BadEndc. The next two
lemmas say that the last two events have probability Ω(1/n) and O(1/n) respectively.

Lemma 4.7. Let σ, τ be any neighboring coloring pair in stage Goodc, and let σ′, τ ′ be derived
from one step of greedy coupling. Then P [σ′, τ ′ in stage GoodEndc] ≥ k−∆−2

nk .

Lemma 4.8. Let σ, τ be any neighboring coloring pair in stage Goodc, and let σ′, τ ′ be derived
from one step of greedy coupling. Then P [σ′, τ ′ in stage BadEndc] ≤ 5

n .

Lemma 4.7 follows immediately from Lemma 4.2. Lemma 4.8 is the most technically involved
step, and we defer its proof to Appendix C.4.

We can now complete the proofs of Lemma 4.4 and Theorem 1.1.

Proof of Lemma 4.4. Starting from σ(T−1), τ (T−1) in stage Badc, by Lemma 4.6, the probability of
transitioning to stage Goodc in the very next step is at least 4(k−∆−1)

nk . As shown in Figure 2, once

we leave stage Badc we never return. From stage Goodc, it is at most 5
n ·

nk
k−∆−2 = 5k

k−∆−2 times as
likely to eventually end up at stage BadEndc as it is to end up at stage GoodEndc, by Lemmas 4.7
and Lemma 4.8. So the probability of ending in stage GoodEndc is at least k−∆−2

5k+(k−∆−2) ·
4(k−∆−1)

nk ,

and we conclude that (19) and consequently Lemma 4.4 hold for γ as defined.

Proof of Theorem 1.1. Note that for k > 1.833∆ and p2 < 0.3, γ = (6k−∆−2)(k+2p2∆)
4(k−∆−2)(k−∆−1) < 7.683410,

while C = k+2p2∆
k−∆−2 < 2.920764, so Cγ < 25.597784 as defined in Lemma 4.3. Thus, substituting

25.597784 into the γ parameter for Linear Program 4 and solving numerically8, we find that for

p̂1 = 1, p̂2 ≈ 0.296706, p̂3 ≈ 0.166762, p̂4 ≈ 0.101790, p̂5 ≈ 0.058475, p̂6 ≈ 0.025989, p̂α = 0 ∀α ≥ 7,
(20)

Linear Program 4 attains value λ∗ < 1.833239. So provided k ≥ 1.833239∆, Lemma 4.3 implies
that the variable-length coupling is (1− α)-contractive for absolute constant α := k−λ∗∆

k−∆−2 .
For k ≥ 1.833239∆, Corollary 4.1 implies that β in the definition of Theorem 2.2 is at most

nk
k−∆−2 ≤ 2.21n, so applying Theorem 2.2 with β = 2.21n, and W = 2Nmax + 1 = 13 gives that
τmix(ε) = O(n log(n/ε)). In particular, τmix = O(n log n).

8Code for solving Linear Program 4 can be found at https://github.com/sitanc/mixedlp.
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5 Proof of Theorem 1.1 Using an Alternative Metric

This section contains the proof of Theorem 1.1 using an alternative metric as presented in [DPP18].
Lemma 3.3 shows that a one-step coupling analysis using the Hamming metric cannot yield any
improvement over 11/6. The first step in our proof is to find a set of flip parameters that only has
two extremal configurations, up to symmetry, namely the ones used to define Linear Program 3. We
then introduce a new metric that depends on the number of colors in non-extremal configurations.
Analyzing the one-step coupling defined in Appendix A (greedy coupling) with this metric, we
obtain a constant improvement over the 11/6 bound.

5.1 Choice of Flip Parameters and Expected Change in Hamming metric

By Corollary 3.1, the objective value of Linear Program 3 is 11/6. It is straightforward to check
that λ = 11/6 only if the solution satisfies p3 = 1/6 and pα = 0 for all α ≥ 7. Since for any
such assignment, the constraints corresponding to (3, 2; (1), (1)) and (7, 3; (3, 3), (1, 1)) are tight, we
introduce the following variant of Linear Program 1:

Linear Program 5. For variables {pα}α∈N0 and λ, minimize λ subject to the following constraints:
p0 = 0 ≤ pα ≤ pα−1 ≤ p1 = 1 for all α ≥ 2, p3 = 1/6, pα = 0 for α ≥ 7 and for all realizable
configurations (A,B; a,b) of size m different from (3, 2; (2), (1)), (2, 3; (1), (2)), (7, 3; (3, 3), (1, 1))
and (3, 7; (1, 1), (3, 3)), define a constraint

H(A,B; a,b) ≤ −1 + λm.

Consider the following reduced linear program with a finite set of variables and constraints.

Linear Program 6. For variables {p1, . . . , p6} and λ, minimize λ subject to the following con-
straints: 0 ≤ pα ≤ pα−1 ≤ p1 = 1 for all α ≥ 2, p3 = 1/6, constraints

i(pi − pi+1) + j(pj − pj+1)−min{pi − pi+1, pj − pj+1} ≤ −1 + λ, (21)

for i ∈ {1, . . . , 6}, j ∈ {2, . . . , 6} with (i, j) 6= (1, 2), and

2p1 + 3p2 −min{p2 − p5, p3 − p1} ≤ −1 + 2λ.

One can solve the program using a computer.

Observation 5.1. The Linear Program 6 has objective value λ̂ = 161
88 = 1.8295 . . . and an optimal

solution is given by

p̂1 = 1, p̂2 =
185

616
, p̂3 =

1

6
, p̂4 =

47

462
, p̂5 =

9

154
, p̂6 =

2

77
.

Lemma 5.1. The assignment p̂ = {p̂α}α∈N0 where p̂α is given by Observation 5.1 for α ∈ [6] and
p̂α = 0 otherwise, forms a feasible solution of Linear Program 5 with objective value λ̂.

We defer the proof of the lemma to Appendix D.1.

Observation 5.2. Consider the solution p̂ of Linear Program 5 given in Observation 5.1. The
constraints in Linear Program 1 that are not contained in Linear Program 5 are implied by the
conditions p1 = 1, p3 = 1/6 and p7 = 0. Thus, p̂ is a feasible solution of Linear Program 1 with
objective value 11/6. Since the objective value of p̂ in Linear Program 5 is strictly smaller than 11/6,
up to symmetry, there are only two p̂-extremal configurations: (3, 2; (1), (1)) and (7, 3; (3, 3), (1, 1)).

We conclude that

H(A,B; a,b) ≤

{
11
6 for every p̂-extremal configuration (A,B; a,b),

λ̂ = 161
88 otherwise.

(22)
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5.2 Definition of the Alternative Metric

In this section we introduce the alternative metric we will use for the analysis of the one-step
coupling, defined using a pre-metric (Γ, ω). Let Γ be the graph with vertex set Ω where two
colorings are adjacent if and only if they differ at exactly one vertex. We proceed to define ω.

Fix the assignation of flip parameters p̂ given in Observation 5.1. Our definition of the pre-
metric is driven by the fact that extremal configurations are an obstacle to show contraction of the
metric when k < 11∆/6. Define the following sets of colors,

C1
σ,τ (v) := {c : (Ac, Bc,a

c,bc) is an extremal configuration for (σ, τ) of size 1} ,
C2
σ,τ (v) := {c : (Ac, Bc,a

c,bc) is an extremal configuration for (σ, τ) of size 2} .

Let Cσ,τ (v) = C1
σ,τ (v) ∪ C2

σ,τ (v) be the set of colors c such that (σ, τ) has an extremal config-
uration for c. Note that for each color c ∈ C2

σ,τ (v), there are two neighbors of v with color c.
Let γσ,τ (v) = (|C1

σ,τ (v)| + 2|C2
σ,τ (v)|)/∆, that is, the number of neighbors of v that participate in

extremal configurations of (σ, τ) normalised by a factor ∆; thus γσ,τ (v) ≤ 1.
Let η ∈

(
0, 1

2

)
be a sufficiently small constant to be fixed later. The weight function that we

will use for our pre-metric is defined as

ω(σ, τ) := 1− η(1− γσ,τ (v)) . (23)

Note that ω(σ, τ) ∈ [1 − η, 1]. Since η < 1
2 and γσ,τ (v) ≤ 1, every path containing at least two

edges has weight greater than one. So every edge is a minimum weight path, implying that (Γ, ω)
is a pre-metric. Let d be the metric on Ω obtained from (Γ, ω) using minimum weight paths in Γ.
By Remark 2.1, for every (σ̃, τ̃) ∈ Ω2 there exists a path between σ̃ and τ̃ in Γ with dH(σ̃, τ̃) edges
in which every edge has weight at most 1. It follows that d(σ̃, τ̃) ≤ dH(σ̃, τ̃).

Define

dB(σ̃, τ̃) := dH(σ̃, τ̃)− d(σ̃, τ̃) . (24)

In general, dB is not a metric, here we will only use that it is non-negative. The contribution of dB
will be crucial for the constant improvement over 11

6 in this approach.
Given the greedy coupling (σ, τ)→ (σ′, τ ′) for neighboring coloring pairs (σ, τ), define

∇(σ, τ) := nkE
[
d(σ′, τ ′)− d(σ, τ)

]
. (25)

Define the rescaled contributions to the expected change of dH and dB as

∇H(σ, τ) := nkE
[
dH(σ′, τ ′)− 1

]
,

∇B(σ, τ) := −nkE
[
dB(σ′, τ ′)− dB(σ, τ)

]
,

and note that ∇(σ, τ) = ∇H(σ, τ) +∇B(σ, τ).
We first bound ∇H . Recall that Xc is the event that the coupling flips Kempe components in

Dc in both chains. Denote by X the complement of the event ∪c:δc>0Xc. Define

∇H(σ, τ, c) := nkE
[
1Xc · (dH(σ′, τ ′)− 1)

]
. (26)

Note that E
[
1X · (dH(σ′, τ ′)− 1)

]
= 0 as we use the identity coupling if X holds, so σ′ and τ ′ only

differ at v. Using (6), Lemma 2.2, and (22), we obtain a bound on the expected change of the
Hamming part of the metric in terms of the number on non-extremal configurations.

Corollary 5.1. Let δ = 11
6 −

161
88 . For every neighboring coloring pair (σ, τ), we have

∇H(σ, τ) ≤
(

11

6
− δ (1− γσ,τ (v))

)
∆− k .
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5.3 Contribution of the Extremal Part of the Metric

In this section we bound ∇B(σ, τ) from above. Define the contributions

∇B(σ, τ, c) := −nkE[1Xc · (dB(σ′, τ ′)− dB(σ, τ))] ,

∇B(σ, τ) := −nkE[1X · (dB(σ′, τ ′)− dB(σ, τ))] .

By equations (23) and (24), since dH(σ, τ) = 1, we have dB(σ, τ) = 1 − ω(σ, τ) = η(1 − γσ,τ (v)).
Moreover, dB(σ′, τ ′) ≥ 0. By the properties of the greedy coupling,

∇B(σ, τ, c) ≤ η(1− γσ,τ (v))nkP[Xc = 1] ≤ 2η(1− γσ,τ (v))(δc + 1) ,

where we have used that the probability of flipping a given Kempe component is at most 1/nk.
We can bound the expected change of ∇B as follows

∇B(σ, τ) = ∇B(σ, τ) +
∑
c∈[k]

∇B(σ, τ, c) ≤ ∇B(σ, τ) + 2η(k + ∆)(1− γσ,τ (v)) . (27)

Let D = (Sσ ∪Sτ )\D denote the set of Kempe components of σ and τ that do not involve vertex v.
Note that each component in D is a Kempe component of both σ and τ . An important difference
here as opposed to the analysis of the contribution of ∇H , is that the components in D have an effect
on the expected change of ∇B. For a coloring σ and S ∈ Sσ, let σS denote the coloring obtained by
flipping S in σ. For S ∈ D, since dH(σS , τS) = 1, we have dB(σS , τS) = η(1− γσS ,τS (v)). It follows
that, ∇B(σ, τ) = η

∑
S∈D p|S|(γσS ,τS (v)− γσ,τ (v)).

For each c ∈ [k] and i ∈ {1, 2} and S ∈ D, let

ξσ,τ (v, c, S) :=



−i if c ∈ Ciσ,τ (v) and c /∈ CσS ,τS (v),

i if c /∈ Cσ,τ (v) and c ∈ CiσS ,τS (v),

−1 if c ∈ C2
σ,τ (v) and c ∈ C1

σS ,τS
(v),

1 if c ∈ C1
σ,τ (v) and c ∈ C2

σS ,τS
(v),

0 otherwise.

The variable ξσ,τ (v, c, S) can be understood as the contribution of color c to γσS ,τS (v)−γσ,τ (v). For
every S ′ ⊆ D, we define

∇B(σ, τ, c,S ′) :=
η

∆

∑
S∈S′

p|S|ξσ,τ (v, c, S) ,

and note that ∇B(σ, τ) =
∑

c∈[k]∇B(σ, τ, c,D) .

Next lemma bounds from above the contribution ∇B(σ, τ, c,D) for each c. This is the most
technical part of our approach and we defer its proof to Appendix D.2.

Lemma 5.2. For every neighboring coloring pair (σ, τ) and color c, we have:

i) For i ∈ {1, 2}, if c ∈ Ciσ,τ (v), then ∇B(σ, τ, c,D) ≤ −iη
(
k
∆ −

3
2

)
;

ii) If c /∈ Cσ,τ (v), then ∇B(σ, τ, c,D) ≤ 2η
(
9 + 15k

∆

)
.

The following bound on ∇B follows directly from (27) and Lemma 5.2.

Corollary 5.2. For every neighboring coloring pair (σ, τ), we have

∇B(σ, τ) ≤ −η
(
k

∆
− 3

2

)
γσ,τ (v) + 2η

(
10 +

16k

∆

)
(1− γσ,τ (v)) .
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5.4 Contraction of the Metric and Proof of Theorems 1.1 and 1.2

We now can show that the metric d contracts in expectation.

Theorem 5.1. For the flip parameters p̂ given in Observation 5.1 there exists ε0, µ > 0 such that
for every k ≥

(
11
6 − ε0

)
∆ and every neighboring coloring pair (σ, τ), the greedy coupling satisfies

∇(σ, τ) ≤ −µk .

Proof. Recall that δ = 11
6 −

161
88 = 1

264 , and set η = δ∆
53k . Fix ε0 = 1

84000 and note that
(

11
6 −

δ
318

)
∆ ≤

k− µk for some small constant µ > 0. Note that k
∆ ≥

9
5 . Using (25) and Corollaries 5.1 and 5.2, it

follows that

∇(σ, τ) ≤
(

11

6
−
(
δ − 2η

(
10 +

16k

∆

))
(1− γσ,τ (v))− η

(
k

∆
− 3

2

)
γσ,τ (v)

)
∆− k

≤
(

11

6
− δ

318

)
∆− k ≤ −µk .

We now proceed with the proof of our main result.

Proof of Theorem 1.1. Consider the metric d on Ω defined in Section 5.2. By Theorem 5.1, for the
flip probabilities p̂ there exist ε0, µ > 0 such that if k ≥

(
11
6 − ε0

)
∆, then the greedy coupling

(σ, τ)→ (σ′, τ ′) defined on neighbouring coloring pairs (σ, τ) satisfies

E
[
d(σ′, τ ′)

]
≤ d(σ, τ)− µ

n
≤
(

1− µ

n

)
d(σ, τ) . (28)

By Theorem 2.1 with α = µ/n, we can extend the coupling over all (σ, τ) ∈ Ω2 so (28) is still
satisfied. As η < 1/2, for σ 6= τ one has d(σ, τ) ∈ (1/2, n]. We use the coupling bound in (1)
together with Markov’s inequality, to obtain for σ(0) ∈ Ω

dTV(P t(σ(0), ·), π) ≤ max
τ (0)∈Ω

P[σ(t) 6= τ (t)] = max
τ (0)∈Ω

P[d(σ(t), τ (t)) ≥ 1/2] ≤ max
τ (0)∈Ω

2E[d(σ(t), τ (t))]

≤ 2(1− µ/n)tn .

It follows that τmix(ε) ≤ Cn(log n+ log ε−1), for some absolute constant C > 0.

6 List Colorings

In this section we introduce the notation for list-colorings and give an overview of the proof of
Theorem 1.4, deferring the details to Appendix E.

A list assignment of G is a function L : V (G)→ 2N. An L-coloring is a function σ : V (G)→ N
such that σ(u) ∈ L(u) for all u ∈ V (G). Usually in the literature list-colorings are assumed to
be proper, here we will not require this but distinguish between proper and not necessarily proper
list-colorings. We denote by ΩL the set of all L-colorings of G. If |L(u)| = k for all u ∈ V (G), then
we say that L is a k-list-assignment and that an L-coloring is a k-list-coloring.

The Glauber dynamics for L-colorings is a discrete-time Markov chain (σ(t)) with state space
ΩL where σ(t) is generated from σ := σ(t−1) as follows:

1. Choose v(t) uniformly at random from V (G).

2. For all vertices v 6= v(t), let σ(t)(v) = σ(v).
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3. Choose c(t) uniformly at random from L(v(t)), if c does not appear among the colors in the
neighborhood of v(t) then let σ(t)(v(t)) = c, otherwise let σ(t)(v(t)) = σ(v(t)).

Although we define the chain over ΩL, σ(t) will converge to the uniform distribution on proper
L-colorings, as in the case of non-list-colorings.

Given σ ∈ ΩL, one can define Kempe components of σ as for colorings and we denote by SLσ the
multiset of Kempe components S = Sσ(u, c) with u ∈ V (G) and c ∈ L(u). Let σS be the coloring
obtained from σ by swapping the colors in S and note that σS is not necessarily an L-coloring as
the new color of a vertex might not be in its list. Given S = Sσ(v, c) ∈ SLσ , we say that S is flippable
if for every u ∈ S we have {σ(v), c} ⊆ L(u). If S is flippable, then σS ∈ ΩL.

Let p = {pα}α∈N0 be a collection of flip parameters. The flip dynamics for L-colorings is a
random process generating a sequence of colorings σ(0), σ(1), σ(2), · · · of G where σ(0) is an arbitrary
coloring in ΩL and σ(t) is generated from σ := σ(t−1) as follows:

1. Choose v(t) uniformly at random from V (G).

2. Choose c(t) uniformly at random from L(v(t)).

3. Let S = Sσ(v(t), c(t)) and α = |S|. If S is flippable, with probability pα/α let σ(t) = σS ,
otherwise let σ(t) = σ.

We prove the analogue of Theorem 1.1 for list-colorings.

Theorem 6.1. The flip dynamics for sampling k-list-colorings is rapidly mixing with mixing time
O(n log n), for any k ≥ (11

6 − ε0)∆ where ε0 > 0 is the same constant from Theorem 1.1.

The proof of this theorem follows the same strategy as the proof of Theorem 1.1. The main
difference in the analysis of the flip dynamics for list-coloring is that some of the moves that are
valid in the non-list case, are not legal here. An important observation is that (4) no longer holds
for list-colorings. For instance, it might be the case that Ac = 0 since Sσ(v, c) is not flippable, while
some of the aci 6= 0. This leads to a weaker definition of realizable configuration and produces a
linear program whose set of contraints is a superset of the constraints in Linear Program 1. An
analysis similar to the one given for c ∈ {σ(v), τ(v)} implies that the new constraints have positive
slack for the optimal solutions of the linear program we use, so no new extremal configuration
arises. Thus, the analysis of the expected change of the one-step greedy coupling with respect to
the Hamming metric is the same as for non-list-colorings in Section 3.

The other key observation common to extending both approaches of this work to list colorings
is that if S = Sσ(v(t), c(t)) has size 1, then S is always flippable since c(t) ∈ L(v(t)). This is enough
to show that the same flip parameters used to prove Theorem 1.1 in either approach also work in
the list coloring setting.

In Section 4, only size 1 flips are used to lower bound the probabilities of breaking apart extremal
configurations and terminating the coupling, so Lemma 4.6, Lemma 4.7, and the lower bound in
Lemma 4.2 still hold. It is also obvious that upper bounds on these events (Lemma 4.8 and the
upper bound in Lemma 4.2) still hold, so Section 4 carries over to the list setting.

In Section 5, the list version of Corollary 5.1 holds for the flip parameters p̂ given by Observa-
tion 5.1. As components of size one are the ones giving the negative contribution in Lemma 5.2,
the list version of Corollary 5.2 also holds. These two corollaries imply Theorem 6.1 in a similar
way as in Section 5.4.

We provide a full proof of Theorem 6.1 in Appendix E using the approach of Section 5. This
implies Theorem 1.4 in the same way that Theorem 1.1 implies Theorem 1.2.
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[EHŠ+16] Charilaos Efthymiou, Thomas P Hayes, Daniel Štefankovic, Eric Vigoda, and Yitong
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A Review of Vigoda’s Greedy Coupling

A.1 The Coupling

In this section we give a self-contained overview of Vigoda’s coupling analysis. For the reader’s
convenience, we restate some notation that was already introduced in Section 2.4.

Fix a neighboring coloring pair (G, σ, τ). For c ∈ [k], let Uc denote the set of neighbors of v (in
either coloring) that are colored c, and let δc = |Uc|. We will sometimes denote the vertices in Uc
by {uc1, ..., ucδc}; where c is clear from context, we will simply denote these by {u1, ..., uδc}.

Note that the symmetric difference D = Sσ∆Sτ is precisely the Kempe components Sσ(uci , τ(v))
and Sσ(v, c) in σ and the Kempe components Sτ (uci , σ(v)) and Sτ (v, c) in τ , for all colors c appearing
in the neighborhood of v and all i ∈ [δc]. All other Kempe components are shared between σ and
τ , so for those, it is enough to use the identity coupling. Note that for colors c 6= σ(v), τ(v) not
appearing in N(v), the identity coupling then matches the flip of Sσ(v, c) to that of Sτ (v, c) so that
the two colorings of G become identical.

So the main concern is how to couple the flips of components in D. We can decompose D into
∪c:δc>0Dc, where the sets Dc are defined as follows:

Definition A.1. Let Dc be the set of Kempe components consisting of Sσ(v, c), Sτ (v, c), and all
Sσ(u, τ(v)) and Sτ (u, σ(v)) for all u ∈ Uc.

Informally, Dc is the subset of D that involves the color c. It is easy to see that for c 6= σ(v),

Sσ(v, c) =

(
δc⋃
i=1

Sτ (uci , σ(v))

)
∪ {v}, (29)

and when c = σ(v), Sσ(v, c), Sτ (u, σ(v)) = ∅ for any u ∈ Uc. Likewise we have that for c 6= τ(v),

Sτ (v, c) =

(
δc⋃
i=1

Sσ(uci , τ(v))

)
∪ {v}, (30)

and when c = τ(v), Sτ (v, c), Sσ(u, τ(v)) = ∅ for u ∈ Uc.
The sets Dc are disjoint except possibly the pair Dσ(v), Dτ(v), as these both contain (σ(v), τ(v))-

colored Kempe components, though we defer this point to later.

Remark A.1. One subtlety is that there may exist multiple neighbors u′1, . . . , u
′
m ∈ N(v) which

are colored c but which satisfy Sτ (u′1, σ(v)) = · · · = Sτ (u′m, σ(v)); to guarantee that the flip of each
component is considered exactly once, redefine Sτ (u′i, σ(v)) = ∅ for all 1 < i ≤ m. Handle the
components Sσ(u′i, τ(v)) analogously.

In [Vig99], Vigoda couples flips of Kempe components within Dc as follows. First we require
some notation. For c such that δc > 0, define Ac := |Sσ(v, c)|, Bc := |Sτ (v, c)|, aci = |Sτ (uci , σ(v))|,
and bci = |Sσ(uci , τ(v))|. Define the vectors ac := (aci : i ∈ [δc]) and bc := (bci : i ∈ [δc]). Also define
acmax = maxi a

c
i and denote the maximizing i by icmax. Likewise define bcmax = maxj b

c
j and denote
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the maximizing j by jcmax. When it is clear from context that we are just focusing on a generic
color c, we will refer to these as A,B, ai, bi,a,b, amax, imax, bmax, jmax. We say that neighboring
coloring pair (G, σ, τ) has a configuration (Ac, Bc; a

c,bc) of size δc.
Naively we have the bounds

1 + amax ≤ A ≤ 1 +
∑
i

ai, 1 + bmax ≤ B ≤ 1 +
∑
i

bi, (31)

and moreover the upper bounds in (4) are equalities when c 6= σ(v), τ(v).
Note that Sσ(v, c) and Sτ (v, c) can be quite different but Sσ(v, c) ⊃ Sτ (ui, σ(v)) so it is eas-

ier to understand the overlap between these two components. Among all choices of i, this over-
lap is maximized for i = imax, and the idea of Vigoda’s coupling is thus to greedily couple the
flips of the biggest components, i.e. Sσ(v, c), Sτ (v, c), to the flips of the next biggest components,
i.e. Sτ (uimax , σ(v)), Sσ(ujmax , τ(v)), and then to couple together as closely as possible the flips of
Sσ(ui, τ(v)) and Sτ (ui, σ(v)) for each i ∈ [δc]. Formally, assuming p1 ≥ p2 ≥ · · · we have:

1. Flip Sσ(v, c) and Sτ (uimax , σ(v)) together with probability pA.

2. Flip Sτ (v, c) and Sσ(ujmax , τ(v)) together with probability pB.

3. For i ∈ [δc], define

qi =

{
pai − pA if i = imax

pai otherwise
(32)

q′i =

{
pbi − pB if i = jmax

pbi otherwise
(33)

Note that qi and q′i are the remaining probability associated to flips Sτ (ui, σ(v)) and Sσ(ui, τ(v))
respectively.

(a) Flip Sτ (ui, σ(v)) and Sσ(ui, τ(v)) together with probability min(qi, q
′
i)

(b) Flip only Sτ (ui, σ(v)) together with probability qi −min(qi, q
′
i)

(c) Flip only Sσ(ui, τ(v)) together with probability q′i −min(qi, q
′
i)

Coupled moves 1) and 2) change the Hamming distance by at most A−amax−1 and B−bmax−1
respectively (with equality, for example, if G is a tree rooted at v). For any given i ∈ [δc], coupled
move 3a) changes the Hamming distance by ai + bi − 1, where the extra -1 term comes from the
fact that Sτ (ui, σ(v)) and Sσ(ui, τ(v)) are of size ai and bi respectively but share vertex ui. On
the other hand, coupled moves 3b) and 3c) obviously change the Hamming distance by ai and bi
respectively. For a configuration (A,B; a,b), define

H(A,B; a,b) = (A− amax − 1)pA + (B − bmax − 1)pB +
∑
i

f(ui), (34)

where
f(ui) = aiqi + biq

′
i −min(qi, q

′
i) (35)

The above discussion implies that for c 6= σ(v), τ(v) appearing in the neighborhood of v,

kn · E[1Xc · (d(σ′, τ ′)− 1)] ≤ H(Ac, Bc; a
c,bc), (36)
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where Xc is the random event that the coupling flips components in Dc in both colorings. For c not
appearing in the neighborhood of v, the Hamming distance will not change if Kempe components
containing the color c are flipped in both colorings, as the coupling is the identity on these compo-
nents, except if v is flipped to c in both colorings, in which case the Hamming distance decreases
by 1.

Lastly, we review how the case of c = σ(v), τ(v) and Dσ(v) ∪ Dτ(v) 6= ∅ is handled in [Vig99].
This is the main place where one needs to be careful about the fact that neighboring coloring pairs
σ, τ need not be proper.

Remark A.2. When c = σ(v), τ(v), we must make sure not to double count flips, as it is possible
that Dσ(v) and Dτ(v) share Kempe components. In this remark, suppose Dσ(v) ∩ Dτ(v) 6= ∅. This
can only happen if there exist xi, yj ∈ N(v) colored σ(v), τ(v) respectively for which Sσ(v, τ(v)) =
Sσ(xi, τ(v)) and Sτ (v, σ(v)) = Sτ (xi, σ(v)). To avoid double counting, Vigoda sets Sσ(v, τ(v)) =
Sτ (yj , σ(v)) = ∅ in this case. The bound (6) then holds for both c = σ(v), τ(v). The only difference
is that some values among Ac, Bc and the entries of ac,bc will be zero, in which case we take p0 = 0.

Specifically, for c = τ(v), we have Ac = 0, Bc = bcmax = 0, and at least one acj is zero, namely
the one corresponding to the component Sτ (yj , σ(v)) = Sτ (v, σ(v)). In this case one can check that
H(Ac, Bc; a

c,bc) =
∑
acjpacj , and provided αpα ≤ 1 for all α, this is at most δc − 1.

For c = σ(v), we have Ac = 0, aci = 0 for all i, and Bc =
∑

j b
c
j. Let j∗ be the index of the

unique neighbor uj∗ of v for which Sτ (v, σ(v)) = Sσ(uj∗ , σ(v)). Then because Sσ(uj∗ , σ(v)) contains
v, we need to modify the definition of bcmax. Let bcmax = maxj(b

c
j− Ij=j∗) and denote the maximizing

j by jcmax. Then the lower bound on Bc in (4) still holds, and (6) still holds. Moreover, if δc = 1,
then E[d(σ′, τ ′)− 1|Xσ(v)] = H(Ac, Bc; a

c,bc) = 0.

Henceforth, we will refer to the coupling defined above as the greedy coupling. We can conclude
the following, implicit in [Vig99]:

Lemma A.1. Let (σ, τ) 7→ (σ′, τ ′) be the greedy coupling. Then

E[d(σ′, τ ′)− 1] ≤ 1

nk

−|{c : δc = 0}|+
∑
c:δc 6=0

H(Ac, Bc; a
c,bc)

 . (37)

The function H implicitly depends on the choice of flip parameters {pα}, while Ac, Bc,a
c,bc

depend on (G, σ, τ). The remaining analysis in [Vig99] once (7) has been deduced essentially boils
down to picking a good set of flip parameters.

A.2 Enumerating Realizable Configurations

In Section 3 we raised the issue of enumerating all realizable configurations in Linear Program 1.
In particular, while it was easy to enumerate realizable configurations (Ac, Bc; a

c,bc) for which
c 6= σ(v), τ(v), we provided without proof two types of constraints ((10) and (11)) that we claimed
would handle realizable configurations for which c = σ(v), τ(v). In this subsection we fill in the
details for why these two constraints suffice for configurations with c = σ(v), τ(v).

For c = σ(v), by Remark A.2, any realizable (Ac, Bc; a
c,bc) satisfies H(Ac, Bc; a

c,bc) = 0 if
δc = 1, and satisfies Ac = 0, ac = (0, ..., 0), Bc =

∑
i b
c
i , and

H(Ac, Bc,a
c,bc) = (Bc−bcmax−1)pBc +

∑
i 6=jmax

bcipbci +bjmax(pbcjmax −pBc) ≤ (Bc−bcm)pBc +
∑

bcipbci

if δc > 1. So the relaxed constraint (10) covers all constraints corresponding to c = σ(v).
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For c = τ(v), we know by Remark A.2 that when c = τ(v), (11) ensures that H(Ac, Bc; a
c,bc) ≤

δc− 1, and for any λ > 1 (corresponding to k > d, which is the regime we are interested in to begin
with), we automatically have that δc − 1 < −1 + λ · δc.

B Extremal Configurations for Vigoda’s Choice of Flip Parame-
ters and Missing Proofs from Section 3

Observation B.1. Consider the assignment (13) in Linear Program 2 for Nmax = 6 and m∗ = 3.
Constraint (11) is tight under the assignment (13) only for α = 1. Among the constraints of the
form (9) associated to a realizable configuration (A,B; a,b), up to symmetry, there are six tight
constraints:

i) m = 1, A− 1 = a1 ∈ {2, 3, 4, 5} and B − 1 = b1 = 1;

ii) m = 2, A = a1 + a2 + 1, a1 = a2 ∈ {2, 3}, B = 1 and b1 = b2 = 1.

Any other constraints of the form (9) that do not meet these conditions, and all constraints of the
form (10) and (12), are not tight under the assignment (13). This can be verified numerically. It
follows that Vigoda’s solution has six extremal realizable configurations, up to symmetries.

Proof. The tightness of (11) only for α = 1 is obvious. That the other constraints mentioned in
the observation have zero slack can be checked by hand. We verify that all other constraints have
nonzero slack.

Case 1. Constraint (9) for m = 1

We first consider realizable (A,B; ac,bc). It is easy to see that (i − 1)(pi − pi+1) ≤ 1/7 with
equality if and only if i ∈ {2, 3, 4, 5}, and that i(pi−pi+1) ≤ 29/42 with equality if and only if i = 1.
Note that for m = 1,

H(A,B; a,b) = max (a1(pa1 − pa1+1) + (b1 − 1)(pb1 − pb1+1), (a1 − 1)(pa1 − pa1+1) + b1(pb1 − pb1+1))

≤ 29

42
+

1

7
=

5

6
,

with equality if and only if a1 = 1 and b1 ∈ {2, 3, 4, 5} or b1 = 1 and a1 ∈ {2, 3, 4, 5}.

Case 2. Constraint (9) for m = 2

We analyze this case in the same way that Claim 6 of [Vig99] is proved. Assume without loss
of generality that pamax − pA ≤ pbmax − pB and a1 ≥ a2. In [Vig99] it is noted that one may assume
that b2 ≥ b1 so that

H(A,B; a,b) = (A−2a1)pA+(B−2b2−1)+(a1−1)pa1 +a2pa2 +b1pb1 +b2pb2−min(pa2 , pb2−pB).

Now we proceed by casework on min(pa2 , pb2 − pB):

• pa2 ≤ pb2 − pB: In this case we have

H(A,B; a,b) = (a1−1)pa1 +(a2−1)pa2 +(A−2a1)pA+b1pb1 +b2pb2 +(B−2b2−1)pB. (38)

One can check that (a−1)pa ≤ 1/3 with equality if and only if a = 3. If a1 = 3, (A−2a1)pA ≤ 0
with equality if and only if a2 = 3 and 6 ≤ A ≤ 7. However (6, 3; (3, 3); (b1, b2)) is not
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realizable. If a1 6= 3, (A− 2a1)pA > 0 if and only if a1 = a2 and A = a1 + a2 + 1. It turns out
that p3 < 2p2 + p5 = 4p3 + p7 = 2/3 and thus (38) is only maximized when a1 = a2 ∈ {2, 3}
and A = a1 + a2 + 1. In a similar manner, we can verify that for any fixed A, a1, a2, (38) is
only maximized when b1 = b2 = 1 and B = 3 and, in such a case, the contribution to the
part involving B, b1, b2 is 2. So, with the given assumptions, the only two configurations with
H(A,B; a,b) = 8/3 are (7, 3; (3, 3); (1, 1)) and (5, 3; (2, 2); (1, 1)), up to .

• pa2 > pb2 − pB: In this case we have

H(A,B; a,b) = (a1 − 1)pa1 + a2pa2 + (A− 2a1)pA + b1pb1 + (b2 − 1)pb2 + (B − 2b2)pB.

This is symmetric with respect to flipping the roles of (a1, a2) and (b2, b1), and it can be
verified that (a1 − 1)pa1 + a2pa2 + (A− 2a1)pA < 4/3, so H(A,B; a,b) < 8/3.

Case 3. Constraint (10)

For m = 2, the left-hand side of (10) is b1pb1+b2 + b1pb1 + b2pb2 , which attains its maximum
value of p2 + 2 < −1 + 2λ at b1 = b2 = 1. For m > 2, note that (11) implies that the left-hand side
of (10) is at most m+ 1 < −1 + λ ·m provided λ > 5/3, which is certainly the case.

Case 4. Constraint (12)

One can check that (A − 2)pA ≤ 4/21. And if pa ≤ pb, then a · pa + b · pb − min(pa, pb) =
(a − 1)pa + b · pb. But (a − 1)pa ≤ 1/3 and b · pb ≤ 1. So x∗ = 4/21 and y∗ = 4/3, and it is clear
that −1 + (11/6) · 3 > 2 · x∗ +m∗ · y∗ for m∗ = 3, so (12) has nonzero slack.

Proof of Lemma 3.3. We first show there exists no choice of flip parameters for which greedy cou-
pling contracts for all of C∗. Let λ = k/d, and suppose to the contrary that 1 ≤ λ < 11/6 and
yet there exists a set of flip parameters {pα} for which all pairs of colorings in C∗ contracted in
distance. The expected change in distance for G1 is

d

nk
·H(3, 2; (2), (1)) = d (p1 + p2 − 2p3 −min(p1 − p2, p2 − p3)) < 0 ≤ d(−1 + λ)

nk
.

The expected change in distance for G2 is

d

2nk
·H(7, 3; (3, 3), (1, 1)) = (d/2) (2p1 + 5p3 −min(p1 − p3, p3 − p7)) < 0 ≤ d(−1 + 2λ)

2nk
.

As this implies p1 − p3 ≤ −1 + λ and 2p1 + 4p3 + p7 ≤ −1 + 2λ, using p1 = 1 and p7 ≥ 0 it yields
λ ≥ 11/6, a contradiction.

Finally, it is straightforward to check that no one-step coupling can do better than the greedy
coupling. This is clear for G1. Indeed, certainly for any component not in D, the coupling should
just be the identity. Now for any neighbor u of v with color c, suppose a nonzero amount of
probability mass p for the flip of Sτ (u, σ(v)) is matched in the optimal one-step coupling to the flip
of a component other than Sσ(v, c). The expected change in distance conditioned on this pair of
components being chosen in the coupling is strictly greater than the expected change if that mass
p were instead reallocated to the empty flip in σ, contradicting optimality. By symmetry we can
show that the flip of Sσ(ui, τ(v)) is coupled only to the empty flip in τ and the flip of Sτ (ui, c).
Finally, if not all of the probability mass for the flip of Sσ(v, c) is matched to the flip of Sτ (u, σ(v)),
then we can strictly improve the coupling by reallocating that mass to Sτ (u, σ(v)).

A similar argument shows that the optimal one-step coupling for G2 is the greedy coupling.
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C Missing Proofs from Section 4

C.1 Proof of Lemma 4.1

Proof. Denote a minimizing choice of {pα} and λsing, λbad, λgood for the γ-mixed coupling LP by
{p∗α} and λ∗sing, λ

∗
bad, λ

∗
good. Then for any (G, σ, τ) ∈ C and the greedy coupling (σ, τ) 7→ (σ′, τ ′),

observe that

E[dH(σ′, τ ′)− 1] ≤ −|{c : δc = 1}|+
∑
c:σ,τ
Singc

H(Ac, Bc; a
c,bc) +

∑
c:σ,τ
Badc

H(Ac, Bc; a
c,bc) +

∑
c:σ,τ

Goodc

H(Ac, Bc; a
c,bc)

≤ −|{c : δc = 1}|+
∑
c:σ,τ
Singc

(−1 + λsing) +
∑
c:σ,τ
Badc

(−1 + 2λbad) +
∑
c:σ,τ

Goodc

(−1 + δcλgood)

= −k + λsing ·Nsing(σ, τ) + 2λbad ·Nbad(σ, τ) +
∑
c:σ,τ

Goodc

δc · λgood. (39)

But because δc ≥ 2 for any c 6= σ(v), τ(v) for which σ, τ are in state Goodc, because σ, τ are always
in state Goodσ(v), Goodτ(v), and because

Nsing(σ, τ) + 2Nbad(σ, τ) +
∑

c:σ,τ Goodc

δc = ∆(v),

we conclude that (39) is a convex combination of the terms

−k + λ∗sing ·∆(v), −k + λ∗good ·∆(v), −k +

(
γ

γ + 1
· λ∗bad +

1

γ + 1
· λ∗good

)
∆(v).

So we conclude that E[dH(σ′, τ ′)− 1] ≤ −k + λ∗γ∆(v) < 0 as long as k > λ∗γ∆.

C.2 Proof of Upper Bound in Lemma 4.2

Proof. Fix a color c for which δc 6= 0 and some i ∈ [δc]. For i 6= imax, jmax, the pairs of flips
(Sσ(ui, τ(v)), Sτ (ui, σ(v))), (Sσ(ui, τ(v)), ∅), and (∅, Sτ (ui, σ(v))) have probability mass min(pbi , pai),
max(0, pbi − pai), and max(pai − pbi , 0), for a total of max(pai , pbi). The remaining pairs of flips
have probability masses which depend on whether imax = jmax, as shown in Table 1.

From these we can conclude that

nk · P[(S, S′) terminating] ≤

 ∑
c:δc>0

pAc + pBc

+

 ∑
c:δc>0,i∈[δc]

max(paci , pbci )

+

 ∑
c:δc=0

p1

 .

The sum of the second and third summands is at most k. For the first summand, note that when
Ac, Bc are nonzero and δc > 0, Ac, Bc ≥ 2, so the first summand is at most 2p2∆. The desired
upper bound follows.

C.3 Proof of Lemma 4.3

Proof. Let λ∗sing, λ
∗
tree, λ

∗
good be the values for λsing, λtree, λgood of the minimizer of the Cγ-mixed

coupling LP from Definition 4. For Kempe components S, S′ in σ, τ respectively, define ES,S
′

σ,τ =
dH(σ′, τ ′)− 1, where σ′, τ ′ is the pair of colorings obtained by flipping S in σ and S′ in τ , and let
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Table 1: Probability masses for some coupled flips

Flip in σ Flip in τ imax = jmax imax 6= jmax

Sσ(v, c) Sτ (uimax , σ(v)) pA pA

Sτ (v, c) Sσ(ujmax , τ(v)) pB pB

Sσ(uimax , τ(v)) Sτ (uimax , σ(v)) min(paimax −pA, pbimax −pB) min(paimax − pA, pbimax )

(Sσ(ujmax , τ(v)) Sτ (ujmax , σ(v)) N/A min(pbjmax − pB, pajmax )

(Sσ(uimax , τ(v)) ∅ max(0, pbimax − pB −
paimax + pA)

max(0, pbimax − paimax + pA)

∅ Sτ (uimax , σ(v))
max(0, paimax − pA −

pbimax + pB)
max(0, paimax − pA − pbimax )

Sσ(ujmax , τ(v)) ∅ N/A max(0, pajmax − pbjmax + pB)

∅ Sτ (ujmax , σ(v)) N/A max(0, pbjmax − pB − pajmax )

Total max(paimax +pA, pbimax +pB)
max(pajmax + pB, pbjmax ) +

max(pbimax + pA, paimax )

pS,S
′

σ(T−1),τ (T−1) be the probability that S, S′ are flipped in one step of greedy coupling starting from

σ(T−1), τ (T−1). Then we have that

E[dH(σ(Tstop), τ (Tstop))− 1] =
∑
T,σ,τ

P[σ(T−1) = σ, τ (T−1) = τ ] · Z(σ(T−1), τ (T−1)), (40)

where
Z(σ(T−1), τ (T−1)) :=

∑
S,S′

I[(S, S′) terminating] · pS,S
′

σ(T−1),τ (T−1) · E
S,S′

σ(T−1),τ (T−1)

But note that for v(T ), c(T ) not terminating, ES,S
′

σ(T−1),τ (T−1) = 0 because the one-step coupling is just

the identity coupling, so Z(σ(T−1), τ (T−1)) is just the expected change in distance under one step of
greedy coupling on the neighboring coloring pair (G, σ(T−1), τ (T−1)). Therefore, for any T ≤ Tstop,

Z(σ(T−1), τ (T−1)) = E[dH(σ(T ), τ (T ))− 1]

≤ 1

nk

(
(−1 + λ∗sing) ·Nsing(σ

(T−1), τ (T−1)) + (−1 + 2λ∗bad) ·Nbad(σ
(T−1), τ (T−1))

+
∑

c:σ(T−1),τ (T−1)

Goodc

(−1 + δc · λ∗good)− |{c : δc = 0}|
)

=
1

nk
·
(
− k + λ∗singNsing(σ

(T−1), τ (T−1)) + 2λ∗badNbad(σ
(T−1), τ (T−1))

+
∑

c:σ(T−1),τ (T−1)

Goodc

δc · λ∗good
)
. (41)

Because
Nsing(σ, τ) + 2Nbad(σ, τ) +

∑
c:σ,τ

Goodc

δc = ∆(v)
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for all neighboring coloring pairs (G, σ, τ), we conclude from (40) and (41) that

E[dH(σ(Tstop), τ (Tstop))−1] =
1

nk

∑
T,σ,τ

P[σ(T−1) = σ, τ (T−1) = τ ]

(−k + λ∗sing∆sing + λ∗bad∆bad + λ∗good∆good

)
(42)

for some ∆sing,∆bad,∆good ≥ 0 satisfying

∆sing + ∆bad + ∆good = ∆(v). (43)

But note that

∆bad

∆good
=

∑
T,σ,τ P[σ(T−1) = σ, τ (T−1) = τ ] ·Nbad(σ, τ)∑
T,σ,τ P[σ(T−1) = σ, τ (T−1) = τ ] ·Ngood(σ, τ)

≤ C · E[Nbad(σ
(Tstop−1), τ (Tstop−1))]

E[Ngood(σ(Tstop−1), τ (Tstop−1))]

≤ Cγ (44)

for C := k+2p2∆
k−∆−2 , where the second inequality follows by hypothesis and the first inequality follows

by the fact that for s ∈ {bad, good},

E[Ns(σ
(Tstop−1), τ (Tstop−1))] =

∑
T,σ,τ

P[σ(T−1) = σ, τ (T−1) = τ ] · P[(ST , S
′
T ) terminating] ·Ns(σ, τ)

∈
[
k −∆− 2

nk
,
k + 2p2∆

nk

]
·
∑
T,σ,τ

P[σ(T−1) = σ, τ (T−1) = τ ] ·Ns(σ, τ),

where we use the notation x ∈ [a, b] · y to denote the fact that a · y ≤ x ≤ b · y. The first step above
follows by definition and the second step follows by Lemma 4.2.

Finally, observe that (43) and (44) imply that −k + λ∗sing∆sing + λ∗bad∆bad + λ∗good∆good is a

convex combination of −k + λ∗sing∆(v), −k + λ∗good∆(v), and −k +
(

Cγ
Cγ+1λ

∗
bad + 1

Cγ+1λ
∗
good

)
∆(v),

so in particular from (42) we get that

E[dH(σ(Tstop), τ (Tstop))−1] ≤ 1

nk

∑
T,σ,τ

P[σ(T−1) = σ, τ (T−1) = τ ]

 (−k+λ∗Cγ∆(v)) ≤
−k + λ∗Cγ∆(v)

k −∆− 2
,

where the final step follows from the fact that∑
T,σ,τ

P[σ(T−1) = σ, τ (T−1) = τ ] · P[(ST , S
′
T ) terminating] = 1

and the lower bound of Lemma 4.2.

C.4 Proof of Lemmas from Section 4.3

Proof of Lemma 4.6. Without loss of generality suppose that (Ac, Bc,a
c,bc) = (7, 3, (3, 3), (1, 1)).

Let u1, u2 be the two c-colored neighbors of v, and denote the elements of Sτ (u1, σ(v)) and
Sτ (u2, σ(v)) by {u1, w

1
1, w

2
1} and {u2, w

1
2, w

2
2} respectively. We know that the vertices {w1

1, w
2
1, w

1
2, w

2
2}

are all distinct. With probability 4
n ·

k−∆−1
k , the pair of flips (S, S′) chosen under the greedy cou-

pling satisfies S = S′ = Sσ(wij , c
′) for some i, j ∈ {1, 2} and c′ ∈ Aσ(wij)\{σ(wij)} (note that
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Aσ(wij)\{σ(wij)} contains neither σ(v) nor c). In this case, the flips are just of vertex wij from color

σ(wij) to a different color not already present in its neighborhood, so the neighboring coloring pair
σ′, τ ′ resulting from the flips is in state Goodc.

Proof of Lemma 4.8. First note that in order for σ′, τ ′ to be in stage BadEndc given that σ, τ were
in stage Goodc, it must be that condition (iii) of Definition 4.4 holds. Furthermore, the pair of
components (S, S′) flipped to get from σ, τ to σ′, τ ′ cannot be terminal, so S = S′.

Suppose that δc > 2. In this case, the probability that σ, τ leave stage Goodc for stage BadEndc
is at most the probability that enough c-colored neighbors of v are flipped so that δc becomes at most
2. A Kempe component S outside of Dc and containing at least (δc−2) c-colored neighbors of v must
be flipped in both colorings to achieve this, and the probability the greedy coupling chooses any
particular such (S, S) is pδc−2/(nk). The number of such Kempe components is at most δc · (k− 2),

so by a union bound the probability that δc becomes 2 is at most
δcpδc−2·(k−2)

nk < 3/n.
On the other hand, if δc < 2, then σ, τ are not in stage Goodc to begin with. So for the rest

of the proof, we consider the case of δc = 2. We will proceed by casework on (Ac, Bc,a
c,bc), which

we will denote as (A,B, (a1, a2), (b1, b2)) for simplicity.
Let E denote the event that σ, τ transition to stage BadEndc. Denote the two c-colored neigh-

bors of v by u1, u2. We have that E ⊆ E1 ∪ E2, where E1 is the event that u1 or u2 is flipped in
both colorings to a new color, and E2 is the event that u1 or u2 are not flipped but σ, τ nevertheless
transition to stage BadEndc. Obviously P[E1] ≤ 2/n. We now proceed to bound P[E2].

Case 1. If ai > 3 or bi > 3 for some i = 1, 2, then P[E2] ≤ 3
n .

Proof. Without loss of generality, say that a1 > 3. From the vertices of Sτ (u1, σ(v)) pick out
w,w′ 6= u1 such that w,w′, u1 form a Kempe component. We have that event E2 ⊆ A∪B, where A is
the event that all vertices in Sτ (u1, σ(v))\{u1, w, w

′} are flipped so that Sτ ′(u1, σ(v)) ⊆ {u1, w, w
′},

and B is the event that w or w′ is flipped and no longer belongs to Sτ ′(u1, σ(v)). Obviously
P[B] ≤ 2/n. For A, the (a1−3) neighbors of u1, w, w

′ in Sτ (u1, σ(v)) must be flipped at once, which
by a union bound occurs with probability at most 1

n · (a1 − 3) · pa1−3 ≤ 1
n , where the inequality

follows by (11). So P[E2] ≤ P[A] + P[B] ≤ 3/n.

Case 2. If ai = 0 for some i and b1, b2 ≤ 3, or if bi = 0 for some i and a1, a2 ≤ 3, then P [E2] ≤ 1
n .

Proof. Suppose without loss of generality that a1 = 0 and b1, b2 ≤ 3. By the definition of the greedy
coupling and the fact that c 6= σ(v), τ(v), a1 = 0 if and only if Sτ (u2, σ(v)) consists of u1, u2, w for
some σ(v)-colored w ∈ N(u1)∪N(u2). So E2 is a subset of the event that w is flipped to any other
color. Thus, P[E2] ≤ 1

n .

Case 3. If 1 ≤ a1, a2, b1, b2 ≤ 3, and if (a1, a2) and (b1, b2) are both not among {(1, 1), (3, 3)}, then
P [E2] ≤ 48

nk .

Proof. Suppose (a1, a2) and (b1, b2) are both not among {(1, 1), (3, 3)}. Then E2 is a subset of the
event that the pair of flips (S, S) chosen increases or decreases at least one of a1, a2 and decreases
or increases at least one of b1, b2, respectively. But for a flip S to decrease some ai for i ∈ {1, 2},
it must contain a member of Sτ (ui, σ(v)), and for a flip S to increase some bj for j ∈ {1, 2}, it
must contain the color c or τ(v). There are at most 3 members of Sτ (ui, σ(v)), so the probability
of (S, S) both increasing ai and decreasing bj is at most 3

n ·
2
k = 6

nk , and by a union bound over the
eight different choices of i, j, and increasing/decreasing, we conclude that P[E2] ≤ 48

nk .

Case 4. If 1 ≤ a1, a2, b1, b2 ≤ 3 and exactly one of the tuples (a1, a2) and (b1, b2) is among
{(1, 1), (3, 3)}, then P [E2] ≤ 4∆+48

nk .
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Proof. Suppose (b1, b2) = (1, 1). E2 ⊆ X ∪ Y, where X is the event that the pair of flips (S, S)
chosen increases or decreases some ai and decreases or increases some bi, respectively, and Y is
the event that (a1, a2) becomes (3, 3). We already know by Case 3 that P[X ] ≤ 48

nk . Supposing
without loss of generality that a1 < 3, the event Y is a subset of the event that a neighbor of a
vertex in Sτ (u1, σ(v)) is flipped to the color c or σ(v). There are at most 2∆ such neighbors, so
P[Y] ≤ 2∆

n ·
2
k = 4∆

nk , and thus P[E2] ≤ 4∆+48
nk .

Now suppose (b1, b2) = (3, 3). E2 ⊆ X ∪ Z where X is the event defined above and Z is the
event that (a1, a2) becomes (1, 1). Supposing without loss of generality that a1 > 1, Z is a subset
of the event that one of the members of Sτ (u1, σ(v)) other than u1 is flipped. There are at most
two such vertices, so P[Z] ≤ 2/n and P[E2] ≤ 2k+48

nk .

Case 5. If 1 ≤ a1, a2, b1, b2 ≤ 3 and (a1, a2, b1, b2) = (1, 1, 1, 1), then P [E2] ≤ 4∆
nk .

Proof. E2 is a subset of the event that one of the neighbors of u1 or u2 is flipped to the color σ(v)
or τ(v), so P[E2] ≤ 2∆

n ·
2
k = 4∆

nk .

Case 6. If 1 ≤ a1, a2, b1, b2 ≤ 3 and (a1, a2, b1, b2) = (3, 3, 3, 3), then P [E2] ≤ 2
n .

Proof. E2 ⊆ S ∪ T , where S (resp. T ) is the event that all σ(v)-colored (resp. τ(v)-colored)
neighbors in N(u1) ∪ N(u2) in τ (resp. σ) are flipped to a different color. Consider an arbitrary
σ-colored neighbor w of u1. S is a subset of the event that w is flipped, so P[S] ≤ 1/n. We can
bound P[T ] similarly, so P[E2] ≤ 2/n.

Of the upper bounds on P[E2] in all of the above cases, the bound of 3/n from Case 1 is the
greatest when k ≥ 1.833∆, completing the proof of Lemma 4.8.

D Missing Proofs from Section 5

D.1 Proof of Lemma 5.1

Proof. We need to prove that for every m and every realizable configuration (A,B; a,b) of size m
different from the four excluded ones, we have

H(A,B; a,b) ≤ −1 +mλ̂. (45)

It is straightforward to check that for every α ∈ {1, . . . , 6} the given assignment satisfies αp̂α ≤ 1,
(α− 1)p̂α ≤ 1/3 and (α− 2)p̂α ≤ (3λ̂− 5)/2; we will use some of these inequalities in the proof.

Let us first assume that c 6= σ(v), τ(v), so A = 1 +
∑

i ai and B = 1 +
∑

i bi. If m = 1, then
any realizable configuration has the form (i+ 1, j+ 1, (i), (j)). Observe that (21) correspond to the
constraint H(i+1, j+1, (i), (j)) ≤ −1+λ. We may assume that i, j ≤ 6 and that j 6= 1 as otherwise
we obtain weaker constraints, since p̂α = 0 for α ≥ 7. Thus (45) follows for every configuration of
size 1 in Linear Program 5, from the constraints in Linear Program 6.

If m = 2, as p̂α = 0 for every α ≥ 7, there is a finite amount of non-trivial realizable non-
extremal configurations (A,B; a,b) of size 2. One can check by computer that for the given values
of p̂ and λ̂, any configuration of size 2 in Linear Program 5 satisfies H(A,B; a,b) ≤ −1 + 2λ̂, with
equality if and only if the configuration is (5, 3, (2, 2), (1, 1)) or (3, 5, (1, 1), (2, 2)).

Suppose that m = 3. By Lemma 3.1, recall that

H(A,B; a,b) ≤ (A− 2)pA + (B − 2)pB +
∑
i

(aipai + bipbi −min{pai , pbi}).
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Using the properties of p̂, we have aipai + bipbi −min{pai , pbi} ≤ 4/3. Thus,

H(A,B; a,b) ≤ (A− 2)pA + (B − 2)pB +
∑
i

(aipai + bipbi −min{pai , pbi}) ≤ −1 + 3λ̂ .

If m ≥ 4 and since λ̂ > 4/3, we have

H(A,B; a,b) ≤ 3λ̂− 5 + 4m/3 ≤ −1 +mλ̂ .

We finally deal with the case c ∈ {σ(v), τ(v)}. If c = τ(v), Remark A.2 and αpα ≤ 1 implies
H(A,B; a,b) ≤ −1+m ≤ −1+mλ̂. If c = σ(v) and m = 1 then Remark 2.2 implies H(A,B; a,b) =
0 ≤ −1 + λ̂. Finally, if c = σ(v) and m ≥ 2, then (10) holds for λ̂ as αpα ≤ 1, (α− 1)pα ≤ 1/3, so
H(A,B; a,b) ≤ −1 +mλ̂.

We conclude that p̂ is a feasible solution to Linear Program 5 with objective value λ̂.

D.2 Proof of Lemma 5.2

Proof. Recall that the extremal configurations for our choice of flip parameters are (3, 2, (2), (1))
and (7, 3, (3, 3), (1, 1)), up to symmetries, and Uc = {u1, . . . , um}, where m = δc.

Assume first that c ∈ Ciσ,τ (v) for some i ∈ {1, 2}. Consider the sets of components

S0 := {S ∈ D : c /∈ CσS ,τS (v)} ,
S2 := {S ∈ D : c ∈ C2

σS ,τS
(v)} .

Note that when i = 1, then for every S ∈ D \ (S0 ∪ S2) we have ξσ,τ (v, c, S) ≤ 0; therefore,

∇B(σ, τ, c,D) ≤ ∇B(σ, τ, c,S0) +∇B(σ, τ, c,S2) .

Note that when i = 2, then for every S ∈ D \ S0 we have ξσ,τ (v, c, S) ≤ 0; therefore,

∇B(σ, τ, c,D) ≤ ∇B(σ, τ, c,S0) .

We proceed to bound ∇B(σ, τ, c,S0) for i ∈ {1, 2}. Without loss of generality, assume that
a1 > b1. Let w ∈ Sτ (u1, σ(v)) with τ(w) = σ(v); we note that w /∈ Uc ∪ {v} and that such a
vertex always exists as a1 ≥ 2. Choose a color c′ ∈ [k] with c′ /∈ σ(N(w)) ∪ {σ(v), τ(v)}. Let
S = Sσ(w, c′) ∈ D. As S = {w}, (σS , τS) has either a (2, 2, (1), (1)) or a (j+ 4, 3, (j, 3), (1, 1)) (with
j ∈ {1, 2}) configuration for c, i.e. c /∈ CσS ,τS (v). As there are at least k −∆− 2 choices for c′ and
as p|S| = p1 = 1, we have

∇B(σ, τ, c,S0) ≤ −η(k −∆− 2)

∆
· i .

Now we bound ∇B(σ, τ, c,S2), provided that i = 1. Let S ∈ S2, then |S∩ (N(v)\{u1})| ≥ 1 and
if u ∈ S ∩ (N(v) \ {u1}), then σS(u) = c. Thus, S can be described as S = Sσ(u, c) for u ∈ N(v),
implying that |S2| ≤ ∆. Moreover, |S| ≥ 2 as at least two vertices need to change their color to
transform an extremal 1-configuration into an extremal 2-configuration. Since p|S| ≤ p2 ≤ 1

3 and
ξσ,τ (v, c, S) = 1, we have

∇B(σ, τ, c,S2) ≤ η

3
.

From the bounds on ∇B(σ, τ, c,S0) and ∇B(σ, τ, c,S2) derived above, we obtain that for i ∈
{1, 2} and c ∈ Ciσ,τ (v)

∇B(σ, τ, c,D) ≤ −
η
(
k − 4∆

3 − 2
)

∆
· i ≤ −iη

(
k

∆
− 3

2

)
,
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and this proves the first statement.

To prove the second statement, assume that c /∈ Cσ,τ (v) and let T := {S ∈ D : c ∈ CσS ,τS (v)}.
Again, for every S ∈ D \ T , we have ξσ,τ (v, c, S) ≤ 0. Therefore,

∇B(σ, τ, c,D) ≤ ∇B(σ, τ, c, T ) .

Define USc := N(v) ∩ (σS)−1(c) with mS := |USc | and note that mS ≤ 2. Consider the partition
T = T1 ∪ T2 ∪ T3 with

T1 := {S ∈ D : Uc \ USc 6= ∅} ,
T2 := {S ∈ D : USc \ Uc 6= ∅} \ T1 ,

T3 := {S ∈ D : USc = Uc} .

For every S ∈ T3, if c ∈ C1
σS ,τS

(v), let (AS , BS , (aS1 ), (bS1 )) be the extremal 1-configuration for c in

(σS , τS) and if c ∈ C2
σS ,τS

(v), let (AS , BS , (aS1 , a
S
2 ), (bS1 , b

S
2 )) be the extremal 2-configuration for c in

(σS , τS). Recall that (A,B; (a1, . . . , am), (b1, . . . , bm)) denotes the configuration for c in (σ, τ). As
it is non-extremal, there exists x ∈ {a, b} and j ∈ [mS ], such that xj 6= xSj . Note that xSj ≤ 3.

Consider the partition T3 = T +
3 ∪ T

−
3 with

T +
3 := {S ∈ T3 : xj > xSj } ,
T −3 := {S ∈ T3 : xj < xSj } .

To bound the size of S ′ ∈ {T1, T +
3 } we will proceed as follows. For every S ∈ S ′, there is a vertex

in a Kempe component of either σ or τ that does not belong to the corresponding component in
either σS or τS . If there exists R(S ′) ⊆ Sσ(v, c)∪Sτ (v, c) such that S ∩R(S ′) 6= ∅ for every S ∈ S ′,
then, any S ∈ S ′ can be described as S = Sσ(w, c′) for w ∈ R(S ′) and c′ ∈ [k], and |S ′| ≤ |R(S ′)|k.

If S ′ = T1 and S ∈ S ′, then observe that |S ∩ Uc| = |Uc \ USc | ≥ max{m − mS , 1}. Let ` =
min{mS+1,m}. If R(T1) = R1 = {u1, . . . , u`}, it follows that |S∩R1| ≥ |S∩Uc|−(m−(mS+1)) ≥ 1
and |T1| ≤ (mS + 1)k ≤ 3k.

If S ′ = T +
3 and S ∈ S ′, recall that xj > xSj and set ϕ = σ if x = b and ϕ = τ if x = a, and

let π ∈ {σ, τ} \ {ϕ}. Let R(T +
3 ) = R3 be an arbitrary set of xSj vertices in Sϕ(uj , π(v)) \ {uj}. As

uj /∈ R3, we have S ∩ R3 6= ∅. Since there are 4 choices for the extremal configuration, we have
|T +

3 | ≤ 4xSj k ≤ 12k.

To bound the size of S ′ ∈ {T2, T −3 } we will proceed as follows. For every S ∈ S ′, there
is a vertex in the neighborhood of a Kempe component of either σ or τ , that belongs to the
corresponding component in either σS or τS . If there exists a set N(S ′) of neighbors of Sϕ(v, c)
such that S ∩N(S ′) 6= ∅ for every S ∈ S ′, then, any S ∈ S ′ can be described as S = Sϕ(w, c′) for
w ∈ N(S ′) and a unique c′ ∈ {c, π(v)}, and |S ′| ≤ |N(S ′)|.

If S ′ = T2 and S ∈ S ′, then let N(T2) = N2 = N(v) \ Uc. Clearly S ∩N2 6= ∅ and |T2| ≤ ∆.
If S ′ = T −3 and S ∈ S ′, recall that xj < xSj and set ϕ = σ if x = b and ϕ = τ if x = a,

and let π ∈ {σ, τ} \ {ϕ}. Let N(T −3 ) = N3 be the set of neighbors of Sϕ(uj , π(v)), which satisfies
S ∩N3 6= ∅. As S ∈ T −3 , |S| ≤ xj∆ ≤ (xSj − 1)∆ ≤ 2∆. Since there are 4 choices for the extremal

configuration, we have |T −3 | ≤ 8∆.

Since p|S| ≤ 1 and ξσ,τ (v, c, S) ≤ 2, we conclude the second statement of the lemma,

∇B(σ, τ, c,D) ≤ ∇B(σ, τ, c, T ) ≤ 2η

∆
(3k + 12k + ∆ + 8∆) = 2η

(
9 +

15k

∆

)
.
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E Proof of Theorem 6.1

Proof. The proof follows the same lines as the proof of Theorem 1.1 presented in Section 5, although
a similar analysis can be done using the multi-step coupling approach presented in Section 4. We
will describe the proof strategy, stressing the parts where the argument is different for list-coloring
and omitting the ones that are straightforward adaptations of the coloring case.

Let σ, τ ∈ ΩL that differ only at a vertex v. For the rest of the proof, we will assume c 6=
σ(v), τ(v); the case c ∈ {σ(v), τ(v)} produces weaker constraints and can be dealt similarly as in
the non-list-coloring case (see Remark A.2). For ϕ ∈ {σ, τ} ⊆ ΩL, π ∈ {σ, τ} \ {ϕ}, c ∈ L(v) and
Uc = {u1, . . . , um} the set of neighbors of v with color c with m = δc, we define the configurations
(AL, BL, (aL1 , . . . , a

L
m); (bL1 , . . . , b

L
m)) for c in (σ, τ) as before, with the sole difference that we also

set AL = 0 if Sσ(v, c) is un-flippable, BL = 0 if Sτ (v, c) is un-flippable, aLi = 0 if Sτ (ui, σ(v)) is
un-flippable and bLi = 0 if Sσ(ui, τ(v)) is un-flippable. As c 6= σ(v), τ(v), if AL 6=, then AL =
1 + aL1 + · · ·+ aLm, and similarly for BL. We define iLmax, jLmax, aLmax and bLmax analogously as before,
and note that the latter two can be zero. Define qi(L) and q′i(L) as in (32) and (33) for the list
version of the parameters.

According to this, we use the same definition of extremal configurations, metric d on ΩL, dH and
dB. Again, for any pair σ′, τ ′ ∈ ΩL, we have d(σ′, τ ′) ≤ dH(σ′, τ ′), which implies that dB(σ′, τ ′) ≥ 0.
We use the same coupling as the one defined in Appendix A and define ∇L, ∇LH and ∇LB analogously
as for colorings. Fix the flip parameters p̂ provided in Observation 5.1.

We will prove an analogue of Corollary 5.1 to bound ∇LH for list-colorings. As in Section 5.2,
we have

∇LH(σ, τ) =
∑
c∈N
∇LH(σ, τ, c) .

Suppose first that m = 0. Then c ∈ L(v) and ∇LH(σ, τ, c) = −1.
If m ≥ 1, the list analogues of equations (5) and (6) hold, so

∇LH(σ, τ, c) ≤ (AL − aLmax − 1)paL + (BL − bLmax − 1)pbL

+
∑
i∈[m]

(aLi qi(L) + bLi q
′
i(L)−min{qi(L), q′i(L)}) . (46)

We will bound each term ∇LH(σ, τ, c) depending on whether c ∈ L(v) or c /∈ L(v).

If c /∈ L(v), then it suffices to show that ∇LH(σ, τ, c) ≤ mλ̂. Note that AL = BL = 0, qi(L) = paLi
and q′i(L) = pbLi

for every i ∈ [m]. Let {cLi , dLi } = {aLi , bLi } with pcLi
≥ pdLi . Using (46), we obtain

∇LH(σ, τ, c) ≤
∑
i∈[m]

(aLi paLi
+ bLi pbLi

−min{paLi , pbLi })

=
∑
i∈[m]

cLi pcLi
+ (dLi − 1)pdLi

≤ 4

3
m < mλ̂ ,

where we have used that αpα ≤ 1 and (α− 1)pα ≤ 1
3 .

Now assume that c ∈ L(v). We will compare these bounds with the ones we obtained in
Section 5.1 by plugging the values of the configuration (AL, BL, (aL1 , . . . , a

L
m), (bL1 , . . . , b

L
m)). Observe

that there are only two differences with respect to non-list-colorings; first, AL and BL can be zero,
and second, aLmax and bLmax can be zero. Recall that p0 = 0. It is important to stress that,
since c ∈ L(v), aLmax = 0 implies AL = 0, and similarly for BL. Therefore, the only difference
between (46) and the bound obtained from (5), are the cases where either AL = 0 or BL = 0. If
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AL = aLmax = 0, then the total contribution of this part is zero and analogously for BL. Therefore,
the only interesting case is when AL = 0 and aLmax 6= 0; in this case m ≥ 2. Since AL = 0 and
c ∈ L(v), there exists j ∈ [m] such that aLj = 0. Consider the configuration of size m− 1

(A,B; (aL1 , . . . , a
L
j−1, a

L
j+1, . . . , a

L
m), (bL1 , . . . , b

L
j−1, b

L
j+1, . . . , b

L
m)) . (47)

where A = 1 +
∑

i 6=j a
L
i and B = 1 +

∑
i 6=j b

L
i . Let bmax be the maximum of the bLi with i 6= j

and note that bmax ≤ bLmax. Recall that p̂ is a feasible solution for Linear Program 1 with objective
value 11

6 and a feasible solution of Linear Program 5 with objective value 161
88 . If m ≥ 4, then the

configuration of size m− 1 in (47) for c is non-extremal and

∇H(σ, τ, c) ≤ (A− aLmax − 1)pA + (B − bmax − 1)pB +
∑
i 6=j

aLi qi + bLi q
′
i −min{qi, q′i}

≤ 161

88
(m− 1)− 1 .

If 1 ≤ m ≤ 3, then (47) can be extremal and

∇H(σ, τ, c) ≤ (A− aLmax − 1)pA + (B − bmax − 1)pB +
∑
i 6=j

aLi qi + bLi q
′
i −min{qi, q′i}

≤ 11

6
(m− 1)− 1 ≤ 161

88
(m− 1)− 131

132
.

For i = iLmax we have qi = pamax −pA and qi(L) = pamax . Moreover, we have q′j = 0 and q′j(L) ≤ pbLj .

We may assume that bLmax 6= 0, as otherwise we have b = bmax = 0 and the contribution of this part
is zero, as before. Using these bounds and (46), we obtain that for any such c ∈ [k]

∇LH(σ, τ, c) ≤ (BL − bLmax − 1)pBL +
∑
i∈[m]

(aLi qi(L) + bLi q
′
i(L)−min{qi(L), q′i(L)})

≤ ∇H(σ, τ, c)− (A− 2aLmax − 1)pA + (BL − bLmax − 1)pBL + bLj pbLj

≤ ∇H(σ, τ, c) + (A− 1)pA + (BL − 2)pBL + bLj pbLj

≤ ∇H(σ, τ, c) +
19

12

≤ 161

88
·m− 1 ,

where we have used that bLmax ≥ 1, A ≥ aLmax + 1, αpα ≤ 1, (α− 1)pα ≤ 1
3 and (α− 2)pα ≤ 1

4 . Thus,
Corollary 5.1 also holds for ∇LH .

Corollary 5.2 also holds for ∇LB as well, since all the negative contributions on the bound are
given by Kempe components S = Sσ(u, c) of size 1, which are always flippable as c ∈ L(u). The
positive contributions of the Kempe components is still bounded by the same quantity since, in the
worst case, they are all flippable.

Using the same flip parameters and reasoning as in the proof of Theorem 5.1, it follows that
for every k-list assignment L with k ≥ (11

6 − η)∆, flip dynamics for L-colorings satisfies τmix(ε) =
O(n(log n+ log ε−1)), concluding the proof of Theorem 6.1.
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