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Abstract 
The relatively unbiased study of metabolites in biological systems is called 
untargeted metabolomics and the application of liquid chromatography-mass 
spectrometry platforms for data acquisition is now common across the world. When 
operating in its most unbiased form, this experimental strategy starts from assuming 
no knowledge of the metabolites to be detected and instead the data acquired is 
used to annotate or identify the detected metabolites on a study-by-study basis. The 
process of metabolite annotation is a bottleneck in untargeted metabolomics and to 
which significant progress has been made in the last ten years in understanding the 
limitations and developing new experimental and computational methods and tools 
to enhance our capabilities. In this review we will describe the current status of tools 
applied for metabolite annotation and discuss current areas where further work is 
required. 
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Untargeted metabolomics; annotation; identification; electrospray; mass spectral 
libraries, gas phase fragmentation; metabolomics databases 
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1. The complexities of metabolite annotation in untargeted metabolomics 
studies 
The study of metabolites in biological samples is routinely defined as metabolomics 
and provides the capability to investigate metabolism on a global and relatively 
unbiased scale in comparison to traditional targeted studies focused on specific 
areas/pathways of metabolism and a small number of metabolites [1]. Changes in 
the concentrations of metabolites reflects dynamic and rapid changes in the 
phenotype of the system being studied; for example, mammalian muscle and blood 
lactate levels increase within minutes during an intense exercise event. This global 
approach provides opportunities to detect thousands of metabolites in hypothesis-
generating (rather than hypothesis-testing) studies and to associate previously 
unknown metabolites with biologically important roles (e.g. metabolism, signalling, 
regulation and synthesis of larger biomolecules) in human health and disease, 
biotechnology, drug discovery and plant sciences. These discovery studies should 
not end here but should be validated both analytically and biologically applying 
targeted biological and metabolomic studies. 
 
Significant developments related to instrumentation (e.g. increased mass resolving 
power; see [2] as an example), informatics (software and databases; see [3] for a 
recent review and Table 1 for a list) and analytical chemistry methods for sample 
collection and preparation (see [4] for a discussion on lipidomics) have increased the 
number of metabolites detected and annotated in untargeted metabolomic studies 
applying liquid chromatography-mass spectrometry platforms. Mass spectrometry is 
a relatively unbiased detector which has a high sensitivity and untargeted 
metabolomic studies apply a crude extraction of biological samples with no steps 
included to separate metabolites from non-biological chemicals. Today, thousands of 
‘signals’ are detected in biological samples by liquid chromatography-mass 
spectrometry (LC-MS) platforms which relate to endogenous (e.g. amino acids) and 
exogenous (e.g. over-the-counter drug) metabolites as well as other chemicals 
whose source is not biological (e.g. contaminants in sample collection tubes or 
chemical solvents). These signals are reported with up to four different types of data 
– chromatographic retention time, full-scan mass-to-charge (m/z) ratio, MS/MS or 
MSn (where n>2) mass spectrum and ion mobility drift time for full-scan or MS/MS 
data. Of importance is the knowledge that electrospray ionisation generates multiple 
signals for each metabolite [5] as will be discussed below in section 2. Therefore the 
processing of these data to remove non-biological signals and to integrate multiple 
signals in to a single metabolite are required to provide a cleaned dataset for further 
univariate and multivariate data analysis. A recent study [6] showed that in 
Escherichia coli intracellular extracts, up to 25,000 signals can be detected which 
relate to approximately 1000 metabolites and therefore demonstrated the disparity 
between the number of signals detected and the number of metabolites detected. It 
should be noted that the non-optimised use of raw data processing software (e.g. 
XCMS) can significantly inflate the number of signals detected in the authors 
experience and optimisation of software processing parameters is highly 
recommended (for example, see IPO for optimisation of XCMS parameters [7]).  
 
A second complexity in untargeted metabolomics studies is that we do not know ALL 
of the metabolites which may be present in one or multiple biological samples and 
which could be detected. Figure 1 visualises the different factors impacting on the 
presence/absence and concentration of metabolites in human metabolomes. The 
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concept of ‘dark matter’ in the metabolomes of different organisms has been 
introduced [8] and observations of the synthesis of unknown metabolites by 
promiscuous enzymes [9], the emergence of epi-metabolites [10] and modifications 
to damage-prone endogenous metabolites [11] have all been reported. There are still 
many metabolites not reported or searched for in metabolomics databases. 
Untargeted studies start from limited knowledge so to provide a relatively unbiased 
survey of metabolites and allow detection of previously unreported metabolites which 
have a previously unreported biological role. However, operating with these 
principles results in the requirement to annotate metabolites present in each 
biological study rather than have a predefined large list of metabolites whose 
annotation is already known and which lead to a rapid conversion of data to 
knowledge in all studies. The use of knowledge related to previously reported 
metabolites (for example, in metabolomic databases like the Human Metabolome 
Database, HMDB [12]) and Deep Metabolome Annotation (DMA) of each sample 
type applying advanced analytical approaches (as discussed in section 2) provides a 
long list of target metabolites that may be present. This allows rapid conversion of 
data to knowledge for these metabolites in semi-targeted assays, while still allowing 
unreported or unexpected metabolites not in these lists to be detected and 
annotated. If the list of metabolites to be detected can be accurately defined then the 
total search space is also accurately defined. As this search space increases in size 
to include metabolites that have a low probability to be present (but have to be 
included in the search) so does the difficulty in providing a single chemical structure 
as an annotation due to the presence of isomers and an increase in the probability of 
false annotations. For example, let us investigate the collection of endogenous and 
exogenous metabolites and peptides defined in the largest metabolite database for 
humans, the Human Metabolome Database (HMDB) [12]. The current version (v4.0) 
contains 114,000 metabolites, some of which have been detected in biological 
samples and some of which are predicted metabolites though not detected/reported 
in the scientific literature. The inclusion of predicted metabolites increases the 
complexity of the long list of targeted metabolites and can increase the confidence of 
any annotations because their inclusion provides the opportunity for previously 
unreported metabolites to be annotated and therefore a greater biological 
interpretation of the data to be deduced. Providing a full list of metabolites which can 
be detected allows more semi-targeted assays to be developed which target those 
known metabolites only, reduces the risk of false positive annotations, increases the 
probability of a single annotation and allows a quicker process of converting data to 
knowledge. A recent review article has discussed the need for Deep Metabolome 
Annotation of model species and other biological metabolomes [13] and the authors 
would suggest that this is needed for all metabolomes studied; for example, there 
are greater than one hundred different metabolomes in the human body when you 
consider biofluids, cell types and tissues. Applying a multi-platform approach similar 
to genome sequencing to experimentally and accurately define which metabolites 
are present (Deep Metabolome Annotation [13]) is urgently needed to enhance the 
derived knowledge and impact of metabolomics datasets. 
 
A number of excellent reviews are available which discuss metabolite annotation and 
identification (for example, see [14-15]). In this review article we will describe the 
current methods and tools available for annotation of metabolites in untargeted 
metabolomics studies applying LC-MS platforms. A range of different data types, 
software and databases can be applied in the complete workflow as shown in Figure 
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2 which depicts the different steps that can (or can not) be applied in the annotation 
of metabolites. Importantly, approaches defined in proteomics do not necessarily 
translate to metabolomics and Böcker et al recently described this - ‘We can define 
that everything is better in proteomics because given the genome sequence we can 
infer all of the database of proteins and second given a peptide sequence we can 
simulate a MS/MS barcode mass spectrum’ [16]. This is not the case for 
metabolomics as we will see in the sections below. There are different levels of 
confidence in the accuracy and robustness of the annotation or identifications 
reported. The accuracy and robustness are based on which single data type or 
multiple data types have been applied and whether experimental data for biological 
samples have been compared to data acquired for authentic chemical standards. 
These confidence levels should be reported in all studies. The first set of reporting 
standards were designed by Sumner et al. as part of the Metabolomics Standards 
Initiative in 2007 with four different confidence levels [17]. More recently Schymanski 
et al. have reported a five-level confidence system [18]. 
 
2. Deriving the molecular formula from full-scan accurate mass data 
As shown in Figure 2, the first process recommended by the authors is to reduce the 
number of possible metabolite structures to one or a small number. This process is 
performed primarily with full-scan accurate mass data, but as will be seen later, 
accurate mass MS/MS or MSn data can also be applied. This process aims to limit 
the number of molecular formulae which can represent the measured m/z ratio in full 
scan data (and possibly the MS/MS data also). Let us focus on the full scan data first 
and its complexity.  
 
In LC-MS all metabolites (and chemicals from non-biological sources) traverse an 
electrospray ionisation source which converts neutral molecules to a charged state 
allowing them to be manipulated by electrical and/or magnetic and/or RF energies 
dependent on their m/z ratio. The process of ionisation is complex involving heat, 
electrical voltages and a complex mixture of chemicals and metabolites; further 
information is available at [19]. Early work by Brown et al. investigated this 
complexity [5] and further work from the authors of this review has expanded this 
research (unpublished data). The early research showed that multiple signals 
(sometimes called metabolite features) are detected for a single metabolite and 
showed how expected (e.g. [M+H]+, [M+Na]+) and unexpected (e.g. [M+HCOO]-) 
adducts, ion-source fragments (e.g. loss of ammonia from amino acids), isotopes 
(e.g. 32S/34S), unexpected multiply charged ions (e.g. 3+ charge state) and 
unexpected loss of amino acids from conjugated metabolites (e.g. glycine from 
glycine-conjugated metabolites) can be created in the electrospray source and 
detected in LC-MS datasets. A recent publication has demonstrated the complexity 
observed for one class of metabolites, bile acids, and has shown that the signals 
were dependent on the specific bile acid, solvent flow rate and bile acid 
concentration [20]. A list of common adducts and in-source fragmentations are 
included in Table 2. 
 
In the derivation of these discoveries, the important fact that different signals from 
the same metabolite have three specific relationships was applied as shown in 
Figure 3. These are (1) all signals for the same metabolite will have the same 
retention time as they enter and exit the electrospray ion source at the same time; 
(2) specific m/z differences between signals are commonly observed and not all 
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possible m/z differences are experimentally observed and (3) the responses 
measured across multiple samples for two signals derived from the same metabolite 
are positively correlated as they are formed in an identical manner (and therefore the 
ratio for both will be identical across all samples) in the electrospray ion source 
across all samples. These relationships allow signals derived from the same 
metabolite to be grouped together and provide greater confidence to the annotation 
provided. For example, a m/z difference of 21.9819 between two signals with the 
same retention time indicates that the signal with lower mass is a protonated adduct 
and the signal with the higher mass is a sodiated adduct. Without this m/z difference 
it would be difficult to experimentally define whether the lower mass signal was a 
protonated adduct or a different type of adduct. The process applied has been 
reviewed recently [21] signals together and to annotate the ‘ion type’ to increase the 
level of confidence for any annotations. These include early and freely available 
software releases (PUTMEDID_LCMS [22], IDEOM [23] and CAMERA [24]) and 
more recent additions including MS-FLO [25], CEU Mass Mediator [26], RAMClust 
[6] and xMSannotator [27]. Metabolite databases including METLIN [28] and HMDB 
[12] as well as commercial software which also employ these capabilities. 
Interestingly, a comparison of these software by the authors shows that none use all 
of the possible ion types as depicted by other software; a robust assessment of all 
ion types experimentally observed across different manufacturer’s instruments and 
sample types and a standardisation of these across all software is required. Other 
methods for integrating different signals for the same metabolite have been reported 
and focus on Bayesian methods (for example see [29]) or known metabolic networks 
(for example see [30]). 
 
The mass resolution and accuracy of m/z measurements is dependent on the LC-MS 
platform, metabolite concentration, accuracy of mass calibration and whether internal 
or external mass calibration is applied. A degree of mass error is introduced during 
data acquisition and this has to be taken in to account when converting a full scan 
m/z signal to a neutral mass and molecular formula. A mass error can be calculated 
as follows: 
 
Mass error (ppm) =  
 
((experimentally measured m/z – theoretical m/z) / (theoretical m/z)) * 1,000,000 
 
Typically, errors in m/z measurements for matching experimental to theoretical m/z 
values is < 5ppm which is within the installation specifications for most medium-to-
high resolving power instruments. However, do consider the effects of space-charge 
effects and the influence of response on mass accuracy where lower intensity ions or 
ions with a saturated response may be measured with a poorer mass accuracy than 
for a simple solution of high concentration chemicals infused during installation. Also, 
two signals which are not mass resolved and are observed as a single m/z signal will 
have a measured m/z reported between the m/z of each signal and therefore an 
accurate m/z for each metabolite would not be detected. Also the error in an 
experimentally measured m/z difference applied when integrating different signals of 
the same metabolite (as shown above for protonated and sodiated adducts) has to 
be considered. For example, the m/z difference between 12C and 13C isotopic peaks 
are commonly applied to de-isotope data by removing 13C isotopic peaks or to 
calculate the number of carbons present in a molecular formula (as described in the 
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next paragraph). The m/z difference between 12C and 13C isotopic peaks is 
theoretically 1.0033 and if we assume an error range of +/-0.0005 then the mass 
error for a metabolite of measured m/z values for the 12C and 13C ions of 50.0033 
and 51.0039 is 10ppm whereas for a metabolite of measured m/z values for the 12C 
and 13C ions of 100.0033 and 101.0039 then the mass error is 5ppm. However, 
many software and databases apply one single mass error value of 5ppm or less for 
all processes applied.  Two mass errors should be defined, one for matching of 
experimental m/z to theoretical m/z data in databases and one for m/z differences for 
grouping of metabolite features.  
 
The mass resolution (or resolving power) of the LC-MS platform can also be 
important in deriving information from these complex electrospray datasets. For 
example, the theoretical m/z for glucose ([M+H]+) is 181.0707, for the 13C2 ion is 
183.0773 and for the 18O is 183.0750. Although, the [M+H]+ can be applied to derive 
the monoisotopic mass accurately, only high resolving power platforms can achieve 
accurate discrimination of the 13C2 ion and the 18O ion to aid in filtering of possible 
molecular formulas. Studies on hybrid Orbitrap instruments have assessed the 
influence of mass resolution and have shown that a mass resolution of 60,000 – 
120,000 (FWHM at m/z 200) is required to maximise the number of signals detected 
by ensuring resolution of ions of very similar but not identical m/z values [31]. More 
recent work has shown the enhancements achievable in metabolite annotation at 
higher mass resolutions, specifically a high-field Orbitrap Fusion instrument operated 
at a mass resolution of 500,000 (FWHM at m/z 200) [2]. 
 
When applying the experimentally measured m/z value to derive a single or multiple 
molecular formula(s) there are two processes. The first converts the measured m/z 
value to a neutral mass and subsequently calculates the possible molecular 
formula(s) which match this neutral mass within a given mass error and then 
matches this molecular formula to metabolites present in metabolomic or chemical 
databases. The second option uses the measured m/z value and knowledge of ion 
type and searches directly for the metabolite in metabolomic or chemical databases 
without the step of converting to a molecular formula. One question often raised is 
whether we go from m/z to metabolite while ignoring the conversion to a molecular 
formula step? Our knowledge of all possible molecular formulae is greater than our 
knowledge of which metabolites we are expecting to detect (as discussed in section 
1). Therefore, the conversion of raw data to a molecular formula can be the first step 
applied and which if no annotation to a specific metabolite(s) can be made still 
leaves the researcher with some information on the metabolite’s identity. If the 
measured m/z was used directly to search metabolite databases then although 
matches to metabolites will be made there is the probability that some metabolites 
will not match to a metabolite in a database and no useful information (the molecular 
formula) is then available. In these cases then the conversion of m/z to molecular 
formula can be performed in a second subsequent process. Importantly, the 
application of DMA allows us to link a greater number of metabolites to known 
molecular formulae, which increases the number of annotated metabolites in 
databases and reduces the probability of no match to a metabolite when a measured 
m/z was used directly to search metabolite databases. 
 
The molecular formula can also be derived with the use of MS/MS or MSn data. 
Here, the possible molecular formula for the full-scan precursor signal and each of 
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the product ions can be calculated. The precursor ion’s molecular formula has to be 
constrained by the combination of the molecular formula for each of the product ions. 
For example, for a metabolite with an unknown precursor molecular formula, if one of 
the product ions possible molecular formula contains a sulphur atom then all 
possible precursor molecular formulas without a sulphur atom present can be 
deleted from the list of possible molecular formulas. Through this process it is 
possible to reduce the number of molecular formula for the precursor ion and 
therefore reduce the number of possible metabolites which match the list of 
molecular formulas (for an example see [32]). Another more traditional and common 
approach to filter the list of possible molecular formula is to use isotopic information. 
The most commonly used isotopic information is the 12C/13C relative isotope 
abundance (RIA) where each carbon in the molecular formula will contribute 1.1% to 
the 13C isotopic peak intensity. Therefore, if you have a 12C/13C RIA of 11% the only 
molecular formulas of or close to containing 10 carbon atoms (11/1.1) are possible, a 
molecular formula with 18 carbons is much less probable. Figure 4 shows an 
example of this. Other elements which have two detectable isotopes can also be 
applied for filtering possible molecular formula and include 32S/34S, 35Cl/37Cl, 78/80Se 
and 79/81Br. Fiehn et al. defined that even with a 1ppm mass accuracy a single 
molecular formula is not always achievable, and demonstrated that using a 3ppm 
mass error and combining with the use of isotopic filtering is more appropriate for 
filtering potential molecular formula than using a sub-ppm mass error on its own [33]. 
Recently a proposal to enhance van Krevelen diagrams from O:C and H:C to 
C:H:N:O:P stoichiometry has been reported to allow filtering of feasible and non-
feasible molecular formula [34]. 
 
By applying the processes discussed in this section a researcher can start with a 
large search space of metabolites and quickly reduce the size of this search space to 
a single or small number of molecular formula. This single or multiple molecular 
formulae can be matched to metabolites present in metabolomic or chemical 
databases to derive a putative list of metabolite annotations ready for further data 
analysis to increase the confidence or reduce the list of putatively annotated 
metabolites. Of course, we must remember that a single empirical formula can 
represent multiple different isomers. 
 
3. Deriving metabolite structures from gas-phase fragmentation mass spectra 
In section 2 we discussed how a researcher can quickly and efficiently reduce the 
number of possible annotations for a single metabolite. These processes typically do 
not provide a single metabolite structure. The collection and use of mass spectral 
fragmentation data to increase the confidence of a single annotation or to reduce the 
list of possible annotations further should also be performed as a standard process. 
A recent review from Fenaille and colleagues discussed gas phase fragmentation 
and its current advantages and limitations in great depth [35]. 
 
The ‘traditional’ experimental approach to acquire MS/MS data is Data Dependent 
Analysis (DDA), where a top ‘n’ method is applied. Here, a pre-scan is collected and 
the top ‘n’ most intense precursor ions are then separately isolated and gas-phase 
fragmentation performed with the product ion mass spectrum collected (see [35] for 
further information on DDA experiments and also see Figure 5). This approach 
provides a high purity for the product ion MS/MS mass spectrum as the isolation 
window is small and ideally this window only contains ions for a single m/z value. 
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However, the limitation is that for the relatively short analysis times applied in 
untargeted metabolomics (typically less than 15 minutes) and because of the duty 
cycle of mass spectrometers, not all metabolites will have a MS/MS mass spectrum 
collected. If MS/MS data has to be acquired then further targeted analyses have to 
be performed focused on these metabolites; for example a nearline approach has 
been reported by Neumann et al. [36]. However, the intelligent use of DDA methods 
is currently limited though intelligent use of DDA methods is advised. For example, 
Mullard et al. showed that intelligent use of the precursor window range (applying 
smaller windows to increase the number of lower intensity metabolites with MS/MS 
data collected), type of gas-phase fragmentation applied (CID in a linear ion trap or 
HCD in a collision cell) and collision energy applied increases the number of 
metabolites for which informative MS/MS data can be acquired [37]. Yan and Yan 
more recently described a similar approach using gas-phase fractionation (similar to 
the use of smaller precursor window ranges as described above) and a staggered 
mass range [38]. Wang et al have reported enhanced MS/MS coverage using a 
target-directed DDA with a time staggered precursor ion list [39]. Here, a full-scan 
only run was performed and applied to develop a target list with associated retention 
time windows and the approach showed a greater number of metabolites with 
MS/MS data especially for lower abundance ions even in areas of high co-elution. 
The collision energy applied is also important and the study by Mullard et al. showed 
that fragmentation to generate an informative MS/MS mass spectrum is highly 
collision energy dependent and that no single collision energy should be applied [37]. 
If a single collision energy was applied then this could result in no fragmentation or 
too much fragmentation, both resulting in a lack of usable information. Today, 
stepped or multiple collision energies can provide a greater probability of obtaining 
an informative MS/MS mass spectrum. Another intelligent DDA approach is to use 
different DDA experiments for different biological samples in a study where collision 
energy and other parameters are different for each experiment (see [37]). This 
assumes that the qualitative composition of all samples is very similar and raises the 
question as to whether a metabolite has to be annotated once per study or once per 
study sample. The answer is dependent on the study and in studies where the 
qualitative composition of samples is very similar then metabolite annotation once 
per study can be appropriate. However, in studies where the qualitative composition 
of samples is very different then intelligent DDA applied to each biological sample or 
a pool of samples from each biological class (e.g. wildtype and mutant) should be 
performed. One other intelligent DDA method is to use intelligent inclusion and 
exclusion lists and multiple sample analyses where metabolites already fragmented 
are added to the exclusion list to allow less intense metabolites to be chosen for 
MS/MS fragmentation in subsequent samples. Koelmel et al. have applied a strategy 
where m/z peaks for which MS/MS data have been acquired are excluded from 
further analyses by being added to the exclusion list and provided 40-69 % more 
molecular identifications in a lipidomic positive ion mode study [40].  Intelligent 
inclusion lists which include only one signal for each metabolite will also maximise 
the number of metabolites for which MS/MS mass spectra are acquired when 
compared to multiple signals for each metabolite. This is important also because 
some adducts tend to produce less informative MS/MS mass spectra compared to 
other ion types. In conclusion, further research is required to experimentally 
determine how efficient an intelligent DDA method can be and to what percentage of 
metabolites informative MS/MS spectra can be acquired. 
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A more recent addition to the experimental toolbox is Data Independent Analysis 
(DIA), also called SWATH. This strategy operates by isolating wider precursor m/z 
regions than observed in DDA experiments and stepping these across the whole 
precursor m/z range so that all precursor ions are fragmented (see [35] for further 
information on DIA experiments and also see Figure 4). This approach has the 
benefit that any precursor ion above a specific signal will be fragmented and its 
MS/MS mass spectrum collected. However, the size of the isolation window will 
influence the number of m/z peaks isolated and therefore simultaneously 
fragmented; if the precursor m/z window contains more than one m/z peak then 
computational deconvolution is required to construct the pure MS/MS mass 
spectrum for each of the metabolites present. This is the case where one DIA 
window representing the whole precursor m/z range is applied, defined as All Ion 
Fragmentation (AIF). The deconvolution process is accurate when the MS/MS mass 
spectra of the metabolites are different and the peak shape and retention time 
(including peak apex) are different. However, if the peaks completely overlap and 
have the same peak shape and the MS/MS mass spectra are similar then 
inaccuracies can be observed. The number of DIA windows and their m/z width is 
dependent on the scan rate of the instrument, the higher the scan rate then the 
smaller the window size and the lower the probability for two or more ions to be 
present. Again the use of intelligent DIA experiments can enhance data information, 
for example, using variable DIA window sizes [41]. Another approach applied in 
proteomics and which has the potential to be transferred to metabolomics is to apply 
a DIA metabolite library which contains information on RT and MS/MS mass 
spectrum and then searches for each of these metabolites only. This allows 
confirmation of a metabolite’s presence for known metabolites while still allowing 
unknown metabolites to be fragmented and MS/MS data collected for further 
interpretation (see [42,43] for examples).  
 
The usefulness of the MS/MS mass spectrum collected for a metabolite is dependent 
on whether other ions of different m/z values were present in the isolation window 
and on their intensity in relation to the target precursor ion. A recent publication has 
taken an approach to assess the purity of a defined precursor m/z value in a defined 
isolation window from raw mass spectral data (msPurity). The results showed that 
the purity varied considerably within studies but (as expected) that data acquired 
using a DDA approach provided higher purities than data acquired using a DIA 
approach [44]. A low purity MS/MS spectrum has the possibility to not be matched to 
its correct metabolite in a mass spectral library with a suitably high match score 
when product ions derived from impurities in the isolation window are present in the 
product ion mass spectrum. 
 
One question raised routinely in the metabolomics community is whether MS/MS 
data is sufficient for metabolite annotation. The majority of instruments available 
today only allow MS/MS data to be acquired unless in-source fragmentation is 
applied as a first stage of fragmentation. However, hybrid Orbitrap instruments allow 
MSn data to be acquired where n>2. Here gas-phase fragmentation of product ions 
can be performed in multiple stages. For low complexity chemical structures, MS/MS 
data can suffice but for more complex structures and where two structurally similar 
isomers can differ only in the position of a single functional group then MSn data 
provides increased confidence and accuracy (see [45,46] for examples of this 
application applying offline and online approaches). The collection of MSn data 
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online during LC analyses does have limitations in that when collecting high mass 
resolution MSn mass spectra the number of unique metabolites where DDA data has 
been acquired is lower compared to when MS/MS DDA experiments are performed. 
However, in hybrid Orbitrap instruments low mass resolution MSn DDA experiments 
can be applied much more quickly when using the linear ion trap for mass analysis 
and indeed a larger number of DDA experiments can be performed when applying 
this approach because of the fast cycle time and higher sensitivity of the linear ion 
trap compared to the Orbitrap mass analyser. The mass analyser applied for mass 
analysis, and the associated mass resolution, is a choice for the researcher and is a 
balance between speed, mass resolution and number of unique metabolites with 
informative MSn data collected. Ideally, all MS and MSn data would be collected at a 
high mass resolution to ensure separation of isobaric product ions, though this 
reduces the number of metabolites for which MSn data can be acquired in a single 
chromatographic run. However, intelligent experiments applying inclusion and 
exclusion lists and multiple injections of the same sample can be applied to increase 
the number of metabolites with MSn data acquired using a high mass resolution [40].  
 
Where high quality MS/MS spectra are acquired then searching of the experimental 
MS/MS or MSn data to data available in a mass spectral library is performed. There 
are many different mass spectral libraries available which focus either on metabolites 
only (e.g. mzCloud [47], METLIN [28] and MoNA [48]) or more broadly on chemicals 
which include metabolites (e.g. NIST18 [49]). These libraries are constructed by the 
analysis of pure authentic chemical standards and the inclusion of the MS/MS data 
in to the libraries. As discussed above the collision energy applied during 
experimental acquisition of MS/MS mass spectra influences the information content 
of the MS/MS mass spectrum and therefore collection of MS/MS mass spectra at 
different collision energies is recommended; many mass spectral libraries now do 
this including METLIN which uses three different collision energies [28] and mzCloud 
which uses up to twenty different collision energies [47]. Yanes et al recently 
reviewed the metabolites present across different mass spectral libraries and found 
that many MS/MS libraries include unique metabolites not included in any other 
MS/MS library and therefore a search of multiple libraries is recommended (METLIN, 
GNPS, NIST14 and MassBank provide the greatest number of unique metabolites, 
all over 40% of the total library were unique) [50]. Matching of a metabolite to a 
MS/MS mass spectra in a mass spectral library increases the confidence of 
annotation though matching with high match scores to multiple metabolites is 
commonly observed where different metabolites have similar or identical MS/MS 
mass spectra (for example, leucine and isoleucine). Therefore, caution should 
always be applied with mass spectral library searches as false positive, false 
negative or a lack of matches can be observed. The inclusion of complementary data 
(for example, retention time) is always recommended where possible to increase the 
confidence and robustness of the annotation or identification. 
 
Importantly, metabolites can only be included in these experimentally-derived mass 
spectral libraries if they are available to be purchased or are synthesised and then 
analysed. Many metabolites are not available as authentic chemical standards and 
therefore can not be included in mass spectral libraries. This provides a significant 
quandary and two options are available. The first option is to construct in-silico mass 
spectral libraries which have been a large success in proteomics. However, the 
number and complexity of gas-phase fragmentations for proteins is much lower 
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compared to the more structurally diverse range of metabolites and therefore this is 
an approach that has started to be applied in metabolomics but requires further 
developments and global application. The most widely applied in-silico MS/MS 
library currently is LipidBlast [51] and is applied to lipids whose structural similiarity 
makes it easier to apply the rules for one metabolite in a lipid class to all other 
metabolites in that class. Other libraries are available (e.g. [52]). The ability to 
accurately do this for the more structurally diverse water-soluble metabolites is 
currently limited but needs to be solved. The inclusion of quantum mechanical 
calculations can enhance the accuracy of in-silico MS/MS mass spectral construction 
and requires further developments. mzCloud applies these approaches within its 
library and an example of how this can be used is available at [53]. Another in-silico 
approach is to perform in-silico fragmentation on all metabolites remaining after 
filtering based on full-scan data (as discussed in section 1). Here fragmentation for 
all metabolites is performed in-silico and each in-silico MS/MS spectrum is then 
compared to the experimental MS/MS mass spectrum with a match score provided. 
Examples of freely available software which apply this strategy include MetFrag [54] 
and MS-FINDER [55]. The accuracy of this approach is dependent on the number of 
different fragmentation mechanisms allowed to be performed (see [56] for a good 
review). Mass spectral fragmentation is complex and therefore fragmentation 
libraries should be large to allow all mechanisms to have the potential to be included. 
The software with the most comprehensive list of fragmentation mechanisms is the 
commercially available MassFrontier [57], whose fragmentation library is 
comprehensive and is derived from the scientific literature. MassFrontier can not be 
operated directly in a batch mode, a newer software called HAMMER allows batch 
operations to be performed [58]. Finally, a large volume of MS/MS mass spectra for 
a diverse range of metabolites and chemicals are already available and can be 
applied to assist in the annotation of metabolites whose MS/MS mass spectra are 
not available. For example, the recent introduction of MS2LDA has driven this area 
forward offering an unsupervised method (inspired by text-mining) that extracts 
common patterns of mass fragments and neutral losses —Mass2Motifs— from 
collections of fragmentation spectra. Structurally characterized Mass2Motifs can be 
used to annotate molecules for which no reference spectra exist and expose 
biochemical relationships between molecules [59]. Treutler et al have shown how 
regulated metabolite families can be discovered using DIA LC-MS data and 
Hierarchical Clustering Analysis, the software is called MetFamily [60]. CASMI 
challenges have recently been used to investigate different in-silico tools for 
metabolite annotation [61,62]. 
 
4. Chromatographic retention time 
Although the use of full scan and MS/MS and/or MSn mass spectral data can provide 
a lot of information to be applied in the annotation of metabolites, other 
complementary data should be applied to provide greater confidence in reported 
annotations. Here we will discuss one of the data types. 
 
Chromatographic retention times are based on a different property of the metabolite 
compared to mass. Here, the physicochemical properties of how a metabolite 
interacts with a stationary phase is the defining property being measured and these 
interactions can be optimised by changing solvents, stationary phase, column 
dimensions and temperature. As discussed above the combination of MS/MS mass 
spectra and retention times in metabolite libraries is possible where authentic 
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chemical standards are available and are applied to experimentally derive retention 
time. However, unlike MS/MS mass spectra which are somewhat independent of the 
instrument where the data is acquired (i.e. the mass spectrometer can be operated 
reproducibly between different laboratories to produce the same MS/MS mass 
spectrum) the same is not true for the retention time. This is highly dependent on the 
analytical conditions applied including stationary phase, solvents, gradient elution, 
dead volumes; even the same type of column from different manufacturers can have 
different retention properties (for example, based on carbon coverage or changes in 
surface chemistry for reversed phase C18 stationary phases) means that 
reproducible retention times is somewhat limited because different laboratories apply 
different chromatographic parameters. Transferability between laboratories is much 
less achievable because only a small number of standardised assays are available 
and routinely applied across different laboratories for untargeted studies. The best 
examples of a standard assay are the p180 and p400 assay kits available from the 
company Biocrates which have been applied in different laboratories including in 
inter-laboratory comparisons (for an example see [63]). These assays are described 
as semi-targeted as the list of metabolites to be detected are derived before data 
collection and other metabolites present are not detected. These assays apply a 
liquid chromatographic assay for a subset of the metabolites and also includes direct 
infusion for assaying the other metabolites. Standard Reference Materials (SRMs) 
are available from the National Institute of Standards and Technology (NIST) 
including the most widely used SRM1950. These SRMs can be applied for method 
validation, inter-laboratory studies [64] and for development of quality control 
processes in metabolomics studies. Solutions in the future could follow two routes 
(1) standardised assays and retention indices or locking and (2) in-silico retention 
time prediction. The development of standardised untargeted LC-MS assays applied 
across multiple laboratories has not yet been achieved in the metabolomics 
community. Efforts are underway within an international consortium to apply 
standardised assays, called the International Phenome Centre Network, though this 
is in an early stage [65]. The difficult step is to persuade all groups to use the same 
LC-MS methods rather than use their own tried and tested assays in which they 
have the greatest confidence; this includes persuasion to use the same single 
supplier LC column. With standardised assays then a retention index system can be 
applied to compensate for small retention time drifts observed between laboratories. 
A second route is to use in-silico retention time prediction for metabolites where no 
authentic chemical standard is available (cf mass spectral libraries). Here data for 
known metabolites are applied to develop a prediction model for unknown 
metabolites, where the possible list of unknown metabolites can be derived from full 
scan or MS/MS data [66-68]. This strategy is again in early stages of its development 
and improvements in accuracy and precision are required. Many current models 
have a prediction accuracy of 30-60 seconds and in typical LC run times of 15 
minutes or less many isomers of the same mass have retention times which fall 
within 10 seconds of each other; therefore increased accuracy is required. 
 
Concluding remarks 
We have come a long way in the last ten years in solving the issue of metabolite 
annotation, one of the major bottlenecks of untargeted metabolomics. Through 
assessment and characterisation of current methods and data collected, the 
metabolomics community have identified the complexities and limitations and have 
developed solutions to overcome these complexities and limitations. Through our 
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growing knowledge of metabolites present in commonly studied metabolomes there 
has been the start of a move away from fully untargeted metabolomics studies to 
semi-targeted studies where the list of metabolites to be detected are known prior to 
data acquisition. However, we must remember that untargeted metabolomics is a 
game of confidence where all results reported can be assigned a level of confidence 
(e.g. a statistical p-value defines a level of confidence). This is the case for 
metabolite annotation in untargeted metabolomics studies where reporting standards 
related to confidence of an accurate and robust annotation have been presented.. 
One important conclusion from these reporting standards is that most metabolites 
reported are annotated and not identified. Identification defines that two or more 
complementary data types are compared to data collected for an authentic chemical 
standard applying the same analytical conditions. So retention time-MS/MS libraries 
constructed in-house allow identification. However, using full scan data only or 
MS/MS data only which are compared to online mass spectral libraries or 
metabolomics databases is not sufficient to provide an identification, these are 
annotations only. Care should always be taken when basing a biological conclusion 
on one annotated metabolite; validation of this discovery is needed and greater 
confidence in the importance of annotated metabolites should be based on multiple 
hits from the same class of metabolite where class can be based on metabolite 
structure of biological function.  
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Figures and Tables 
Figure 1. The range of factors which influence biofluid and tissue metabolomes in 
the human population including the intake of metabolites and other chemicals from 
the environment or other microbial genomes, physical characteristics including age 
as well as life and work choices including levels of exercise. 
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Figure 2. The process of metabolite annotation or identification in untargeted 
metabolomics studies applying LC-MS. The use of full scan data (blue) and MS/MS 
or MSn data (purple) are applied routinely for the annotation of metabolites. 
Increasingly the use of in-silico approaches (in-silico mass spectral libraries or in-
silico prediction of properties; purple and green) are being observed. Most 
metabolites are annotated (and should be reported as annotated) unless two 
complementary properties are matched to the same properties for a chemical 
standard analysed applying identical analytical conditions for biological sample and 
chemical standard. The reporting of confidence in the annotation or identification 
should be performed and reporting standards are available [17,18]. 
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Figure 3. The use of full scan accurate mass data to derive information and reduce 
complexity in metabolite annotation. Different signals for the same metabolite have 
the same retention time and peak shape (A), responses for pairs of signals are 
positively correlated (B) and specific m/z differences are observed and these m/z 
differences are not random (C). 
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Figure 4. Calculation of the Relative Isotope Abundance and its use for filtering lists 
of potential molecular formula. The peak area for the 12C and 13C peaks are 
normalized to the peak area of the 12C peak (100%). In this example, the 13C 
normalized peak area is 33%. The relative isotope abundance is calculated by 
dividing the 13C normalized peak area by 1.1, in this example to produce a RIA of 30. 
The metabolite therefore must have a molecular formula containing approximately 30 
carbon atoms; here all molecular formula with 30 +/- 10% carbon atoms are potential 
molecular formula while molecular formulae outside this range are removed. 
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Figure 5. The processes applied to perform DDA and DIA experiments differ in the 
width of the isolation window (DDA=narrow, DIA=wider), the coverage of the 
precursor m/z range (DDA=lower coverage, DIA=complete coverage) and the purity 
of the signal in the isolation window (DDA=higher purity, DIA=lower purity). 
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Table 1. A list of open access software, databases and libraries for metabolite 
annotation and identification. 
 

 
 

Software/Database

Annotation from 

full scan data

Annotation from from 

MS/MS or MS
n
 data

In-Silico 

Tool Web Address

Golm Metabolome 

Database (GMD) x http://gmd.mpimp-golm.mpg.de/

Toxin and Toxin Target 

Database (T3DB) x http://www.t3db.ca/

FooDB x http://foodb.ca/

DrugBank x https://www.drugbank.ca/

Human Metabolome 

Database (HMDB) x http://www.hmdb.ca/

KEGG x http://www.genome.jp/kegg/

PubChem x https://pubchem.ncbi.nlm.nih.gov/

ChEBI x https://www.ebi.ac.uk/chebi/

BioCyc x https://biocyc.org/

HumanCyc x https://humancyc.org/

LipidMAPS x http://www.lipidmaps.org/

ChemSpider x http://www.chemspider.com/

MINE x http://minedatabase.mcs.anl.gov/

Recon2 x

http://www.ebi.ac.uk/biomodels-

main/MODEL1109130000

PUTMEDID_LCMS x

http://www.mcisb.org/resources/put

medid.html

IDEOM x

http://mzmatch.sourceforge.net/ide

om.php

CAMERA x

https://bioconductor.org/packages/r

elease/bioc/html/CAMERA.html

MS-FLO x http://msflo.fiehnlab.ucdavis.edu/

CEU Mass Mediator x http://ceumass.eps.uspceu.es/

xMSannotator x

https://sourceforge.net/projects/xms

annotator/

MZedDB x

http://maltese.dbs.aber.ac.uk:8888/h

rmet/index.html

Rdisop x

https://bioconductor.org/packages/r

elease/bioc/html/Rdisop.html

SIRIUS x

https://github.com/boecker-

lab/sirius

MI-Pack x

https://github.com/Viant-

Metabolomics/MI-Pack

ProbMetab x

http://labpib.fmrp.usp.br/methods/p

robmetab/

MetAssign-mzMatch x http://mzmatch.sourceforge.net/

RAMClust x x

https://rdrr.io/github/cbroeckl/RAMC

lustR/

MyCompoundID x x

http://www.mycompoundid.org/myc

ompoundid_IsoMS/

METLIN x x https://metlin.scripps.edu/

MassBank x http://www.massbank.jp/

MS-DIAL x

http://prime.psc.riken.jp/Metabolom

ics_Software/MS-DIAL/

mzCloud x https://www.mzcloud.org/

NIST x

https://www.nist.gov/srd/nist-

standard-reference-database-1a-v17

LipidBlast x

http://fiehnlab.ucdavis.edu/projects/

LipidBlast

MetFrag x http://c-ruttkies.github.io/MetFrag/

MS-FINDER x

http://prime.psc.riken.jp/Metabolom

ics_Software/MS-FINDER/

HAMMER x

http://www.biosciences-

labs.bham.ac.uk/viant/hammer/

MS2LDA x http://ms2lda.org/

MetFamily x x x

https://msbi.ipb-

halle.de/MetFamily/

MetFusion x http://mgerlich.github.io/MetFusion/

MIDAS x

https://github.com/chongle/midas-

metabolomics

CFM-ID x http://cfmid.wishartlab.com/

FT-BLAST x

https://bio.informatik.uni-

jena.de/research/

MAGMa x https://github.com/NLeSC/MAGMa

CSI:FingerID x

https://www.csi-fingerid.uni-

jena.de/

MOLGEN-MS/MS x http://www.molgen.de/
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Table 2. List of commonly detected adducts and in-source neutral losses observed 
in untargeted LC-MS datasets applying electrospray ionisation. 
 

Adduct type In-source fragments 

[M+H]
+
 [M+H-H2O]

+
 (water loss) 

[M+Na]
+
 [M+H-NH3]

+
 (ammonia loss) 

[M+K]
+
 

[M+H-CO]
+
 (carbon monoxide 

loss) 

[M+NH4]
+
 [M+H-CO2]

+
 (carbon dioxide loss) 

[M-H]
-
 [M+H-H2S]

+
 (hydrogen sulfide loss) 

[M+H-CH2O2]
+
 (formate loss) 

[M+H-C6H8O6]
+
 (glucuronide loss ) 

 [M+H-H3PO4]
+ 

(phosphate loss) 

 [M+H-H2SO4]
+
 (sulphate loss) 
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Highlights 

• Untargeted metabolomics provides an unbiased study of human metabolomes 
• These studies require the annotation of metabolites using data acquired, no prior list 

of metabolites is applied 
• Reduction of the search space using full-scan data is applied first with filters 

incorporating isotopic information as an example 
• Gas phase fragmentation can be applied to provide information on chemical structure 

used to differentiate between metabolites including isomers 
• Development of new analytical and computational tools and resources has driven 

metabolite annotation forward significantly in the last ten years 

 


