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Abstract

The relatively unbiased study of metabolites in biological systems is called
untargeted metabolomics and the application of liquid chromatography-mass
spectrometry platforms for data acquisition is now common across the world. When
operating in its most unbiased form, this experimental strategy starts from assuming
no knowledge of the metabolites to be detected and instead the data acquired is
used to annotate or identify the detected metabolites on a study-by-study basis. The
process of metabolite annotation is a bottleneck in untargeted metabolomics and to
which significant progress has been made in the last ten years in understanding the
limitations and developing new experimental and computational methods and tools
to enhance our capabilities. In this review we will describe the current status of tools
applied for metabolite annotation and discuss current areas where further work is
required.
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1. The complexities of metabolite annotation in untargeted metabolomics
studies

The study of metabolites in biological samples is routinely defined as metabolomics
and provides the capability to investigate metabolism on a global and relatively
unbiased scale in comparison to traditional targeted studies focused on specific
areas/pathways of metabolism and a small number of metabolites [1]. Changes in
the concentrations of metabolites reflects dynamic and rapid changes in the
phenotype of the system being studied; for example, mammalian muscle and blood
lactate levels increase within minutes during an intense exercise event. This global
approach provides opportunities to detect thousands of metabolites in hypothesis-
generating (rather than hypothesis-testing) studies and to associate previously
unknown metabolites with biologically important roles (e.g. metabolism, signalling,
regulation and synthesis of larger biomolecules) in human health and disease,
biotechnology, drug discovery and plant sciences. These discovery studies should
not end here but should be validated both analytically and biologically applying
targeted biological and metabolomic studies.

Significant developments related to instrumentation (e.g. increased mass resolving
power; see [2] as an example), informatics (software and databases; see [3] for a
recent review and Table 1 for a list) and analytical chemistry methods for sample
collection and preparation (see [4] for a discussion on lipidomics) have increased the
number of metabolites detected and annotated in untargeted metabolomic studies
applying liquid chromatography-mass spectrometry platforms. Mass spectrometry is
a relatively unbiased detector which has a high sensitivity and untargeted
metabolomic studies apply a crude extraction of biological samples with no steps
included to separate metabolites from non-biological chemicals. Today, thousands of
‘signals’ are detected in biological samples by liquid chromatography-mass
spectrometry (LC-MS) platforms which relate to endogenous (e.g. amino acids) and
exogenous (e.g. over-the-counter drug) metabolites as well as other chemicals
whose source is not biological (e.g. contaminants in sample collection tubes or
chemical solvents). These signals are reported with up to four different types of data
— chromatographic retention time, full-scan mass-to-charge (m/z) ratio, MS/MS or
MS" (where n>2) mass spectrum and ion mobility drift time for full-scan or MS/MS
data. Of importance is the knowledge that electrospray ionisation generates multiple
signals for each metabolite [5] as will be discussed below in section 2. Therefore the
processing of these data to remove non-biological signals and to integrate multiple
signals in to a single metabolite are required to provide a cleaned dataset for further
univariate and multivariate data analysis. A recent study [6] showed that in
Escherichia coli intracellular extracts, up to 25,000 signals can be detected which
relate to approximately 1000 metabolites and therefore demonstrated the disparity
between the number of signals detected and the number of metabolites detected. It
should be noted that the non-optimised use of raw data processing software (e.g.
XCMS) can significantly inflate the number of signals detected in the authors
experience and optimisation of software processing parameters is highly
recommended (for example, see IPO for optimisation of XCMS parameters [7]).

A second complexity in untargeted metabolomics studies is that we do not know ALL
of the metabolites which may be present in one or multiple biological samples and
which could be detected. Figure 1 visualises the different factors impacting on the
presence/absence and concentration of metabolites in human metabolomes. The



concept of ‘dark matter’ in the metabolomes of different organisms has been
introduced [8] and observations of the synthesis of unknown metabolites by
promiscuous enzymes [9], the emergence of epi-metabolites [10] and modifications
to damage-prone endogenous metabolites [11] have all been reported. There are still
many metabolites not reported or searched for in metabolomics databases.
Untargeted studies start from limited knowledge so to provide a relatively unbiased
survey of metabolites and allow detection of previously unreported metabolites which
have a previously unreported biological role. However, operating with these
principles results in the requirement to annotate metabolites present in each
biological study rather than have a predefined large list of metabolites whose
annotation is already known and which lead to a rapid conversion of data to
knowledge in all studies. The use of knowledge related to previously reported
metabolites (for example, in metabolomic databases like the Human Metabolome
Database, HMDB [12]) and Deep Metabolome Annotation (DMA) of each sample
type applying advanced analytical approaches (as discussed in section 2) provides a
long list of target metabolites that may be present. This allows rapid conversion of
data to knowledge for these metabolites in semi-targeted assays, while still allowing
unreported or unexpected metabolites not in these lists to be detected and
annotated. If the list of metabolites to be detected can be accurately defined then the
total search space is also accurately defined. As this search space increases in size
to include metabolites that have a low probability to be present (but have to be
included in the search) so does the difficulty in providing a single chemical structure
as an annotation due to the presence of isomers and an increase in the probability of
false annotations. For example, let us investigate the collection of endogenous and
exogenous metabolites and peptides defined in the largest metabolite database for
humans, the Human Metabolome Database (HMDB) [12]. The current version (v4.0)
contains 114,000 metabolites, some of which have been detected in biological
samples and some of which are predicted metabolites though not detected/reported
in the scientific literature. The inclusion of predicted metabolites increases the
complexity of the long list of targeted metabolites and can increase the confidence of
any annotations because their inclusion provides the opportunity for previously
unreported metabolites to be annotated and therefore a greater biological
interpretation of the data to be deduced. Providing a full list of metabolites which can
be detected allows more semi-targeted assays to be developed which target those
known metabolites only, reduces the risk of false positive annotations, increases the
probability of a single annotation and allows a quicker process of converting data to
knowledge. A recent review article has discussed the need for Deep Metabolome
Annotation of model species and other biological metabolomes [13] and the authors
would suggest that this is needed for all metabolomes studied; for example, there
are greater than one hundred different metabolomes in the human body when you
consider biofluids, cell types and tissues. Applying a multi-platform approach similar
to genome sequencing to experimentally and accurately define which metabolites
are present (Deep Metabolome Annotation [13]) is urgently needed to enhance the
derived knowledge and impact of metabolomics datasets.

A number of excellent reviews are available which discuss metabolite annotation and
identification (for example, see [14-15]). In this review article we will describe the
current methods and tools available for annotation of metabolites in untargeted
metabolomics studies applying LC-MS platforms. A range of different data types,
software and databases can be applied in the complete workflow as shown in Figure



2 which depicts the different steps that can (or can not) be applied in the annotation
of metabolites. Importantly, approaches defined in proteomics do not necessarily
translate to metabolomics and Boécker et al recently described this - ‘We can define
that everything is better in proteomics because given the genome sequence we can
infer all of the database of proteins and second given a peptide sequence we can
simulate a MS/MS barcode mass spectrum’ [16]. This is not the case for
metabolomics as we will see in the sections below. There are different levels of
confidence in the accuracy and robustness of the annotation or identifications
reported. The accuracy and robustness are based on which single data type or
multiple data types have been applied and whether experimental data for biological
samples have been compared to data acquired for authentic chemical standards.
These confidence levels should be reported in all studies. The first set of reporting
standards were designed by Sumner et al. as part of the Metabolomics Standards
Initiative in 2007 with four different confidence levels [17]. More recently Schymanski
et al. have reported a five-level confidence system [18].

2. Deriving the molecular formula from full-scan accurate mass data

As shown in Figure 2, the first process recommended by the authors is to reduce the
number of possible metabolite structures to one or a small number. This process is
performed primarily with full-scan accurate mass data, but as will be seen later,
accurate mass MS/MS or MS" data can also be applied. This process aims to limit
the number of molecular formulae which can represent the measured m/z ratio in full
scan data (and possibly the MS/MS data also). Let us focus on the full scan data first
and its complexity.

In LC-MS all metabolites (and chemicals from non-biological sources) traverse an
electrospray ionisation source which converts neutral molecules to a charged state
allowing them to be manipulated by electrical and/or magnetic and/or RF energies
dependent on their m/z ratio. The process of ionisation is complex involving heat,
electrical voltages and a complex mixture of chemicals and metabolites; further
information is available at [19]. Early work by Brown et al. investigated this
complexity [5] and further work from the authors of this review has expanded this
research (unpublished data). The early research showed that multiple signals
(sometimes called metabolite features) are detected for a single metabolite and
showed how expected (e.g. [M+H]", [M+Na]’) and unexpected (e.g. [M+HCOQ])
adducts, ion-source fragments (e.g. loss of ammonia from amino acids), isotopes
(e.g. *S/**S), unexpected multiply charged ions (e.g. 3+ charge state) and
unexpected loss of amino acids from conjugated metabolites (e.g. glycine from
glycine-conjugated metabolites) can be created in the electrospray source and
detected in LC-MS datasets. A recent publication has demonstrated the complexity
observed for one class of metabolites, bile acids, and has shown that the signals
were dependent on the specific bile acid, solvent flow rate and bile acid
concentration [20]. A list of common adducts and in-source fragmentations are
included in Table 2.

In the derivation of these discoveries, the important fact that different signals from
the same metabolite have three specific relationships was applied as shown in
Figure 3. These are (1) all signals for the same metabolite will have the same
retention time as they enter and exit the electrospray ion source at the same time;
(2) specific m/z differences between signals are commonly observed and not all



possible m/z differences are experimentally observed and (3) the responses
measured across multiple samples for two signals derived from the same metabolite
are positively correlated as they are formed in an identical manner (and therefore the
ratio for both will be identical across all samples) in the electrospray ion source
across all samples. These relationships allow signals derived from the same
metabolite to be grouped together and provide greater confidence to the annotation
provided. For example, a m/z difference of 21.9819 between two signals with the
same retention time indicates that the signal with lower mass is a protonated adduct
and the signal with the higher mass is a sodiated adduct. Without this m/z difference
it would be difficult to experimentally define whether the lower mass signal was a
protonated adduct or a different type of adduct. The process applied has been
reviewed recently [21] signals together and to annotate the ‘ion type’ to increase the
level of confidence for any annotations. These include early and freely available
software releases (PUTMEDID_LCMS [22], IDEOM [23] and CAMERA [24]) and
more recent additions including MS-FLO [25], CEU Mass Mediator [26], RAMClust
[6] and xMSannotator [27]. Metabolite databases including METLIN [28] and HMDB
[12] as well as commercial software which also employ these capabilities.
Interestingly, a comparison of these software by the authors shows that none use all
of the possible ion types as depicted by other software; a robust assessment of all
ion types experimentally observed across different manufacturer’'s instruments and
sample types and a standardisation of these across all software is required. Other
methods for integrating different signals for the same metabolite have been reported
and focus on Bayesian methods (for example see [29]) or known metabolic networks
(for example see [30]).

The mass resolution and accuracy of m/z measurements is dependent on the LC-MS
platform, metabolite concentration, accuracy of mass calibration and whether internal
or external mass calibration is applied. A degree of mass error is introduced during
data acquisition and this has to be taken in to account when converting a full scan
m/z signal to a neutral mass and molecular formula. A mass error can be calculated
as follows:

Mass error (ppm) =
((experimentally measured m/z — theoretical m/z) / (theoretical m/z)) * 1,000,000

Typically, errors in m/z measurements for matching experimental to theoretical m/z
values is < 5ppm which is within the installation specifications for most medium-to-
high resolving power instruments. However, do consider the effects of space-charge
effects and the influence of response on mass accuracy where lower intensity ions or
ions with a saturated response may be measured with a poorer mass accuracy than
for a simple solution of high concentration chemicals infused during installation. Also,
two signals which are not mass resolved and are observed as a single m/z signal will
have a measured m/z reported between the m/z of each signal and therefore an
accurate m/z for each metabolite would not be detected. Also the error in an
experimentally measured m/z difference applied when integrating different signals of
the same metabolite (as shown above for protonated and sodiated adducts) has to
be considered. For example, the m/z difference between *?C and **C isotopic peaks
are commonly applied to de-isotope data by removing **C isotopic peaks or to
calculate the number of carbons present in a molecular formula (as described in the



next paragraph). The m/z difference between '*C and 3C isotopic peaks is
theoretically 1.0033 and if we assume an error range of +/-0.0005 then the mass
error for a metabolite of measured m/z values for the **C and *3C ions of 50.0033
and 51.0039 is 10ppm whereas for a metabolite of measured m/z values for the *2C
and '3C ions of 100.0033 and 101.0039 then the mass error is 5ppm. However,
many software and databases apply one single mass error value of 5ppm or less for
all processes applied. Two mass errors should be defined, one for matching of
experimental m/z to theoretical m/z data in databases and one for m/z differences for
grouping of metabolite features.

The mass resolution (or resolving power) of the LC-MS platform can also be
important in deriving information from these complex electrospray datasets. For
example, the theoretical m/z for glucose ([M+H]") is 181.0707, for the **C, ion is
183.0773 and for the *20 is 183.0750. Although, the [M+H]" can be applied to derive
the monoisotopic mass accurately, only high resolving power platforms can achieve
accurate discrimination of the **C, ion and the 20 ion to aid in filtering of possible
molecular formulas. Studies on hybrid Orbitrap instruments have assessed the
influence of mass resolution and have shown that a mass resolution of 60,000 —
120,000 (FWHM at m/z 200) is required to maximise the number of signals detected
by ensuring resolution of ions of very similar but not identical m/z values [31]. More
recent work has shown the enhancements achievable in metabolite annotation at
higher mass resolutions, specifically a high-field Orbitrap Fusion instrument operated
at a mass resolution of 500,000 (FWHM at m/z 200) [2].

When applying the experimentally measured m/z value to derive a single or multiple
molecular formula(s) there are two processes. The first converts the measured m/z
value to a neutral mass and subsequently calculates the possible molecular
formula(s) which match this neutral mass within a given mass error and then
matches this molecular formula to metabolites present in metabolomic or chemical
databases. The second option uses the measured m/z value and knowledge of ion
type and searches directly for the metabolite in metabolomic or chemical databases
without the step of converting to a molecular formula. One question often raised is
whether we go from m/z to metabolite while ignoring the conversion to a molecular
formula step? Our knowledge of all possible molecular formulae is greater than our
knowledge of which metabolites we are expecting to detect (as discussed in section
1). Therefore, the conversion of raw data to a molecular formula can be the first step
applied and which if no annotation to a specific metabolite(s) can be made still
leaves the researcher with some information on the metabolite’s identity. If the
measured m/z was used directly to search metabolite databases then although
matches to metabolites will be made there is the probability that some metabolites
will not match to a metabolite in a database and no useful information (the molecular
formula) is then available. In these cases then the conversion of m/z to molecular
formula can be performed in a second subsequent process. Importantly, the
application of DMA allows us to link a greater number of metabolites to known
molecular formulae, which increases the number of annotated metabolites in
databases and reduces the probability of no match to a metabolite when a measured
m/z was used directly to search metabolite databases.

The molecular formula can also be derived with the use of MS/MS or MS" data.
Here, the possible molecular formula for the full-scan precursor signal and each of



the product ions can be calculated. The precursor ion’s molecular formula has to be
constrained by the combination of the molecular formula for each of the product ions.
For example, for a metabolite with an unknown precursor molecular formula, if one of
the product ions possible molecular formula contains a sulphur atom then all
possible precursor molecular formulas without a sulphur atom present can be
deleted from the list of possible molecular formulas. Through this process it is
possible to reduce the number of molecular formula for the precursor ion and
therefore reduce the number of possible metabolites which match the list of
molecular formulas (for an example see [32]). Another more traditional and common
approach to filter the list of possible molecular formula is to use isotopic information.
The most commonly used isotopic information is the ?C/*C relative isotope
abundance (RIA) where each carbon in the molecular formula will contribute 1.1% to
the »3C isotopic peak intensity. Therefore, if you have a **C/**C RIA of 11% the only
molecular formulas of or close to containing 10 carbon atoms (11/1.1) are possible, a
molecular formula with 18 carbons is much less probable. Figure 4 shows an
example of this. Other elements which have two detectable isotopes can also be
applied for filtering possible molecular formula and include *?S/**s, **CI2’Cl, "®/®se
and "°/*'Br. Fiehn et al. defined that even with a 1ppm mass accuracy a single
molecular formula is not always achievable, and demonstrated that using a 3ppm
mass error and combining with the use of isotopic filtering is more appropriate for
filtering potential molecular formula than using a sub-ppm mass error on its own [33].
Recently a proposal to enhance van Krevelen diagrams from O:C and H:C to
C:H:N:O:P stoichiometry has been reported to allow filtering of feasible and non-
feasible molecular formula [34].

By applying the processes discussed in this section a researcher can start with a
large search space of metabolites and quickly reduce the size of this search space to
a single or small number of molecular formula. This single or multiple molecular
formulae can be matched to metabolites present in metabolomic or chemical
databases to derive a putative list of metabolite annotations ready for further data
analysis to increase the confidence or reduce the list of putatively annotated
metabolites. Of course, we must remember that a single empirical formula can
represent multiple different isomers.

3. Deriving metabolite structures from gas-phase fragmentation mass spectra
In section 2 we discussed how a researcher can quickly and efficiently reduce the
number of possible annotations for a single metabolite. These processes typically do
not provide a single metabolite structure. The collection and use of mass spectral
fragmentation data to increase the confidence of a single annotation or to reduce the
list of possible annotations further should also be performed as a standard process.
A recent review from Fenaille and colleagues discussed gas phase fragmentation
and its current advantages and limitations in great depth [35].

The ‘traditional’ experimental approach to acquire MS/MS data is Data Dependent
Analysis (DDA), where a top ‘n’ method is applied. Here, a pre-scan is collected and
the top ‘n’ most intense precursor ions are then separately isolated and gas-phase
fragmentation performed with the product ion mass spectrum collected (see [35] for
further information on DDA experiments and also see Figure 5). This approach
provides a high purity for the product ion MS/MS mass spectrum as the isolation
window is small and ideally this window only contains ions for a single m/z value.



However, the limitation is that for the relatively short analysis times applied in
untargeted metabolomics (typically less than 15 minutes) and because of the duty
cycle of mass spectrometers, not all metabolites will have a MS/MS mass spectrum
collected. If MS/MS data has to be acquired then further targeted analyses have to
be performed focused on these metabolites; for example a nearline approach has
been reported by Neumann et al. [36]. However, the intelligent use of DDA methods
is currently limited though intelligent use of DDA methods is advised. For example,
Mullard et al. showed that intelligent use of the precursor window range (applying
smaller windows to increase the number of lower intensity metabolites with MS/MS
data collected), type of gas-phase fragmentation applied (CID in a linear ion trap or
HCD in a collision cell) and collision energy applied increases the number of
metabolites for which informative MS/MS data can be acquired [37]. Yan and Yan
more recently described a similar approach using gas-phase fractionation (similar to
the use of smaller precursor window ranges as described above) and a staggered
mass range [38]. Wang et al have reported enhanced MS/MS coverage using a
target-directed DDA with a time staggered precursor ion list [39]. Here, a full-scan
only run was performed and applied to develop a target list with associated retention
time windows and the approach showed a greater number of metabolites with
MS/MS data especially for lower abundance ions even in areas of high co-elution.
The collision energy applied is also important and the study by Mullard et al. showed
that fragmentation to generate an informative MS/MS mass spectrum is highly
collision energy dependent and that no single collision energy should be applied [37].
If a single collision energy was applied then this could result in no fragmentation or
too much fragmentation, both resulting in a lack of usable information. Today,
stepped or multiple collision energies can provide a greater probability of obtaining
an informative MS/MS mass spectrum. Another intelligent DDA approach is to use
different DDA experiments for different biological samples in a study where collision
energy and other parameters are different for each experiment (see [37]). This
assumes that the qualitative composition of all samples is very similar and raises the
guestion as to whether a metabolite has to be annotated once per study or once per
study sample. The answer is dependent on the study and in studies where the
gualitative composition of samples is very similar then metabolite annotation once
per study can be appropriate. However, in studies where the qualitative composition
of samples is very different then intelligent DDA applied to each biological sample or
a pool of samples from each biological class (e.g. wildtype and mutant) should be
performed. One other intelligent DDA method is to use intelligent inclusion and
exclusion lists and multiple sample analyses where metabolites already fragmented
are added to the exclusion list to allow less intense metabolites to be chosen for
MS/MS fragmentation in subsequent samples. Koelmel et al. have applied a strategy
where m/z peaks for which MS/MS data have been acquired are excluded from
further analyses by being added to the exclusion list and provided 40-69 % more
molecular identifications in a lipidomic positive ion mode study [40]. Intelligent
inclusion lists which include only one signal for each metabolite will also maximise
the number of metabolites for which MS/MS mass spectra are acquired when
compared to multiple signals for each metabolite. This is important also because
some adducts tend to produce less informative MS/MS mass spectra compared to
other ion types. In conclusion, further research is required to experimentally
determine how efficient an intelligent DDA method can be and to what percentage of
metabolites informative MS/MS spectra can be acquired.



A more recent addition to the experimental toolbox is Data Independent Analysis
(DIA), also called SWATH. This strategy operates by isolating wider precursor m/z
regions than observed in DDA experiments and stepping these across the whole
precursor m/z range so that all precursor ions are fragmented (see [35] for further
information on DIA experiments and also see Figure 4). This approach has the
benefit that any precursor ion above a specific signal will be fragmented and its
MS/MS mass spectrum collected. However, the size of the isolation window will
influence the number of m/z peaks isolated and therefore simultaneously
fragmented; if the precursor m/z window contains more than one m/z peak then
computational deconvolution is required to construct the pure MS/MS mass
spectrum for each of the metabolites present. This is the case where one DIA
window representing the whole precursor m/z range is applied, defined as All lon
Fragmentation (AIF). The deconvolution process is accurate when the MS/MS mass
spectra of the metabolites are different and the peak shape and retention time
(including peak apex) are different. However, if the peaks completely overlap and
have the same peak shape and the MS/MS mass spectra are similar then
inaccuracies can be observed. The number of DIA windows and their m/z width is
dependent on the scan rate of the instrument, the higher the scan rate then the
smaller the window size and the lower the probability for two or more ions to be
present. Again the use of intelligent DIA experiments can enhance data information,
for example, using variable DIA window sizes [41]. Another approach applied in
proteomics and which has the potential to be transferred to metabolomics is to apply
a DIA metabolite library which contains information on RT and MS/MS mass
spectrum and then searches for each of these metabolites only. This allows
confirmation of a metabolite’s presence for known metabolites while still allowing
unknown metabolites to be fragmented and MS/MS data collected for further
interpretation (see [42,43] for examples).

The usefulness of the MS/MS mass spectrum collected for a metabolite is dependent
on whether other ions of different m/z values were present in the isolation window
and on their intensity in relation to the target precursor ion. A recent publication has
taken an approach to assess the purity of a defined precursor m/z value in a defined
isolation window from raw mass spectral data (msPurity). The results showed that
the purity varied considerably within studies but (as expected) that data acquired
using a DDA approach provided higher purities than data acquired using a DIA
approach [44]. A low purity MS/MS spectrum has the possibility to not be matched to
its correct metabolite in a mass spectral library with a suitably high match score
when product ions derived from impurities in the isolation window are present in the
product ion mass spectrum.

One question raised routinely in the metabolomics community is whether MS/MS
data is sufficient for metabolite annotation. The majority of instruments available
today only allow MS/MS data to be acquired unless in-source fragmentation is
applied as a first stage of fragmentation. However, hybrid Orbitrap instruments allow
MS" data to be acquired where n>2. Here gas-phase fragmentation of product ions
can be performed in multiple stages. For low complexity chemical structures, MS/MS
data can suffice but for more complex structures and where two structurally similar
isomers can differ only in the position of a single functional group then MS" data
provides increased confidence and accuracy (see [45,46] for examples of this
application applying offline and online approaches). The collection of MS" data
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online during LC analyses does have limitations in that when collecting high mass
resolution MS" mass spectra the number of unique metabolites where DDA data has
been acquired is lower compared to when MS/MS DDA experiments are performed.
However, in hybrid Orbitrap instruments low mass resolution MS" DDA experiments
can be applied much more quickly when using the linear ion trap for mass analysis
and indeed a larger number of DDA experiments can be performed when applying
this approach because of the fast cycle time and higher sensitivity of the linear ion
trap compared to the Orbitrap mass analyser. The mass analyser applied for mass
analysis, and the associated mass resolution, is a choice for the researcher and is a
balance between speed, mass resolution and number of unique metabolites with
informative MS" data collected. Ideally, all MS and MS" data would be collected at a
high mass resolution to ensure separation of isobaric product ions, though this
reduces the number of metabolites for which MS" data can be acquired in a single
chromatographic run. However, intelligent experiments applying inclusion and
exclusion lists and multiple injections of the same sample can be applied to increase
the number of metabolites with MS" data acquired using a high mass resolution [40].

Where high quality MS/MS spectra are acquired then searching of the experimental
MS/MS or MS" data to data available in a mass spectral library is performed. There
are many different mass spectral libraries available which focus either on metabolites
only (e.g. mzCloud [47], METLIN [28] and MoNA [48]) or more broadly on chemicals
which include metabolites (e.g. NIST18 [49]). These libraries are constructed by the
analysis of pure authentic chemical standards and the inclusion of the MS/MS data
in to the libraries. As discussed above the collision energy applied during
experimental acquisition of MS/MS mass spectra influences the information content
of the MS/MS mass spectrum and therefore collection of MS/MS mass spectra at
different collision energies is recommended; many mass spectral libraries now do
this including METLIN which uses three different collision energies [28] and mzCloud
which uses up to twenty different collision energies [47]. Yanes et al recently
reviewed the metabolites present across different mass spectral libraries and found
that many MS/MS libraries include unique metabolites not included in any other
MS/MS library and therefore a search of multiple libraries is recommended (METLIN,
GNPS, NIST14 and MassBank provide the greatest number of unique metabolites,
all over 40% of the total library were unique) [50]. Matching of a metabolite to a
MS/MS mass spectra in a mass spectral library increases the confidence of
annotation though matching with high match scores to multiple metabolites is
commonly observed where different metabolites have similar or identical MS/MS
mass spectra (for example, leucine and isoleucine). Therefore, caution should
always be applied with mass spectral library searches as false positive, false
negative or a lack of matches can be observed. The inclusion of complementary data
(for example, retention time) is always recommended where possible to increase the
confidence and robustness of the annotation or identification.

Importantly, metabolites can only be included in these experimentally-derived mass
spectral libraries if they are available to be purchased or are synthesised and then
analysed. Many metabolites are not available as authentic chemical standards and
therefore can not be included in mass spectral libraries. This provides a significant
guandary and two options are available. The first option is to construct in-silico mass
spectral libraries which have been a large success in proteomics. However, the
number and complexity of gas-phase fragmentations for proteins is much lower
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compared to the more structurally diverse range of metabolites and therefore this is
an approach that has started to be applied in metabolomics but requires further
developments and global application. The most widely applied in-silico MS/MS
library currently is LipidBlast [51] and is applied to lipids whose structural similiarity
makes it easier to apply the rules for one metabolite in a lipid class to all other
metabolites in that class. Other libraries are available (e.g. [52]). The ability to
accurately do this for the more structurally diverse water-soluble metabolites is
currently limited but needs to be solved. The inclusion of quantum mechanical
calculations can enhance the accuracy of in-silico MS/MS mass spectral construction
and requires further developments. mzCloud applies these approaches within its
library and an example of how this can be used is available at [53]. Another in-silico
approach is to perform in-silico fragmentation on all metabolites remaining after
filtering based on full-scan data (as discussed in section 1). Here fragmentation for
all metabolites is performed in-silico and each in-silico MS/MS spectrum is then
compared to the experimental MS/MS mass spectrum with a match score provided.
Examples of freely available software which apply this strategy include MetFrag [54]
and MS-FINDER [55]. The accuracy of this approach is dependent on the number of
different fragmentation mechanisms allowed to be performed (see [56] for a good
review). Mass spectral fragmentation is complex and therefore fragmentation
libraries should be large to allow all mechanisms to have the potential to be included.
The software with the most comprehensive list of fragmentation mechanisms is the
commercially available MassFrontier [57], whose fragmentation library is
comprehensive and is derived from the scientific literature. MassFrontier can not be
operated directly in a batch mode, a newer software called HAMMER allows batch
operations to be performed [58]. Finally, a large volume of MS/MS mass spectra for
a diverse range of metabolites and chemicals are already available and can be
applied to assist in the annotation of metabolites whose MS/MS mass spectra are
not available. For example, the recent introduction of MS2LDA has driven this area
forward offering an unsupervised method (inspired by text-mining) that extracts
common patterns of mass fragments and neutral losses —Mass2Motifs— from
collections of fragmentation spectra. Structurally characterized Mass2Motifs can be
used to annotate molecules for which no reference spectra exist and expose
biochemical relationships between molecules [59]. Treutler et al have shown how
regulated metabolite families can be discovered using DIA LC-MS data and
Hierarchical Clustering Analysis, the software is called MetFamily [60]. CASMI
challenges have recently been used to investigate different in-silico tools for
metabolite annotation [61,62].

4. Chromatographic retention time

Although the use of full scan and MS/MS and/or MS" mass spectral data can provide
a lot of information to be applied in the annotation of metabolites, other
complementary data should be applied to provide greater confidence in reported
annotations. Here we will discuss one of the data types.

Chromatographic retention times are based on a different property of the metabolite
compared to mass. Here, the physicochemical properties of how a metabolite
interacts with a stationary phase is the defining property being measured and these
interactions can be optimised by changing solvents, stationary phase, column
dimensions and temperature. As discussed above the combination of MS/MS mass
spectra and retention times in metabolite libraries is possible where authentic
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chemical standards are available and are applied to experimentally derive retention
time. However, unlike MS/MS mass spectra which are somewhat independent of the
instrument where the data is acquired (i.e. the mass spectrometer can be operated
reproducibly between different laboratories to produce the same MS/MS mass
spectrum) the same is not true for the retention time. This is highly dependent on the
analytical conditions applied including stationary phase, solvents, gradient elution,
dead volumes; even the same type of column from different manufacturers can have
different retention properties (for example, based on carbon coverage or changes in
surface chemistry for reversed phase C;g stationary phases) means that
reproducible retention times is somewhat limited because different laboratories apply
different chromatographic parameters. Transferability between laboratories is much
less achievable because only a small number of standardised assays are available
and routinely applied across different laboratories for untargeted studies. The best
examples of a standard assay are the p180 and p400 assay kits available from the
company Biocrates which have been applied in different laboratories including in
inter-laboratory comparisons (for an example see [63]). These assays are described
as semi-targeted as the list of metabolites to be detected are derived before data
collection and other metabolites present are not detected. These assays apply a
liquid chromatographic assay for a subset of the metabolites and also includes direct
infusion for assaying the other metabolites. Standard Reference Materials (SRMS)
are available from the National Institute of Standards and Technology (NIST)
including the most widely used SRM1950. These SRMs can be applied for method
validation, inter-laboratory studies [64] and for development of quality control
processes in metabolomics studies. Solutions in the future could follow two routes
(1) standardised assays and retention indices or locking and (2) in-silico retention
time prediction. The development of standardised untargeted LC-MS assays applied
across multiple laboratories has not yet been achieved in the metabolomics
community. Efforts are underway within an international consortium to apply
standardised assays, called the International Phenome Centre Network, though this
is in an early stage [65]. The difficult step is to persuade all groups to use the same
LC-MS methods rather than use their own tried and tested assays in which they
have the greatest confidence; this includes persuasion to use the same single
supplier LC column. With standardised assays then a retention index system can be
applied to compensate for small retention time drifts observed between laboratories.
A second route is to use in-silico retention time prediction for metabolites where no
authentic chemical standard is available (cf mass spectral libraries). Here data for
known metabolites are applied to develop a prediction model for unknown
metabolites, where the possible list of unknown metabolites can be derived from full
scan or MS/MS data [66-68]. This strategy is again in early stages of its development
and improvements in accuracy and precision are required. Many current models
have a prediction accuracy of 30-60 seconds and in typical LC run times of 15
minutes or less many isomers of the same mass have retention times which fall
within 10 seconds of each other; therefore increased accuracy is required.

Concluding remarks

We have come a long way in the last ten years in solving the issue of metabolite
annotation, one of the major bottlenecks of untargeted metabolomics. Through
assessment and characterisation of current methods and data collected, the
metabolomics community have identified the complexities and limitations and have
developed solutions to overcome these complexities and limitations. Through our
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growing knowledge of metabolites present in commonly studied metabolomes there
has been the start of a move away from fully untargeted metabolomics studies to
semi-targeted studies where the list of metabolites to be detected are known prior to
data acquisition. However, we must remember that untargeted metabolomics is a
game of confidence where all results reported can be assigned a level of confidence
(e.g. a statistical p-value defines a level of confidence). This is the case for
metabolite annotation in untargeted metabolomics studies where reporting standards
related to confidence of an accurate and robust annotation have been presented..
One important conclusion from these reporting standards is that most metabolites
reported are annotated and not identified. ldentification defines that two or more
complementary data types are compared to data collected for an authentic chemical
standard applying the same analytical conditions. So retention time-MS/MS libraries
constructed in-house allow identification. However, using full scan data only or
MS/MS data only which are compared to online mass spectral libraries or
metabolomics databases is not sufficient to provide an identification, these are
annotations only. Care should always be taken when basing a biological conclusion
on one annotated metabolite; validation of this discovery is needed and greater
confidence in the importance of annotated metabolites should be based on multiple
hits from the same class of metabolite where class can be based on metabolite
structure of biological function.
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Figures and Tables
Figure 1. The range of factors which influence biofluid and tissue metabolomes in

the human population including the intake of metabolites and other chemicals from
the environment or other microbial genomes, physical characteristics including age
as well as life and work choices including levels of exercise.

CIRCADIAN RHYTHMS HUMAN GENOME
ENDOGENOUS Glucocorticoids
METABOLISM Insulin
Catabolism MICROBIAL GENOMES
Anabolism Small intestines
Skin
IlIness/disease
METABOLISM OF
EXOGENOUS
COMPOUNDS FRIESICAR
CHARACTERISTICS
Age
Gender
INTAKE OF EXOGENOUS BMI
COMPOUNDS Resting Energy
Food/drink components Expenditure

Prescribed/illegal drugs
Pollution in air/water

Exposome LIFESTYLE
Diet
WORK/LIFE BALANCE Exercise
Shift work Alcohol
Hours of work per day Smoking

19



Figure 2. The process of metabolite annotation or identification in untargeted
metabolomics studies applying LC-MS. The use of full scan data (blue) and MS/MS
or MS" data (purple) are applied routinely for the annotation of metabolites.
Increasingly the use of in-silico approaches (in-silico mass spectral libraries or in-
silico prediction of properties; purple and green) are being observed. Most
metabolites are annotated (and should be reported as annotated) unless two
complementary properties are matched to the same properties for a chemical
standard analysed applying identical analytical conditions for biological sample and
chemical standard. The reporting of confidence in the annotation or identification
should be performed and reporting standards are available [17,18].
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Figure 3. The use of full scan accurate mass data to derive information and reduce
complexity in metabolite annotation. Different signals for the same metabolite have
the same retention time and peak shape (A), responses for pairs of signals are
positively correlated (B) and specific m/z differences are observed and these m/z
differences are not random (C).
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Figure 4. Calculation of the Relative Isotope Abundance and its use for filtering lists
of potential molecular formula. The peak area for the *?C and **C peaks are
normalized to the peak area of the *?C peak (100%). In this example, the *3C
normalized peak area is 33%. The relative isotope abundance is calculated by
dividing the “*C normalized peak area by 1.1, in this example to produce a RIA of 30.
The metabolite therefore must have a molecular formula containing approximately 30
carbon atoms; here all molecular formula with 30 +/- 10% carbon atoms are potential
molecular formula while molecular formulae outside this range are removed.
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Figure 5. The processes applied to perform DDA and DIA experiments differ in the
width of the isolation window (DDA=narrow, DIA=wider), the coverage of the
precursor m/z range (DDA=lower coverage, DIA=complete coverage) and the purity
of the signal in the isolation window (DDA=higher purity, DIA=lower purity).
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Table 1. A list of open access software, databases and libraries for metabolite

annotation and identification.

Annotation from | Annotation from from | |nsilico
Software/Datab full scan data MS/MS or MS" data Tool Web Address
Golm Metabolome
Database (GMD) X http://gmd.mpimp-golm.mpg.de/
Toxin and Toxin Target
Database (T3DB) X http://www.t3db.ca/
FooDB X http://foodb.ca/
DrugBank X https://www.drugbank.ca/
Human Metabolome
Database (HMDB) X http://www.hmdb.ca/
KEGG X http://www.genome.jp/kegg/
PubChem X https://pubchem.ncbi.nlm.nih.gov/
ChEBI X https://www.ebi.ac.uk/chebi/
BioCyc X https://biocyc.org/
HumanCyc X https://humancyc.org/
LipidMAPS X http://www.lipidmaps.org/
ChemSpider X http://www.chemspider.com/
MINE X http://minedatabase.mcs.anl.gov/
http://www.ebi.ac.uk/biomodels-
Recon2 X main/MODEL1109130000
http://www.mcisb.org/resources/put
PUTMEDID_LCMS X medid.html
http://mzmatch.sourceforge.net/ide
IDEOM X om.php
https://bioconductor.org/packages/r
CAMERA X elease/bioc/htm|/CAMERA.html
MS-FLO X http://msflo.fiehnlab.ucdavis.edu/
CEU Mass Mediator X http://ceumass.eps.uspceu.es/
https://sourceforge.net/projects/xms
xMSannotator X annotator/
http://maltese.dbs.aber.ac.uk:8888/h
MZedDB X rmet/index.html
https://bioconductor.org/packages/r
Rdisop X elease/bioc/html/Rdisop.html
https://github.com/boecker-
SIRIUS X lab/sirius
https://github.com/Viant-
MI-Pack X Metabolomics/MI-Pack
http://labpib.fmrp.usp.br/methods/p
ProbMetab X robmetab/
MetAssign-mzMatch X http://mzmatch.sourceforge.net/
https://rdrr.io/github/cbroeckl/RAMC
RAMClust X X lustR/
http://www.mycompoundid.org/myc
MyCompoundID X X ompoundid_IsoMS/
METLIN X X https://metlin.scripps.edu/
MassBank X http://www.massbank.jp/
http://prime.psc.riken.jp/Metabolom
MS-DIAL X ics_Software/MS-DIAL/
mzCloud X https://www.mzcloud.org/
https://www.nist.gov/srd/nist-
NIST X standard-reference-database-1a-v17
http://fiehnlab.ucdavis.edu/projects/
LipidBlast X LipidBlast
MetFrag X http://c-ruttkies.github.io/MetFrag/
http://prime.psc.riken.jp/Metabolom
MS-FINDER X ics_Software/MS-FINDER/
http://www.biosciences-
HAMMER X labs.bham.ac.uk/viant/hammer/
MS2LDA X http://ms2lda.org/
https://msbi.ipb-
MetFamily X X X halle.de/MetFamily/
MetFusion X http://mgerlich.github.io/MetFusion/
https://github.com/chongle/midas-
MIDAS X metabolomics
CFM-ID X http://cfmid.wishartlab.com/
https://bio.informatik.uni-
FT-BLAST X jena.de/research/
MAGMa X https://github.com/NLeSC/MAGMa
https://www.csi-fingerid.uni-
CSl:FingerlD X jena.de/
MOLGEN-MS/MS X http://www.molgen.de/
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Table 2. List of commonly detected adducts and in-source neutral losses observed
in untargeted LC-MS datasets applying electrospray ionisation.

Adduct type In-source fragments
[M+H]* [M+H-H,0]" (water loss)
[M+Na]" [M+H-NHs]* (ammonia loss)
[M+H-CO]" (carbon monoxide
[M+K]* loss)
[M+NH,]* [M+H-CO,]" (carbon dioxide loss)
[M-H] [M+H-H,S]" (hydrogen sulfide loss)

[M+H-CH,0,]" (formate loss)
[M+H-CgHsO6]" (glucuronide loss )
[M+H-H3P04]" (phosphate loss)
[M+H-H,S04]" (sulphate loss)
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Highlights

* Untargeted metabolomics provides an unbiased study of human metabolomes

» These studies require the annotation of metabolites using data acquired, no prior list
of metabolites is applied

* Reduction of the search space using full-scan data is applied first with filters
incorporating isotopic information as an example

» Gas phase fragmentation can be applied to provide information on chemical structure
used to differentiate between metabolites including isomers

» Development of new analytical and computational tools and resources has driven
metabolite annotation forward significantly in the last ten years



