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Abstract 1 

In recent times, epigenetic marks have emerged as important players involved in the 2 

regulation of gene expression and transposable element silencing in many organisms. In 3 

plants, many epigenetic changes, mainly at the level of DNA methylation, are 4 

transgenerational stable and contribute to formation of epialleles, affecting developmental 5 

and agronomical traits. In this scenario, it becomes critical to differentiate the genetic from 6 

the epigenetic contribution to plant phenotypes. In Arabidopsis, epigenetic Recombinant 7 

Inbred Lines (epiRILs), obtained by an initial cross of isogenic parents with different DNA 8 

methylation profiles, provide a powerful tool to investigate the role and significance of 9 

epigenetic alteration in identical or almost identical genetic backgrounds. Such populations 10 

have greatly increased our knowledge in mechanisms involved in epialleles formation and 11 

stability, as well as in the consequences of DNA methylation changes in genomic stability, 12 

transposable elements activation and phenotypic traits.  13 

  14 



Introduction 15 

 16 

While it is known that DNA is the support of heredity, it is more and more recognised that 17 

heritable phenotypic variation can be also caused by epigenetic changes, and not only by 18 

change in the DNA sequence. Methylation of cytosines (DNA methylation) is an epigenetic 19 

mark conserved across many species and plays an important role in regulating gene 20 

expression (X. J. He, Chen, & Zhu, 2011). Widespread perturbation in DNA methylation has 21 

been shown to lead to heritable phenotypic changes in plants (X. J. He et al., 2011; Seymour 22 

& Becker, 2017). Moreover, in plants changes in DNA methylation can be transmitted 23 

through generations because, contrary to what occurs in mammals, there is no clear 24 

evidence of global DNA methylation resetting at each generation (Heard & Martienssen, 25 

2014). DNA methylation in plants occurs at cytosines and can been observed in all three 26 

contexts CG, CHG and CHH. DNA methylation in genes is almost only observed in the CG 27 

context, and seems to be associated with gene activation. On the other hand, dense DNA 28 

methylation at Transposable Elements (TEs) is observed in all three contexts and is 29 

associated with transcriptional repression (Gehring & Henikoff, 2007). 30 

To date only a handful of natural epialleles (see definitions) have been described in 31 

eukaryotes (Table 1). These epialleles are characterised by a gain or loss of DNA 32 

methylation, often associated with a change in gene expression, as well as strong 33 

phenotypes. Such changes of DNA methylation at epialleles are usually observed in 34 

repeated sequences or TEs that are either in close proximity or inside genes. While these 35 

epialleles are stable over a generation, some are metastable, which means that some level 36 

of instability as well as gradual reversions have been observed. This is in striking contrast to 37 



genetic alleles (see definitions), as changes in the DNA sequence are more stable than 38 

changes in DNA methylation for several orders of magnitude (Becker et al., 2011).   39 

The small number of natural epialleles described so far could be explained by the fact they 40 

were either identified thanks to a strong phenotypes (Bender & Fink, 1995; Cubas, Vincent, 41 

& Coen, 1999; Manning et al., 2006; Martin et al., 2009; Melquist, Luff, & Bender, 1999; K. 42 

Miura et al., 2009; L. Zhang et al., 2012; X. Zhang, Sun, Cao, & Song, 2015), to an allelic 43 

incompatibility between accessions (Agorio et al., 2017; Blevins, Wang, Pflieger, Pontvianne, 44 

& Pikaard, 2017; Durand, Bouche, Perez Strand, Loudet, & Camilleri, 2012) or by chance 45 

(Silveira et al., 2013). We can suppose that many epialleles have not been discovered yet as 46 

they might be associated with mild phenotypes, or phenotypes only visible under certain 47 

circumstances (e.g environmental stress). Moreover, while identifying alleles underlying a 48 

certain phenotype is nowadays straight-forward, identifying DNA methylation changes at an 49 

unknown position associated with a phenotype is still challenging and requires more 50 

sophisticated analysis. In the context of this chapter, we will use a broad definition of 51 

epialleles: any stably transmitted change in methylated profiles, with or without phenotypic 52 

consequences. 53 

[Insert Table 1 here] 54 

Perturbing DNA methylation, by mutating genes involved in DNA methylation deposition or 55 

maintenance, is a way to increase the chance of detecting epialleles. Hence epialleles have 56 

been detected in Arabidopsis thaliana mutants characterised with a global loss of DNA 57 

methylation. Some of these epialleles are characterised by DNA hypomethylation, such as 58 

fwa, associated with a late flowering phenotype (Kakutani, 1997; Kakutani, Jeddeloh, 59 

Flowers, Munakata, & Richards, 1996; Lippman et al., 2004; Ronemus, Galbiati, Ticknor, 60 

Chen, & Dellaporta, 1996; Soppe et al., 2000) and sqn, associated with an increased 61 



expression (Catoni et al., 2017; Habu et al., 2006). Others are characterised by DNA 62 

hypermethylation, such as sup, associated with an excess of stamens (Jacobsen & 63 

Meyerowitz, 1997; Jacobsen, Sakai, Finnegan, Cao, & Meyerowitz, 2000), ag, associated 64 

with an absence of carpels (Jacobsen et al., 2000) and bns, associated with a dwarf 65 

phenotype (Saze & Kakutani, 2007). These epialleles are stably maintained after removal of 66 

the inducible mutation, with a certain degree of metastability, as also observed for natural 67 

epialleles. Except for QQS (Silveira et al., 2013), until now, none of these induced epialleles 68 

have been naturally observed in Arabidopsis thaliana.  69 

In order to identify alleles with milder or quantitative phenotypes (in contrast to strong 70 

qualitative phenotypes), recombinant inbred lines (RILs, see definitions) are commonly used 71 

(Mackay, 2001). These populations are used to identify loci at which the segregation of 72 

parental alleles are associated with phenotypic changes. Such an approach could also allow 73 

the detection of epialleles associated with mild or quantitative phenotypes. However, as 74 

this will be described in more detail in this chapter, alleles as well as epialleles are 75 

segregating in RIL populations, making it difficult to separate epigenetic from genetic impact 76 

on phenotypes (Johannes, Colot, & Jansen, 2008). In order to specifically identify epialleles 77 

associated with phenotypic changes, epigenetic RIL (epiRILs, see definitions) have been 78 

generated in Arabidopsis thaliana (Johannes et al., 2009; Reinders et al., 2009). In short 79 

these populations have been created in order to maximise DNA methylation changes, while 80 

reducing (if not completely removing) DNA sequence differences.  81 

In this chapter we will be discussing the many aspects in which epiRIL populations have 82 

been of a great use and how the acquired knowledge could be translated in crops in the 83 

future. 84 

 85 



-------- 86 

Definitions 87 

Allele: Genetic variants of a gene. Different alleles can result in different phenotypic traits. 88 

Epiallele: Epigenetic variants of a gene. The genetic sequence of the epialleles is identical, 89 

but the level of DNA methylation, or other epigenetic marks, are different. Epialleles can 90 

result in differences in gene expression, which can potentially lead to differences in 91 

phenotypic traits. 92 

RIL (Recombinant Inbred Lines): Set of homozygous lines that incorporate a combination of 93 

genomic regions derived from the cross of two parent lines. Each RIL is developed by self-94 

pollination and single seed descent propagation of a segregating F2 plant obtained from the 95 

initial cross. Inbreeding continues for at least six/eight generations, determining the fixation 96 

in homozygous form of most of alleles and epialleles. RILs are often used for mapping 97 

QTLs.     98 

EpiRIL (Epigenetic Recombinant Inbred Lines): Similarly to RILs, epiRILs are a set of fixed 99 

homozygous lines, descending from a F2 population. However, contrary to RILs, the parents 100 

used to generate epiRIL population have identical (or almost identical) genomic sequence 101 

but different DNA methylation profiles. EpiRILs are thus maximising epialleles segregation, 102 

while reducing (if not removing completely) allelic segregation. EpiRILs can be used for 103 

mapping epiQTLs.  104 

QTL (Quantitative Trait Locus): A QTL is a locus of the genome at which genetic variation 105 

correlates with variation of a quantitative trait. 106 

EpiQTL (Epigenetic Quantitative Trait Locus): An epiQTL is a locus of the genome at which 107 

variation in DNA methylation correlates with variation of a quantitative trait. 108 



Additive alleles: Different alleles of a gene that combine in a way that the phenotype or 109 

expression level of the heterozygous is equal to the sum of each allele.  110 

Dominant alleles: The dominant allele dictates the phenotype or expression level of the 111 

heterozygous, when paired with a recessive allele. 112 

Transgressive transcripts: In the context of a hybrid, locus expression level that is not 113 

explained neither as additive, nor than as dominant allelic effect. 114 

-------- 115 

 116 

Definition and description of the epiRIL populations 117 

The study of epiallele stability and phenotypic consequences can be performed by taking 118 

advantage of natural variation in Arabidopsis thaliana. DNA methylation at the level of 119 

genes has been shown to be highly polymorphic between A. thaliana accessions, making 120 

possible to follow epialleles segregation and their stability in F2 populations (Vaughn et al., 121 

2007). Natural accessions not only differ in their levels of DNA methylation, but also in their 122 

genetic sequences, and genetic polymorphism can be used to identify the parent of origin 123 

for genomic regions in F1 and F2 populations (Greaves et al., 2012; Shen et al., 2012; 124 

Vaughn et al., 2007; X. Zhang, Shiu, Cal, & Borevitz, 2008).  125 

However, the presence of genetic and epigenetic variation across A. thaliana natural 126 

accessions often impairs proper quantification of the epigenetic contribution to phenotypic 127 

differences. Indeed, several studies in plants (but also in mammals) reported many 128 

examples of DNA methylation variations associated to either local (cis) or distant (trans) 129 

changes in DNA sequence (Eichten et al., 2011; Gibbs et al., 2010; Hellman & Chess, 2010; D. 130 

Zhang et al., 2010). On the other hand, mutation rate of methylated cytosines is higher than 131 



non methylated cytosines (Xia, Han, & Zhao, 2012), suggesting that DNA methylation and 132 

DNA sequence polymorphisms can be linked and also influence each others.  133 

Therefore, a classification of epialleles has been proposed depending on their link with DNA 134 

sequence polymorphism (Richards, 2006): (i) obligatory epialleles, for which a cis or trans 135 

genetic polymorphism influences the DNA methylation status; (ii) facilitated epialleles, 136 

which can be linked to or caused by a genetic polymorphism, but that are not fully 137 

dependent on it; and (iii) pure epialleles, that are not affected by any genetic changes.       138 

 139 

Two epiRIL populations have been independently created in Arabidopsis thaliana (Figure 1), 140 

to maximise DNA methylation variation and minimise (if not abolishing) DNA sequence 141 

polymorphisms, in order to discriminate epialleles that are not influenced by DNA sequence 142 

polymorphisms (Johannes et al., 2008). These epiRILs have been generated by crossing an 143 

epigenetic mutant, met1-3 (Reinders et al., 2009) or ddm1-2 (Johannes et al., 2009), with its 144 

corresponding wild-type (Columbia-0 accession). The two parents thus have the same 145 

genome, except for the mutated gene, but they have very contrasting DNA methylation 146 

profiles. Each epiRIL within the population essentially contains a mosaic epigenome derived 147 

from either wild-type and ddm1-2 or wild-type and met1-3.  148 

Although both met1-3 and ddm1-2 mutants are hypomethylated, their effects on genome 149 

wide DNA methylation are different, and these differences are conserved in the epigenetic 150 

perturbations segregating in two epiRILs populations. The DNA methyltransferase MET1 151 

maintains CG methylation in Arabidopsis thaliana and the met1-3 null mutant is 152 

characterised by a virtual complete erasure of CG methylation and indirect loss of plant-153 

specific non-CG methylation (Saze, Mittelsten Scheid, & Paszkowski, 2003).  On the other 154 

hand, DDM1 encodes an ATPase chromatin remodeler primarily involved in allowing DNA 155 



methyltransferases to access heterochromatin (Zemach et al., 2013). ddm1-2 mutation 156 

mainly affects DNA methylation in all cytosine contexts (CG, CHG and CHH) at 157 

heterochromatic TEs (Kakutani, Jeddeloh, & Richards, 1995; Lippman et al., 2004; Vongs, 158 

Kakutani, Martienssen, & Richards, 1993). Consequently, the epialleles generated in met1-159 

derived epiRILs are equally distributed in euchromatic and heterochromatic areas, including 160 

gene bodies that are exclusively CG methylated (Bewick et al., 2016; Catoni et al., 2017), 161 

while epialleles in ddm1-derived epiRILs are mostly involving TE loci (Cortijo et al., 2014). 162 

The met1-3 mutant used to create the met1-epiRIL population also shows very severe 163 

phenotypic defects, including reduced fertility (Mathieu, Reinders, Caikovski, Smathajitt, & 164 

Paszkowski, 2007). Hence, a high level of mortality (29%) has also been observed while 165 

propagating 100 individuals of the met1-epiRIL population over generations (Reinders et al., 166 

2009). On the contrary ddm1-derived epiRILs have been generated starting from the ddm1-167 

2 mutant, which displays only minor developmental defects. This strategy allowed the 168 

production of a large population of 505 different ddm1-derived epiRILs, with no evidence of 169 

selection against deleterious phenotypes (Colome-Tatche et al., 2012). 170 

The crossing scheme of the two populations also differs. In both cases, the mutant (met1-3 171 

or ddm1-2) has been crossed with a wild-type plant and only F2 plants segregating the wild-172 

type allele have been used to generate the epiRIL populations. The met1-epiRILs originate 173 

directly from the F2 individuals resulting from this cross, while the ddm1-epiRILs descend 174 

from a second back cross of the F1 with the wild-type. Thus, DNA methylation changes 175 

segregate with a 1:1 ratio in the met1-epiRILs and with a 1:3 (mut/WT) ratio in the ddm1-176 

epiRILs. 177 

[Insert Figure 1 here] 178 

 179 



DNA methylation transgenerational stability and its phenotypic consequences 180 

 181 

 Understanding of the stability of DNA methylation perturbations 182 

 183 

Contrary to mammals, in plants there is no evidence of a consistent global resetting of DNA 184 

methylation during development, making the transmission of epialleles over generations 185 

more probable. Indeed, it has been shown that the loss of DNA methylation induced by the 186 

ddm1-2 mutation can be stably inherited over many generations once the DDM1 wild-type 187 

allele is re-introduced (Kakutani, Munakata, Richards, & Hirochika, 1999). The analysis of the 188 

transmission of ddm1-2 and met1-3 induced hypomethylation at six TEs, after a cross with 189 

wild-type, showed that the hypomethylation is transmitted at some loci and reversed to a 190 

wild-type methylation state at other loci (Lippman et al., 2003). Methylated regions have 191 

been divided into two categories: (i) those that can form two distinct epialleles that are 192 

maintained over generations once in a WT background, and (ii) those that revert to the WT 193 

epigenetic state (remethylatable). EpiRILs are a great tool to study the mechanisms and 194 

consequences of DNA hypomethylation stability or reversion over generations. Indeed, the 195 

analysis of the DNA hypomethylation stability at multiple loci in three ddm1-epiRILs and 196 

three met1-epiRILs confirmed the presence of stable and remethylatable ddm1- and met1-197 

induced hypomethylation (Reinders et al., 2009; Teixeira et al., 2009). Transgressive DNA 198 

methylation patterns have also been observed in these populations. Using bisulfite 199 

sequencing it was shown that remethylation to a level similar to wild-type was observed 200 

occurring at many loci in all cytosine contexts. This remethylation requires sRNA and factors 201 

involved in RNA-directed DNA methylation and is progressive over generations in the ddm1-202 

epiRILs (Teixeira et al., 2009), while remethylation has been observed directly occurring in 203 



the F1 in the case of met1-induced hypomethylation (Rigal et al., 2016). Further analysis of 204 

cis factors influencing remethylation in the met1-epiRILs as well as in the F2, containing the 205 

wild-type allele of MET1, originating from a backcross between met1-3 and wild-type, 206 

showed that remethylation is associated with repetitiveness and relative scarcity of CpGs. In 207 

contrast, stable epialleles are associated with low copy number and high CpG content 208 

(Catoni et al., 2017). The link between these cis factors and the level of epigenetic stability 209 

was confirmed in rice (Catoni et al., 2017), and also observed generally associated to the 210 

susceptibility of transgenes to be epigenetically silenced (Sidorenko et al., 2017). This 211 

observation shows how epiRILs in Arabidopsis thaliana could be of great help to identify 212 

general rules associated to epiallele stability in different plant species or even for synthetic 213 

or heterologous DNA sequences (like transgenes).  214 

 215 

 From epialleles to epigenomic recombination maps 216 

 217 

The identification of epialleles in epiRILs has been used advantageously to identify the 218 

parental origin of genomic regions along the genome, exclusively using DNA methylation 219 

information (Colome-Tatche et al., 2012; Reinders et al., 2009). Parental origin was 220 

identified for three met1-epiRILs using whole-genome methylation analysis (Reinders et al., 221 

2009). Genome-wide DNA methylation data for 123 ddm1-epiRILs were also used in order to 222 

construct a recombination map derived from 126 epialleles covering 81.9% of the total 223 

genome (Colome-Tatche et al., 2012). The genetic length of this map is comparable to those 224 

obtained from classical Arabidopsis crosses, suggesting that the hypomethylated loci 225 

segregating in the ddm1-epiRILs do not affect the global meiotic recombination rates. 226 

However, it has been seen on a local scale that recombination rates are reduced within 227 



repeat-rich pericentromeric regions and increased in chromosome arms (Colome-Tatche et 228 

al., 2012). This remodelling of recombination hotspots, without changing the global rate, 229 

was also independently observed using met1-epiRILs (Mirouze et al., 2012). A later study 230 

shown that this remodelling of local recombination requires genes involved in the 231 

redistribution of interfering crossovers (Yelina et al., 2015).  232 

Interestingly, the creation of epigenomic recombination maps using epialleles has also been 233 

done using mutation accumulation (MA) lines in Arabidopsis thaliana (Hofmeister, Lee, 234 

Rohr, Hall, & Schmitz, 2017). MA lines are self-pollinated single-seed descent lines 235 

originating from a single founder, such that the lines are nearly genetically identical. MA 236 

lines display DNA methylation variation, and more than half of the differentially methylated 237 

regions identified in MA lines were stably transmitted in the progeny of a cross between 238 

two of them (Hofmeister et al., 2017). The creation of epigenomic recombination maps 239 

using stable DNA methylation variation is thus not restricted to epiRILs and will be of great 240 

interest to identify epialleles underlying phenotypic variation. 241 

 242 

 Epialleles and phenotypic consequences 243 

 244 

Knowing that a proportion of DNA methylation perturbations are transmitted through 245 

generations in met1 and ddm1-epiRILs, one important question is to define if these can have 246 

phenotypic consequences. The two epiRIL populations have been extensively phenotyped 247 

for qualitative as well as quantitative traits such as flowering time, biomass or response to 248 

biotic and abiotic stresses. Two types of phenotypic variation have been observed. A first 249 

type of recessive variation has been observed sporadically occurring in only one epiRIL line 250 

and thus arose specifically during the creation of that line (Figure 2). These specific 251 



phenotypic changes are unlikely to be transmitted from the parents used in the creation of 252 

the epiRIL populations, and it was shown that TE mobilisation impairing gene functions were 253 

the cause of such specific phenotypes in the met1-epiRIL population (Mirouze et al., 2009). 254 

The second type of phenotypic change is affecting a significant proportion of the epiRIL lines 255 

and is thus potentially inherited from the parents. We will discuss more in detail this second 256 

type of phenotypic change, as they are more likely to be caused by epialleles segregating in 257 

the epiRIL populations. 258 

[Insert Figure 2 here] 259 

One strong phenotype observed in the two epiRIL populations is delayed flowering time, 260 

which has been shown to be associated with the hypomethylated epiallele at the FWA locus 261 

(Johannes et al., 2009; Reinders et al., 2009). However, continuous variation for flowering 262 

time is still observed in the ddm1-epiRIL population after removing individuals for which late 263 

flowering is caused by this fwa epiallele (Johannes et al., 2009). This suggests that DNA 264 

methylation changes at other loci are also involved in the segregation of this trait in the 265 

ddm1-epiRIL population. 266 

A large proportion of the met1-epiRIL population is also characterised with  retarded growth 267 

(85% of met1-epiRILs) as well as delayed germination under elevated salinity (60% of met1-268 

epiRILs). Moreover, 34% and 4% of met1-epiRILs showed respectively increased resistance 269 

or susceptibility to the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato 270 

(Pst) (Reinders et al., 2009). 271 

Given the high number of lines in the ddm1-epiRIL population (505 lines), many quantitative 272 

traits have been measured in this population and their heritability estimated (i.e. the degree 273 

of variation in the phenotypic trait in the population due to genetic, and here epigenetic, 274 

variation between individuals). A continuous variation and high heritability have been 275 



observed for several traits such as flowering time, plant height, primary root length, fruit 276 

number, total biomass and others (Cortijo et al., 2014; Johannes et al., 2009; Roux et al., 277 

2011). Many traits such as flowering time, plant height, fruit size, dry biomass and rosette 278 

diameter have also been measured in common garden experiments, alongside natural 279 

accessions of Arabidopsis thaliana  (Roux et al., 2011).  It was found that phenotypic 280 

variation in the ddm1-epiRIL population displays a level of trait heritability similar to the 281 

natural Arabidopsis accessions grown in parallel. Phenotypic plasticity, which is the ability of 282 

one genotype to produce multiple phenotypes in response to the environment, has also 283 

been measured for flowering time, plant height, fruit number, total biomass and root:shoot 284 

ratio in response to drought and nutrient addition (Zhang et al., 2012). A high heritability 285 

was observed for these traits in the absence and presence of environmental perturbations, 286 

but also for their plasticity (Y. Y. Zhang, Fischer, Colot, & Bossdorf, 2013). Theoretical 287 

predictions indicate that these heritability values are consistent with a small number of 288 

parentally derived quantitative trait loci (QTL, see definitions). These results suggest that 289 

phenotypic variability in the ddm1-epiRILs can be caused by the segregation of epialleles, or 290 

by DNA sequence polymorphisms caused by mobilisation of transposable elements, 291 

reactivated by DNA hypomethylation. 292 

In order to identify the loci underlying heritable phenotypic variability in the ddm1-epiRIL 293 

population, and to define their genetic or epigenetic origin, epigenetic quantitative trait loci 294 

(epiQTL, see definitions) have been mapped in ddm1-epiRILs for flowering time and primary 295 

root length (Cortijo et al., 2014). This was done taking advantage of a genetic map 296 

generated using differentially methylated regions in 123 ddm1-epiRILs, and covering 81.9% 297 

of the total genome (Colome-Tatche et al., 2012). Several epiQTLs were detected on 298 

chromosomes 1, 4 and 5 for flowering time, and on chromosomes 1, 2 and 4 for primary 299 



root length (Figure 3). These QTLs could be associated to epigenetic polymorphisms, but 300 

also caused by TE mobilisation. In order to discriminate between these two possibilities, 301 

association between DNA methylation status and primary root length was confirmed for the 302 

markers at the peak of the three epiQTLs in an independent F3 population. Moreover, new 303 

TE mobilisations detected at these epiQTLs in the epiRIL population are not present in this 304 

F3 population. These results strongly suggest that changes in DNA methylation are causing 305 

the epiQTLs detected for primary root length (Cortijo et al., 2014).  306 

The next step will be to identify the epialleles underlying these epiQTLs. However, as for 307 

mapping alleles underlying QTLs, this operation is challenging and will require more time 308 

and work. A first step would be to generate a fine mapping population in order to reduce 309 

the size of QTLs and thus the number of potential epialleles (Loudet, Gaudon, Trubuil, & 310 

Daniel-Vedele, 2005). Once potential epialleles will be detected, manipulating their DNA 311 

methylation status will be required in order to confirm the link between DNA methylation 312 

and phenotypic variability at this locus. Targeted DNA methylation is still challenging but 313 

could be now achieved using a deactivated Cas9 fused with a DNA methyltransferase (Vojta 314 

et al., 2016), by VIGS (Bond & Baulcombe, 2015) or by using RNA hairpins to trigger RdDM 315 

(Mette, Aufsatz, van der Winden, Matzke, & Matzke, 2000).  316 

However, the complete characterization of epialleles responsible for the identified epiQTL 317 

associated to traits of interest is not necessarily a requirement in order to use this 318 

knowledge to improve plants. Methods such as marker-assisted selection could be used to 319 

introgress the desired trait in the cultivar of interest, taking advantage of markers 320 

associated to the identified epiQTL (Kumar et al., 2017). The DNA methylation status of 321 

these markers, rather than the DNA sequence polymorphisms, would have to be used 322 

during the selection process. Assays based on DNA digestion with enzymes sensitive to DNA 323 



methylation, as for example McrBC (Teixeira et al., 2009), associated to qPCR, would provide 324 

a cheap and high throughput approach to perform such selection based on the markers 325 

epigenetic status. 326 

[Insert Figure 3 here] 327 

 328 

Using epiRILs to understand TE mobilisation 329 

Transposable elements (TEs) are a heterogeneous group of mobile DNA elements integrated 330 

in the genome of virtually all organisms, with the ability to move from their original position 331 

to a new genomic location. TEs can be classified in two main classes based on their 332 

transposition strategy: (i) Class I TEs (or retrotransposons), which transpose with a copy-333 

and-paste mechanism through reverse transcription of a RNA intermediate and (ii) Class II 334 

TEs, transposing with a cut-and-paste mechanism mediated by a transposase (Wicker et al., 335 

2007). Although initially considered as selfish genes and assimilated to “junk DNA” (Doolittle 336 

& Sapienza, 1980), the importance of the contribution of TEs to gene and genome structure 337 

and evolution is currently recognised across the entire tree of life (Hurst & Werren, 2001; 338 

Rebollo, Romanish, & Mager, 2012), including plants (Lisch, 2013). Consequently, 339 

transcriptional silencing of TEs ensures genetic stability, and is controlled in plants by a 340 

network of self-reinforcing epigenetic pathways, marking TEs with repressive marks at the 341 

level of DNA (cytosine methylation) and chromatin (histone repressive marks). Therefore, 342 

epigenetics mutants often show release of TE expression, and have been used to reveal and 343 

study real time TE mobilization (Ito et al., 2011; A. Miura et al., 2001; Tsukahara et al., 344 

2009). In this context, epiRILs represent a valuable alternative to homozygous met1, ddm1 345 

and other epigenetic mutants in studying TE mobilization for several reasons. First, epiRILs 346 

are in the wild-type genetic background and are therefore genetically and phenotypically 347 



more stable compared to the mutant from which they derived (Reinders et al., 2009). 348 

Moreover, the epiallele segregation and homozygous fixation that occurred through many 349 

inbred generations contributed to “dilute” the epialleles with deleterious effects, reducing 350 

the amount of developmental defects that are normally displayed in the homozygous 351 

mutant. For example, the Arabidopsis met1-3 mutation is semi-lethal with transgenerational 352 

decrease of fitness, and homozygous mutant plants can be maintained viable for a 353 

maximum of four generations (Mathieu et al., 2007). Although not as severe as for met1-3 354 

mutants, ddm1-1 and ddm1-2 homozygous mutants accumulate strong phenotypic defects 355 

through generations, (Kakutani et al., 1996). Stochastic bursts of several TEs independently 356 

occur in different ddm1 inbred lines, and are contributing to at least some of the 357 

developmental phenotypes observed in ddm1 (A. Miura et al., 2001; Tsukahara et al., 2009). 358 

By contrast, met1 and ddm1-derived epiRILs have been maintained for more than eight 359 

generations without noticing a significant decrease in fertility (Johannes et al., 2009; 360 

Reinders et al., 2009), providing a much more reliable platform to study transposition 361 

events. Indeed, the mobilization of the Class II DNA transposon CACTA1 (Reinders et al., 362 

2009)  and the Class I retrotransposon EVADE (EVD) (Mirouze et al., 2009) were reported in 363 

met1-derived epiRILs, while not detected in the met1-3 mutant. Similarly, many transposons 364 

have been found active in ddm1-epiRILs, indicating that ddm1-2 mutation is necessary to 365 

release TE silencing, and that TEs can remain active after re-introduction of the DDM1 wilt-366 

type allele (Cortijo et al., 2014; Gilly et al., 2014). In ddm1-epiRILs the fraction of the 367 

demethylated genome was initially diluted through one ddm1 backcross of the F1 with the 368 

wild-type, reducing in average to 25% the fraction of hypomethylated genome inherited 369 

from the ddm1-2 mutant parent, and contributing to stabilize epiRILs phenotypes at late 370 

generations. 371 



Therefore, both met1 and ddm1 derived epiRIL populations demonstrated a longer 372 

transgenerational viability and stability compared to the mutant parents from which they 373 

are derived. The advantage of this condition is that the plethora of epiallelic effects and 374 

multiple TE activation observed in the homozygous mutants can be isolated in independent 375 

epiRILs, making it possible to study the activation and de novo silencing of independent TEs 376 

in real time experiments. For example, the transgenerational dynamic evolution of EVD 377 

mobilization was studied in inbred epiRILs (Mari-Ordonez et al., 2013). The EVD burst and its 378 

de novo silencing was reconstructed in a met1-epiRIL, observing that efficient silencing is 379 

associated to a change in small RNA composition, and consistently occurs approximately at 380 

the 14th generation after EVD activation, when its copy number in the genome reaches a 381 

threshold of 40 copies (Mari-Ordonez et al., 2013). 382 

Although the first events of real time transposition were discovered in maize more than 50 383 

years ago (Mc Clintock, 1950), the impact of TE mobilization on genome stability and the 384 

biology of complex organisms is still poorly investigated, and essentially extrapolated from 385 

comparative genomics and phylogenetic studies. This limitation is the direct consequence of 386 

the rarity of TE mobilization events so far observed in nature, likely due to the epigenetic 387 

silencing normally associated to repeated DNA sequences.  388 

The most evident effect of TE mobilization is the recessive mutation of genes with a new TE 389 

insertion occurring in their coding region, in many cases producing a visible phenotype. 390 

Nonetheless, phylogenetic studies produced evidence of several TE-induced non-destructive 391 

effects on gene expression responsible for agricultural important traits in crops (Lisch, 392 

2013). It is however unclear if these non-destructive effects derived from positively selected 393 

exceptional aberrant transposition events or are the result of transposition strategies of 394 

different TE families. In this scenario, epiRILs offer the opportunity to identify and 395 



characterize new active TEs, and to study the impact of their real time mobilization across 396 

generations in a limited number of plant lines. Therefore, the study of epiRILs may 397 

contribute to elucidate the role of TE on genetic and biology in higher plants, and more 398 

generally in eukaryotic multicellular organisms.  399 

 400 

Heterosis 401 

Heterosis, or hybrid vigour, is a phenomenon describing the improved phenotype of a 402 

hybrid offspring compared to the average of both parents, first recorded by Charles Darwin 403 

in 1876 (Darwin, 1876). In agriculture, heterosis has been adopted as a routine strategy for 404 

plant breeding, leading to improved biomass, yield or resistance to biotic and abiotic stimuli 405 

in hybrids (Baranwal, Mikkilineni, Zehr, Tyagi, & Kapoor, 2012). Despite such an extensive 406 

use in agriculture, the underlying mechanisms of heterosis are still poorly understood. 407 

Traditionally, it is generally accepted that heterosis directly correlates with the level of 408 

genetic distance between the two parents (Birchler, Yao, Chudalayandi, Vaiman, & Veitia, 409 

2010). However, more recent experiments performed in Arabidopsis have shown that 410 

hybrids generated from accessions with very similar genome can also display a high level of 411 

hybrid vigour (Groszmann, Greaves, Fujimoto, Peacock, & Dennis, 2013; Schneeberger et al., 412 

2011), suggesting that epigenetic differences could also contribute to heterosis (Figure 4).  413 

[Insert Figure 4 here] 414 

Indeed, changes in small RNA level and DNA methylation have been associated to hybrid 415 

vigour in both interspecific (i.e. between species) or intraspecific (i.e. between accessions) 416 

hybrids systems studied in Arabidopsis (Greaves et al., 2012; Groszmann et al., 2011; Shen 417 

et al., 2012) and other plant species, including rice (Chodavarapu et al., 2012; G. He, He, & 418 

Deng, 2013), maize (Barber et al., 2012; G. He, Chen, et al., 2013), wheat (Kenan-Eichler et 419 



al., 2011) and tomato (Shivaprasad, Dunn, Santos, Bassett, & Baulcombe, 2012). However, 420 

the coexistence of genetic and epigenetic differences in hybrids makes it intrinsically 421 

difficult to quantify the epigenetic contribution to heterosis.  422 

In contrast, epiRILs are isogenic to wild-type but differ at localized hypomethylated 423 

chromosomal areas. Interestingly, some lines from both met1-derived and ddm1-derived 424 

epiRIL populations displayed increased biomass or higher resistance to a pathogen if 425 

compared to wild-type Columbia-0 accession (Johannes et al., 2009; Reinders et al., 2009), 426 

similar to what is observed in heterotic hybrids. These results suggest that epigenetic 427 

variation by itself might be involved in the generation of hybrid vigour.  428 

In a recent work, heterosis for growth-related traits was investigated in epigenetic hybrids 429 

generated by pollinating met1-derived epiRIL plants with pollen from their isogenic wild-430 

type line (Col-0) (Dapp et al., 2015). In the case of one met1-derived epiRIL (epi31), a 431 

consistent and reproducible increase in rosette size was observed in F1 plants compared to 432 

both parental lines. Remarkably, epi31 displayed a clear parent-of-origin effect on hybrid 433 

vigour, as also observed in certain crosses between Arabidopsis accessions (Barth, Busimi, 434 

Friedrich Utz, & Melchinger, 2003; Meyer, Torjek, Becher, & Altmann, 2004). Although the 435 

authors could not associate any change in gene expression with the hybrid vigour observed, 436 

several additive, dominant and transgressive (see definitions) transcripts have been identify 437 

in the F1 hybrids (Dapp et al., 2015), supporting the existence of multiple scenarios for DNA 438 

methylation-mediated gene regulation in epi-hybrids. 439 

More recently, the contribution of differences in parental methylation to heterosis was 440 

quantified measuring six different traits in a larger panel of over 500 A. thaliana epi-hybrids 441 

obtained starting from ddm1-derived epiRILs (Lauss et al., 2018). Several positive and 442 

negative heterotic effects were documented, and specific differentially methylated regions 443 



in parental genomes were associated with heterotic phenotypes observed in nineteen epi-444 

hybrids (Lauss et al., 2018). 445 

In conclusion, there is growing evidence supporting the epigenetic contribution to heterosis. 446 

In this context, epiRILs may be the optimal tool to isolate and characterize epigenetic 447 

determinants of hybrid vigour, for example by mapping epiQTLs associated to different 448 

favourable traits. In addition, altering the epigenetic landscape of parents can potentially 449 

increase the heterotic effect of hybrids, and could be used as a tool to increase plant 450 

productivity. 451 

   452 

Challenges with crops 453 

The investigation of the epigenetic landscape in Arabidopsis epiRILs critically contributed to 454 

reveal general plant epigenetic proprieties and mechanisms. Such findings include the 455 

mapping of epiQTLs (Cortijo et al., 2014), the discovery of genetic proprieties that predict 456 

epialleles, common in Arabidopsis and rice (Catoni et al., 2017), and a model for origin and 457 

evolutionary consequences of gene body DNA methylation in Angiosperms (Bewick et al., 458 

2016). However, despite a general conservation of most epigenetic factors and proprieties 459 

across plants, epiRILs are so far only available for Arabidopsis thaliana. Creating epiRILs in 460 

crops could improve our understanding of the source of epiallelic creation and also help 461 

detecting epialleles with potential agronomic advantages. 462 

The introduction in crops of a level of epigenetic variation similar to that observed in 463 

Arabidopsis epiRILs might be of great interest for agriculture. Especially when considering 464 

that crops have larger genomes containing a much higher number of transposons and 465 

repetitive DNA, suggesting an elevated potential for the generation of epialleles. 466 

Consistently, rice, maize and tomato mutants in components of epigenetic regulation 467 



display strong developmental phenotypes and partial or complete infertility (Gouil & 468 

Baulcombe, 2016; Hu et al., 2014; Li et al., 2014). Remarkably, developmental phenotypes 469 

described in crop epigenetic mutants do not correlate with extensive genome 470 

hypomethylation as observed in Arabidopsis (Mathieu et al., 2007), suggesting that in most 471 

plants small perturbations of the methylome have stronger deleterious phenotypic effects 472 

than in Arabidopsis. 473 

Taking this into account, the generation of crop epiRILs may be impaired by the inability of 474 

producing viable hypomethylted mutants required for the initial cross. However, alternative 475 

strategies should be considered to induce stable epiallele formation without affecting plant 476 

viability (Figure 5).  477 

[Insert Figure 5 here] 478 

One possibility to reduce genome methylation is the use of hypomethylated partial loss-of-479 

function epigenetic mutants with mitigated deleterious developmental phenotypes. In 480 

Arabidopsis, while the null met1-3 allele causes complete loss of CpG methylation and is 481 

semi-lethal (Mathieu et al., 2007), the partially functional MET1 protein produced in the 482 

met1-1 allele can retain CpG methylation in approximately one quarter of the genome, 483 

causing only minor developmental defects and allowing transgenerational conservation of 484 

the met1-1 mutation in the homozygous form (Kankel et al., 2003). In addition, mobilization 485 

of TEs has also been observed in the met1-1 mutant background (Griffiths, Catoni, Iwasaki, 486 

& Paszkowski, 2018) as well as the formation of epialleles that are stably maintained for 487 

several generations after transgenic complementation with a wild-type MET1 allele (Catoni 488 

et al., 2017). This suggests that the use of partial loss-of-function mutants might replace null 489 

alleles in epiRIL construction, if a viable knock-out mutant cannot be obtained. However, the 490 

production of partial-loss of function mutants for a chosen gene may be difficult to achieve 491 



in plants, and is normally associated to fortuitous screening starting from random 492 

mutagenized populations. Nonetheless, DNA editing strategies, such as CRISPR/ CAS9 (Cong 493 

et al., 2013) and TALEN (Miller et al., 2011) have been successfully extended to plants, 494 

allowing an unprecedented high level of accuracy in targeting chromosomal sequences to 495 

induce mutations (Malzahn, Lowder, & Qi, 2017). Using these approaches, the effect of well 496 

know partial loss-of-function mutations observed in Arabidopsis might be more easily 497 

obtained in the species of interest by targeting a similar mutation in the corresponding 498 

homologous genes.  499 

Alternatively, passive DNA hypomethylation has been proposed to occur during 500 

gametogenesis in heterozygous met1 mutant. The haploid male and female gametophytes 501 

undergo two and three post-meiotic divisions, respectively. Therefore, genomic DNA is 502 

duplicated in gametophytes with the met1 mutant allele, in absence of the MET1 503 

methylation maintenance system, leading to the passive reduction to 50% and 75% of the 504 

genome methylation respectively in male and female gametes (Saze et al., 2003). This 505 

hypothesis was confirmed by later studies, observing also a genome-wide demethylation 506 

and the formation of stable epialleles in heterozygous inbred met1 mutant lines, similar to 507 

what was observed in epiRILs (Catoni et al., 2017; Stroud, Greenberg, Feng, Bernatavichute, 508 

& Jacobsen, 2013). Therefore, genome-wide hypomethylation in crop plants may be simply 509 

achieved by inbreeding the usually more fertile heterozygous met1 mutant, without the 510 

necessity of a viable homozygous mutant allele. 511 

One alternative to the generation of epigenetic mutants is the use of drugs interfering with 512 

epigenetic pathways. Inhibitors of DNA methylases, such as 5-Azacytidine and Zebularine, 513 

have been successfully used to induce DNA demethylation in plants (Griffin, Niederhuth, & 514 

Schmitz, 2016; Pecinka & Liu, 2014), including crops (Sano, Kamada, Youssefian, Katsumi, & 515 



Wabiko, 1990; Santos et al., 2002; Zhu et al., 2018). Although most of hypomethylation and 516 

transcriptional changes induced by these drugs are only transient (Baubec, Pecinka, Rozhon, 517 

& Mittelsten Scheid, 2009), transgenerational effects have been observed in rice treated 518 

with 5-Azacytidine (Sano et al., 1990). Recently, simultaneous application of Zebularine and 519 

the RNA polymerase II inhibitor α-amanitin on Arabidopsis wild-type seedlings was sufficient 520 

to mobilize the heat-responsive Class I retrotransposon ONSEN, demonstrating that drug 521 

application can efficiently release transposon transcriptional silencing (Thieme et al., 2017). 522 

Finally, another very valuable alternative in order to reduce DNA methylation in plant is the 523 

heterologous expression of enzymes promoting DNA hypomethylation. For example, the 524 

human Ten-eleven translocation (TET) methylcytosine dioxygenases are an enzyme family 525 

catalysing the conversion of 5mC in 5-hydroxymethylcytosine (5hmC), and are involved in 526 

active DNA demethylation in embryonic stem cells (Tahiliani et al., 2009). The transgenic 527 

expression of TET3 catalytic subunit in Arabidopsis was enough to decrease DNA 528 

methylation at ribosomal repeats (Hollwey, Watson, & Meyer, 2016). In addition, the 529 

transgenic expression of the same TET3 gene in Tomato induced hypomethylation and 530 

ectopic expression of the CEN1.1 gene in leaves, promoting vegetative growth (Hollwey, 531 

Out, Watson, Heidmann, & Meyer, 2017). In a more recent work, ectopic overexpression of 532 

a different TET gene in Arabidopsis induced widespread DNA demethylation and phenotypic 533 

variations, mimicking the effects of met1 mutation (Ji et al., 2018). In addition, a Cas9-based 534 

targeted demethylation system using the TET1 catalytic subunit was recently generated and 535 

was shown to be able to target demethylation and activate gene expression when directed 536 

to known switchable epialleles in Arabidopis (Gallego-Bartolomé et al., 2018).  537 



The combination of these approaches could thus potentially be used in order to promote 538 

global or specific changes in DNA methylation profiles and be the first step to create epiRILs 539 

in crops. 540 

 541 

Conclusion 542 

Arabidopsis epiRIL populations have allowed major advances in understanding the genetic 543 

determinant controlling DNA methylation stability as well as mechanisms involved in the 544 

transgenerational transmission of epigenetic information. Several studies used epiRILs to 545 

highlight the phenotypic consequences of epiallele segregation and the epigenetic 546 

contribution to quantitative traits. While epiRILs have been initially created with the 547 

intention of minimising DNA polymorphisms, the TE reactivation induced by the global loss 548 

of DNA methylation has been used advantageously in order to better understand how TE 549 

mobilisation is controlled, and to study the transgenerational effect of TE activation. EpiRILs 550 

have also helped to better understand the importance of DNA methylation on heterosis, 551 

commonly used in crops to improve yield. 552 

The next step to extend the epigenetic potential to improve agricultural traits will be the 553 

creation of epiRILs in crops. This step is challenged by the amount of developmental defects 554 

associated to genome wide hypomethylation observed in epigenetic mutants. Nonetheless, 555 

the better understanding of the epigenetic contribution to phenotypes, and the use of more 556 

sophisticated genome editing stategies might be critical to successfully obtain crop epiRILs 557 

in the near future. 558 
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Figure legends: 875 

Table 1: Non-exhaustive list of known epialleles in plants. 876 

 877 

Figure 1: Allelic and epiallelic segregation in RIL and epiRIL populations. 878 

RIL populations (left) are usually created by crossing two distinct Arabidopsis accessions that 879 

are different in their genomes (depicted with different chromosome colours) and 880 

epigenomes (depicted as full or empty dots beside chromosomes). Alleles and epialleles are 881 

thus segregating in F2 population derived by this cross, and fixed in homozygous form by 882 

self-pollination and single seed-descend. By contrast, epiRILs (right) are created by crossing 883 

parents that have identical (or almost identical) genomic sequence but different DNA 884 

methylation profiles. This is obtained in Arabidopsis by mutation of MET1 or DDM1 genes 885 

(represented by a red horizontal line on chromosome sequence), coding for factors involved 886 

in DNA methylation maintenance. During the generation of epiRILs, only F2 plants with a 887 

MET1 or DDM1 wild-type allele are carried out, to avoid new events of genome wide 888 

hypomethylation.  EpiRILs are thus maximising epialleles segregation, while reducing (if not 889 

removing completely) allelic segregation. 890 

 891 

Figure 2: Origin of phenotypic changes observed in epiRILs. 892 

Phenotypic changes occurring in epiRILs are of two types. The first type (left) is sporadic and 893 

recessive and occurring specifically in one line, probably caused by TE mobilisation or other 894 

genetic mutation.  These phenotypes are unlikely to be transmitted from the parents used 895 

in the creation of the epiRIL populations. The second type of phenotypic changes (right) 896 

appears on a significant proportion of epiRIL lines. These traits are potentially inherited from 897 

the parents and likely caused by epialleles segregating in the epiRIL populations. 898 



 899 

Figure 3: Principle of epiQTL mapping in epiRILs for root length, followed by epiallele 900 

identification and validation. 901 

In order to identify epiQTLs for a quantitative trait, every line of the population is 902 

phenotyped (top left) and epigenotyped (top right). EpiQTLs are then identified by 903 

measuring the co-segregation of phenotype and epigenotype. Several QTLs were identified 904 

on chromosomes 1, 2 and 4 for root length in the ddm1-derived epiRILs (middle). The next 905 

step is to identify epialleles underlying epiQTLs and to validate them by changing their DNA 906 

methylation level (bottom). 907 

 908 

Figure 4: Comparison of epi-hybrid and intraspecies hybrid in Arabidopsis thaliana. 909 

Examples on enhanced vigour in an epi-hybrid, compared with its two parents, epi31 and 910 

wild-type Col-0 (top), and in an intraspecies hybrid compared to its two parent accessions, 911 

Col-0 and C24 (bottom). In both cased, the epi-hybrid and the intraspecies hybrid are bigger 912 

than their parents, indicating a heterotic effect. 913 

 914 

Figure 5: Different approaches to induce global DNA demethylation in order to create epiRIL 915 

populations. 916 

In wild-type, DNA maintenance mechanisms ensure conservation of epigenetic marks (i.e. 917 

DNA methylation, represented as black dots). In met1 or ddm1 knock-out mutants, DNA 918 

methylation is strongly impaired and normally associated to strong developmental 919 

phenotype. Alternative strategies to reduce DNA methylation limiting the impact on plant 920 

fitness include the use of partial loss-of-function mutations with partial de-methylation; the 921 

self-propagation of heterozygous knock-out mutants, resulting in gametophyte 922 



hypomethylation; the application of drugs interfering with methyltransferase activity; and 923 

the ectopic overexpression of TET methylcytosine dioxygenases. 924 

 925 












