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Abstract
Background and Objective: Meta-analysis may produce estimates that are unrepresentative of a test’s performance in practice.
Tailored meta-analysis (TMA) circumvents this by deriving an applicable region for the practice and selecting the studies compatible with
the region. It requires the test positive rate, r and prevalence, p being estimated for the setting but previous studies have assumed their
independence. The aim is to investigate the effects a correlation between r and p has on estimating the applicable region and how this
affects TMA.

Methods: Six methods for estimating 99% confidence intervals (CI) for r and p were investigated: Wilson’s 6 Bonferroni correction,
Clopper-Pearson’s 6 Bonferroni correction, and Hotelling’s T2 statistic 6 continuity correction. These were analyzed in terms of the
coverage probability using simulation trials over different correlations, sample sizes, and values for r and p. The methods were then applied
to two published meta-analyses with associated practice data, and the effects on the applicable region, studies selected, and summary es-
timates were evaluated.

Results: Hotelling’s T2 statistic with a continuity correction had the highest median coverage (0.9971). This and the Clopper-Pearson
method with a Bonferroni correction both had coverage consistently above 0.99. The coverage of Hotelling’s CI’s varied the least across
different correlations. For both meta-analyses, the number of studies selected was largest when Hotelling’s T2 statistic was used to derive
the applicable region. In one instance, this increased the sensitivity by over 4% compared with TMA estimates using other methods.

Conclusion: TMA returns estimates that are tailored to practice providing the applicable region is accurately defined. This is most
likely when the CI for r and p are estimated using Hotelling’s T2 statistic with a continuity correction. Potentially, the applicable region
may be obtained using routine electronic health data. � 2018 The Authors. Published by Elsevier Inc. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords: Data interpretation; Statistical; Decision making; Diagnosis tests; Routine; Mass screening; Meta-analysis; Models; Statistical
1. Introduction

It is of interest to policy makers and clinicians to ensure
that the results of diagnostic tests from studies can be
applied to a particular clinical setting. A diagnostic test’s
performance may be measured using several metricsd
sensitivity, specificity, positive, or negative likelihood ratios
[1,2]. However, these metrics are influenced by many
external factors such as disease prevalence, patient spectrum,
test threshold, and reliability that sometimes change across
different settings [3e7]. Traditional meta-analysis attempts
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to accommodate heterogeneity by pooling all the data in a
random effects model [8e13]. The bivariate random effects
model is used to incorporate the sensitivity and specificity as
the two outcomes of interest [8,9], although others have used
it to model the positive and negative predictive values [11].
Attempts to include additional information in the form of the
prevalence have led to a trivariate model also being proposed
[14,15]. In general, these models only provide a single
average estimate, and when there is heterogeneity it is un-
likely to be representative of a particular clinical setting.
Thus, it does not answer the specific question of whether
the test estimate is representative of the performance of
the test in a particular target setting.

Attempts have been made to address this problem, by
tailoring the results of a meta-analysis to reflect the charac-
teristics of the setting in question [16e18]. One solution is
to estimate the test positive rate (r) and disease prevalence
s article under the CC BY license (http://creativecommons.org/licenses/by/
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What is new?

Key findings
� Meta-analysis may synthesize estimates that are

unrepresentative of a test’s performance in
different settings.

� Routine data for the test positive rate and prevalence
may help define an applicable region for a practice so
that only those studies compatiblewith the region are
selected for ‘‘tailored meta-analysis’’.

� Previous research has ignored the effects of a po-
tential correlation between the test positive rate
and prevalence.

What this adds to what was known?
� Ignoring the correlation affects the size and shape

of the applicable region and the number of studies
selected for tailored meta-analysis, ultimately
affecting the summary estimate.

� If Hotelling’s T2 statistic is used to derive interval
estimates for the test positive rate and prevalence
then their correlation may be accommodated
without knowing its exact level.

What is the implication and what should change
now?
� When applying tailored meta-analysis in practice,

we should not assume the test positive rate and
prevalence, used to derive the applicable region
for the practice, are independent.

� Importantly, their interval estimates should be
based on Hotelling’s T2 statistic to adequately
accommodate their correlation.

� As more routine data are being collected as part of
the electronic patient record, the potential to use
tailored meta-analysis to inform diagnostic deci-
sions in practice increases.

2 B.H. Willis et al. / Journal of Cl
( p) from the setting where the results of the meta-analysis
are to be applied [16,17]. Then, using interval estimates of r
and p, a region of feasible values for the sensitivity (s) and
the false positive rate ( f ) can be deduced for the test in
receiver operating characteristic (ROC) space. Studies are
only included in the meta-analysis if their sensitivities
and FPRs lie close to or within the plausible or ‘‘applicable
region’’ for the test in the setting.

Empirically, the test positive rate may be estimated from
data on the number of patients testing positive in those who
are tested. National screening programmes already do this
routinely [19,20], and with greater uptake of electronic
records being used to code patient data in primary and sec-
ondary care, this is becomingly increasing possible in these
settings. The prevalence is likely to be more difficult to esti-
mate and may be obtained from verifying a subsample of pa-
tients (if the reference standard is available) or in some cases
from local laboratory data. Within a Bayesian framework,
both of these statistics may be based on degrees of belief.

To accurately ascertain the applicable region, the inter-
val estimates for the test positive rate and prevalence need
to contain the true parameters. Although in general, this can
only be achieved with the interval [0,1], interval estimates
with a high coverage probability may be used. Furthermore,
the narrower the intervals, the smaller the applicable re-
gion, and the more informative it is on where the test per-
formance in ROC space lies for the setting in question.

Previous analyses have treated the test positive rate and
prevalence as independent when calculating the confidence
intervals [16,17]. To ensure a high coverage, 99% confi-
dence intervals are usually chosen so that if an interval
has been estimated for each of r and p then the joint
coverage probability will be 0.992, that is, 0.9801. Howev-
er, in practice the test positive rate and prevalence are likely
to be correlated potentially reducing the joint coverage
probability of interval estimates obtained independently.

To preserve a high joint coverage probability, it is likely
that any potential correlation between r and p needs to be
considered when estimating the confidence intervals. More-
over, the resulting confidence intervals will modify the size
and shape of the applicable region and studies selected for
tailored meta-analysis as a result.

Thus, the aim of this study is to investigate the effects
the correlation between the test positive rate and prevalence
has on estimating the applicable region and how this affects
tailored meta-analysis.
2. Methodology

2.1. Defining an applicable region for the setting

Tailored meta-analysis relies on using routine data from
the setting of interest to define an applicable region for the
test to select the relevant studies. In particular, if we have
99% confidence interval estimates for the test positive rate
parameter, mr, and the prevalence parameter, mp, for the
setting such that rlcl � mr � rucl and plcl � mp � pucl (where
lcl an ucl refer to the lower and upper confidence limits)
then for ms and mf , the parameters for the sensitivity and
false positive rate, respectively, the following inequalities
allow us to derive an applicable region in ROC space:
0� mf � mr � ms � 1 ð1Þ
ms �
rucl
plcl

� ð1� plclÞmf

plcl
ð2Þ

rlcl ð1� puclÞmf

ms � � ð3Þ
pucl pucl
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Thus, these inequalities (1)e(3) constrain the feasible
values for mf and ms to a subspace of the [0,1] � [0,1] plane
that is ROC space. This is the applicable region for the test
in the setting. The derivation and justification of the in-
equalities (1)e(3) may be found in Appendix 1 in [16]
and Appendix 1 in [17].

The truth of (2) and (3) depends on rlcl � mr �
rucl and plcl � mp � pucl being true. In practical terms, this
means choosing confidence intervals for ðmr; mpÞ that
have a high coverage probability, so that in the long
run a high proportion of the intervals contain the param-
eters ðmr; mpÞ. As a minimum requirement, 99% confi-
dence intervals have been suggested, although the
higher the coverage probability the better, and this is
likely to be affected by any correlation between
mr and mp. Here, the coverage probabilities of 99% confi-
dence intervals derived using the different methods below
will be investigated.

2.2. Joint distribution

Let X be the number who test positive in a sample of nr
individuals and Y be the number with the target disorder in
a sample of np individuals. For marginal distributions that
are binomial, the joint distribution of X and Y is given by
ðX;YÞ| Bivariate Binomial
�
mr; nr; mp;np;r

� ð4Þ
where mr and mp are the parameters for the test positive rate
and prevalence, respectively, with correlation r.
2.3. Assuming independence

When the proportions of interest are independent, uni-
variate confidence intervals may be estimated. Here, two
methods were used. The first, the Wilson’s score method
[21] has been used in previous studies [16,17], and the
second, the Clopper-Pearson interval is sometimes
known as an ‘‘exact’’ interval [22]. Both are briefly
described below.

2.3.1. Wilson’s score method
Strictly the variance for the asymptotic normal distribu-

tion for a proportion is m(1-m)/n where m is the true propor-
tion parameter for the population. Although this is
unknown, Wilson’s method [21] overcomes this by solving
for m explicitly in terms of the sample estimate bp, the sam-
ple size n, and the z score for level of significance a. This
allows us to estimate a confidence interval for a proportion,
and this was used to provide interval estimates for the test
positive rate and prevalence (see Appendix).

For a single 99% confidence interval, Wilson’s score
method is efficient and is known to have a coverage prob-
ability close to 0.99 [23]. However, for two simultaneous
confidence intervals, this does mean the coverage probabil-
ity is likely to be below 0.99 and vary with the correlation.
2.3.2. Clopper-Pearson interval
For a sample size n, with k successes a 100 (1-a)%

confidence interval ½mL;mU � may be found by solving the
two equations PðX � kj mL; nÞ5 a=2 and PðX � kjmU ; nÞ5
a=2 for mL and mU . When X has a binomial distribution,
this provides us with the Clopper-Pearson interval [22].
However, because the binomial distribution is discrete, it
is not always possible to find mL and mU that satisfy these
equations. Hence, a related continuous distribution, the beta
distribution, may be used to estimate the Clopper-Pearson
intervals for the test positive rate and prevalence (see
Appendix).

The Clopper-Pearson confidence intervals are known to
be conservative producing coverage probabilities greater
than 0.99 [23]. This latter property will benefit simulta-
neous intervals where the coverage although lower than
0.99 is higher than the coverage from simultaneous confi-
dence intervals using Wilson’s score method.
2.4. Including correlation between proportions

If the test positive rate and prevalence are treated as in-
dependent when they are correlated then the resulting inter-
val estimates may have inadequate coverage probabilities.
Two methods for estimating simultaneous confidence inter-
vals in correlated variables were used and are described
below.
2.4.1. Confidence intervals using Hotelling’s T2 statistic
Hotelling’s T2 distribution is a multivariate generaliza-

tion of Student’s t distribution allowing the study of corre-
lated variables [24]. Using this distribution, a rectangle with
dimensions equal to the width of the confidence intervals
may be derived that neatly contains the elliptical cross-
section of a bivariate distribution. As it is continuous and
unbounded, the logit transformation of the test positive rate,
r and prevalence, p was used. The variance was estimated
using the delta method [25]. The formulae for the confi-
dence intervals are given in the Appendix.

Cell entries within the 2 by 2 contingency table that
were a zero were accommodated by adding 0.5 as an ad
hoc continuity correction.
2.4.2. Bonferroni procedure
The Bonferroni procedure adjusts the level of signifi-

cance, a for each interval estimate to ensure adequate joint
coverage probability [26]. Since for 2 events A and B,
PðAXBÞ � 1� ðPðAcÞþ PðBcÞÞ, then we may set PðAcÞ5
PðBcÞ5a so that PðAXBÞ � 1� 2a. Thus, if A and B are
the events that the interval estimates cover their respective
parameters, then setting a50:005 will provide a joint
coverage probability of at least 99% for A and B. This
method was used to modify the Wilson’s score interval
and the Clopper-Pearson interval estimates for both the test
positive rate and prevalence.
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2.5. Simulation study

A simulation study was conducted to evaluate the
coverage probabilities of the different methods (Wilson’s
score with and without a Bonferroni correction, Clopper-
Pearson with and without a Bonferroni correction, and
Hotelling’s T2 with and without a continuity correction)
for estimating 99% confidence intervals for the test positive
rate and prevalence. A random sample from the bivariate
binomial distribution in (4) was generated using a copula
[27]. This is a generalization of the inverse probability in-
tegral transformation, which allows any distribution to be
simulated from first simulating from a uniform distribution.
A copula extends this idea to multivariate distributions by
treating each marginal distribution of the joint cumulative
distribution as uniform and capturing the correlation be-
tween the variables.

Simulated observations of the variables (X,Y) were
generated for different values of the following parameters:
mr (the test positive rate parameter), nr (the sample size in
which the test positive rate is calculated), mp (the preva-
lence parameter), np (the sample size in which the preva-
lence is calculated), r (the correlation coefficient between
mr and mp). For each of these the following values were
used mr[0.1, 0.25, 0.5, 0.75, 0.9]; nr[25, 50, 100, 500,
1000]; mp[0.1,0.25,0.5,0.75,0.9]; np[25,50,100,500,1000];
r[0, 0.1,0.25,0.5,0.75,0.9,1]. For different combinations of
ðmr; nr; mp; np; rÞ, the coverage probability for the confi-
dence intervals calculated using each of the four different
methods was estimated for a critical value of 0.01. The es-
timates of the coverage probabilities were based on 100,000
replications for each ðmr; nr; mp; np; rÞ combination.
2.6. Case studies

To illustrate the effects the different methods have on
tailored meta-analysis, two data sets from a previous pub-
lished study were used [17]. The first was a meta-analysis
used to assess the accuracy of the PHQ-9 to screen for
depression in primary care. Data collected from a UK
general practice were used to calculate an interval esti-
mate of the test positive rate for that practice. For the
prevalence of depression in the practice population of in-
terest, the previous interval estimate [17] was updated by
using practice-specific routine data, which are collected
as part of quality of outcomes framework (QOF). The
QOF data form part of the electronic record in general
practice surgeries in the UK and are available in the pub-
lic domain for each practice [28]. A 99% confidence in-
terval was estimated based on 350 patients with a
diagnosis of depression from 5,365 eligible patients in
the practice [28].

In the second case, the meta-analysis investigated the ac-
curacy of Centor’s criteria in diagnosing streptococcal
infection in those presenting to primary care with a sore
throat. Previously collected data from the same UK general
practice were used to estimate the test positive rate and
prevalence for the practice [17].

2.7. Statistical analyses

All summary sensitivity and specificity estimates were
derived using the bivariate random effects model [9]. All
analyses were conducted in R [29].
3. Results

3.1. Simulation study

In Figure 1, the distribution of coverage probabilities
over all the combinations of ðmr; nr; mp; np; rÞ is given
for each of the different methods in estimating a 99% con-
fidence interval. From the figure, it is clear that Wilson’s
score method rarely (0.3%) achieves the required coverage
probability of 0.99; the coverage probability of Wilson’s
score method is improved with a Bonferroni correction,
with a median of 0.9926 but it is still less than 0.99 in over
20% of cases, with a minimum of 0.986. Without the con-
tinuity correction, 99% confidence intervals estimated us-
ing Hotelling’s T2 statistic may have a coverage
probability as low as 0.86. This tends to occur when the
prevalence or test positive rate is 0.1. With the continuity
correction, Hotelling’s T2 statistic produces confidence in-
tervals with high coverage probabilities, median 5 0.9972,
minimum 0.9947. The Clopper-Pearson interval with a
Bonferroni correction has coverage probability above 0.99
in all but 0.02% of cases with a median of 0.9941.

Table 1 provides a breakdown of the coverage probabil-
ities per method according to the test positive rate param-
eter and the sample size. While these two quantities do
affect the coverage probability of confidence intervals
derived using Hotelling’s method, the coverage probabili-
ties of the other methods are largely unaffected by them.

Figure 2 illustrates the effects of a correlation between
the test positive rate and prevalence has on the mean
coverage probabilities. Using Hotelling’s method both with
and without a continuity correction, the coverage probabil-
ity remains relatively constant as the correlation changes.
For the other methods, there is a small rise ranging between
0.25% and 0.67% as the correlation increases from 0 to 1.

3.2. Case studies

Tables 2 and 3 demonstrate the effect the methods have
on the selection of studies for the purpose of tailored meta-
analysis. There were 12 and 10 studies meeting the qualita-
tive inclusion criteria for each of the cases. The narrower
the interval estimates for mr and mp, the narrower the appli-
cable region for the setting of interest, and the lower the
probability of study inclusion for tailored meta-analysis.

In each case, the methods that resulted in the fewest
studies being included for tailored meta-analysis were those



Fig. 1. Distribution of coverage probabilities for the 99% confidence interval over the different combinations of ðmr ; nr ; mp ; np ; rÞ. For each method
the box and whisker comprises the minimum, lower quartile, median, upper quartile, and maximum.
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that had the three lowest median coverage probabilities:
Wilson’s score method; Wilson’s score method with a Bon-
ferroni correction; and the Clopper-Pearson method. When
implementing each of these three methods, study selection
was tailored to 5/12 and 6/10 studies for the two cases,
respectively. Adding a Bonferroni correction to the
Clopper-Pearson method resulted in a further study being
included in each case, while there were seven studies
included in each case when the confidence intervals were
derived using Hotelling’s T2 statistic with and without a
continuity correction.

The effects of the different methods on the summary es-
timates are also given. As previously reported, tailoring the
Table 1. Mean coverage probability of each method according to the test po

mr

Wilson score

Standard Bonferroni Standard

0.1 0.98154 0.99175 0.98872

0.25 0.98189 0.99120 0.98824

0.5 0.98091 0.99070 0.98793

0.75 0.98191 0.99122 0.98824

0.9 0.98154 0.99178 0.98870

n

25 0.98018 0.99247 0.99094

50 0.98291 0.99147 0.98996

100 0.98140 0.99013 0.98867

500 0.98142 0.99123 0.98580

1000 0.98188 0.99135 0.98646
study selection can have a substantial effect on the sum-
mary sensitivity and specificity compared with a conven-
tional estimate. Second, it is clear that the method used
to derive the intervals may have a modest effect on the sum-
mary estimates; the largest difference was a 4% difference
in the sensitivity between using Wilson’s score and Hotel-
ling’s T2 statistic for Centor’s criteria.

In the two case examples, Pearson’s correlation coeffi-
cient was estimated to be 0.75 and 0.94, respectively. For
the non-Hotelling methods, these correspond to correlations
where the mean coverage probability changes with the cor-
relation coefficient (figure 2); thus any uncertainty in the
latter will introduce uncertainty in the coverage probability.
sitive rate and sample size

Clopper-Pearson Hotelling T2

Bonferroni Standard Continuity

0.99423 0.97585 0.99697

0.99383 0.99083 0.99712

0.99330 0.99108 0.99725

0.99383 0.99085 0.99712

0.99422 0.97581 0.99697

0.99467 0.96374 0.99825

0.99487 0.98949 0.99758

0.99343 0.99070 0.99686

0.99335 0.99030 0.99643

0.99307 0.99019 0.99632



Fig. 2. Mean coverage probability as a function of correlation.
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4. Discussion

Meta-analysis is used to aggregate test accuracy studies
to produce a quantitative summary estimate of the test’s per-
formance. Although this may be useful in some circum-
stances, it is important to remember that it represents an
average across all studies and may not be representative of
an individual study. This is pertinent to the problem of deter-
mining when to apply the results to clinical practice. The
test, when applied in a particular practice setting, may have
a sensitivity and specificity which is in a different region of
Table 2. Tailored selection for meta-analysis of Centor’s criteria according t

Study All Wilson
Wilson

Bonferroni

Fine Include

Regueras Include

Canada Include

Treebupachatsak Include Include Include

Atlas Include

Dagnelie Include

Hall et al Include Include Include

Scwartz et al Include Include Include

Seppala et al Include Include Include

McIsaac Include

Alper et al Include Include Include

Abu-Sabaah et al Include

Sensitivity
(95% CI)

50.6%
(42.8-58.4)

38.4%
(30.4-47.2)

38.4%
(30.4-47.2)

Specificity
(95% CI)

78.5%
(65.7-87.4)

92.1%
(83.5-96.4)

92.1%
(83.5-96.4)
ROC space to that reported for the summary estimate. This
clearly has implications for clinical decision-making.

To overcome this, tailored meta-analysis has been pro-
posed. This uses information from the setting of interest to
define an applicable region for the test and combines this with
the studies from the meta-analysis so that only those studies
that are compatible with the region are selected. This enables
a summary estimate to be derived that is tailored to the setting.

Thus, it is important that the applicable region accurately
defines the region in ROC space for the test in the setting of
interest and this depends on the accuracy of our estimates
o method used

Clopper
Pearson

Clopper Pearson
Bonferroni Hotelling

Hotelling
Continuity

Include Include Include

Include Include Include Include

Include Include

Include Include Include Include

Include Include Include Include

Include Include Include Include

Include Include Include Include

38.4%
(30.4-47.2)

39.7%
(31.5-48.6)

42.4%
(35.2-49.9)

42.4%
(35.2-49.9)

92.1%
(83.5-96.4)

89.5%
(82.4-94.0)

88.4%
(79.4-93.8)

88.4%
(79.4-93.8)



Table 3. Tailored selection for meta-analysis of the PHQ-9 tool according to method used

Study All Wilson
Wilson

Bonferroni
Clopper-
Pearson

Clopper- Pearson
Bonferroni Hotelling

Hotelling
Continuity

Arroll Include Include Include Include Include Include Include

Ayalon Include

Azah Include Include Include Include Include Include Include

Cheng Include Include Include Include Include Include Include

Zuithoff Include

Gilbody Include Include Include Include Include Include Include

Lotrakul Include Include Include Include Include Include Include

Inagaki Include

Liu Include Include Include Include

Sherina Include Include Include Include Include Include Include

Sensitivity
(95% CI)

74.2%
(63.2-82.8)

78.8%
(69.7-85.7)

78.8%
(69.7-85.7)

78.8%
(69.7-85.7)

79.7%
(71.6-86.0)

79.7%
(71.6-86.0)

79.7%
(71.6-86.0)

Specificity
(95% CI)

91.5%
(86.5-94.8)

86.3%
(81.4-90.1)

86.3%
(81.4-90.1)

86.3%
(81.4-90.1)

87.9%
(83.1-91.5)

87.9%
(83.1-91.5)

87.9%
(83.1-91.5)
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for the test positive rate and the prevalence. In practice, this
means the interval estimates require a high coverage probabil-
ity, and aminimumof a 99%confidence interval has been sug-
gested. However, what has not been considered until now is
the effect the potential correlation between the prevalence of
disease and the test positive rate for the test may have on the
methods reported in previous studies.

In previous analyses, when these two parameters have
been treated as independent,Wilson’s score method has been
used to derive a 99% confidence interval. Without modifica-
tion this method returns the lowest joint coverage probability
in the simulation analyses. The effect of this is that the param-
eters mr and mp may lie outside of their respective interval es-
timates and the probability of the inequalities (2) and (3) not
being satisfied increases. In effect, the applicable region is
narrower than is necessary to adequately represent the test
performance in the setting of interest. Although the Clop-
per-Pearson’s ‘‘exact’’ interval has better coverage thanWil-
son’s scoremethod,without aBonferroni correction it too has
coverage less than 99% in themajority of cases (nearly 70%).

Here, we used two methods to improve the coverage
probability. The first, the Bonferroni correction modifies
the levels of significance for the individual intervals to pro-
duce a joint coverage probability at the desired level. This
improved both the Wilson’s score method and the Clopper-
Pearson’s method. The second, Hotelling’s T2 statistic is a
multivariate generalization of student’s t statistic. Without a
continuity correction, when one or more of the cell entries
in the 2 � 2 table contain a zero, its coverage may be
erratic. However, with a continuity correction, the coverage
is more conservative and always above 99%.

When applied to the two clinical cases, it is clear that the
method used to estimate mr and mp may change the shape of
the applicable region sufficiently to affect the number of
studies included in the tailored meta-analysis. Ultimately
this may affect the tailored estimate. For example, the
tailored estimates for the sensitivity and specificity of Cen-
tor’s criteria change by over 3% between methods.

Furthermore, the simulation analyses reveal that the
coverage probability remains relatively constant across
different values of the correlation when using the Hotelling
statistic and increases slightly with correlation for the other
methods. In practical terms, this means that not knowing
the true correlation between the test positive rate and dis-
ease prevalence in the setting of interest does not pose a
significant problem.

So which method should we use? Because the mathemat-
ical truth of the inequalities in (2) and (3) relies on the param-
eters mr and mp being covered by their respective interval
estimates, it is imperative that whichever method is used,
the risk of violating either inequality is kept to a minimum.
Essentially there are only two methods where this risk is
consistently below 1%: theClopper-Pearsonwith a Bonferro-
ni correction, where the risk is above 1% in only 0.02% of
cases and Hotelling’s T2 statistic with a continuity correction,
where the risk is always below 1%. The decision on which
method to use rests on weighing up the need for maintaining
the highest possible coverage probability and therefore the
lowest risk of violating (2) or (3) and amore informative (nar-
rower) applicable region for selecting studies.

On balance, we recommend using the Hotelling’s T2 sta-
tistic with a continuity correction for estimating the 99%
confidence intervals for the test positive rate and preva-
lence. This is because it provides the lowest risk
(maximum 5 0.53%) of violating (2) or (3), has a coverage
probability that varies the least with correlation, and it
helps define an applicable region that includes only one
more study in one of the tailored meta-analysis examples
than the next best method.

Although tailored meta-analysis provides a summary esti-
mate for the testwhich ismore specific to the clinical setting, it
isworth stating that this is still just a feasible estimategiven the
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combined information from the included studies and the test
positive rate and prevalence of disease for the setting. Feasi-
bility does not necessarily translate into accuracy as the
included studies, although feasible for the setting, may not
be representative. This is because of part of the study selection
process beingprobabilistic and soestimateswhichmayappear
compatible with the applicable region may do so due to
random error. Thus, it is important to consider not just the ef-
fects the applicable region has on the summary estimate but
also on its associated confidence region.

To improve the accuracy of estimates for a particular setting
requiresmethodswhich assess their validity and this is a source
of active research. Validation statistics, such as the Vn statistic,
have been proposed recently as ameans of checking thevalidity
of estimates fromunivariatemeta-analyses [30].Othermethods
involve estimating prediction regions in an attempt to quantify
the error in the predicted estimates from meta-analyses [18].
Both approaches need further development.

Previous studies [16,17] have shown that for some tests the
data required to derive an applicable region are already being
collected routinely. This is the case with the UK national
screening programmes for cervical cancer and breast cancer
[19,20].As the use of electronic health records increases, there
is an opportunity for this to extend to other tests in primary and
secondary care. In the original study, the applicable regions for
Centor’s criteria and the PHQ-9 were derived using ad hoc
data collected for the purpose of tailored meta-analysis [17].
In this study, the prevalence of depression was estimated from
the routine data collected as part of QOF. Clinical templates
that allow the data necessary for a questionnaire or prediction
rule to be input directly to the electronic record are already
available [31]. This opens a possible future in which appli-
cable regions for a practice are derived completely from
routine electronic health data. In such an instance, tailored
meta-analysis will truly represent the combining of routine
data with published research to inform clinical decisions.

In summary, tailored meta-analysis provides a means of
deriving summary estimates for the sensitivity and specificity
of a test, which are tailored to clinical practice. It involves
defining an accurate applicable region in ROC space, using
routine data to calculate 99% confidence intervals for the test
positive rate, r and disease prevalence, p in the setting. The use
of Wilson’s score method to calculate these intervals, as used
in previous studies [16,17], is not recommended because of a
potential correlation between r and p. Instead, Hotelling’s T2

statistic with a continuity correction should be used as this is
most likely to lead to an applicable region, which accurately
represents the setting while still being useful to decisions on
study selection for tailored meta-analysis.
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Appendix: Confidence intervals for binomial
proportions

(i) Wilson’s confidence intervals

If m is the population parameter for the mean proportion,
the variance for the asymptotic normal distribution is m(1-
m)/n. For a sample estimate of the test positive rate, r, of
sample size nr, and standardised normal variable z, at the
upper and lower bounds,
m5 r6z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1� mÞ

nr

s

Solving for min terms of r, z, and nr gives the following

99% confidence interval for the test positive rate, r with
z 5 2.576
0@rþ z2

2nr
� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1�rÞ
nr

þ z2

4n2r

q
�
1þ z2

nr

� ;
rþ z2

2nr
þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1�rÞ
nr

þ z2

4n2r

q
�
1þ z2

nr

�
1A
Similarly a confidence interval for the prevalence may
be derived.

(ii) Clopper-Pearson’s confidence intervals

To estimate the Clopper-Pearson confidence interval
[18] a connection between the discrete binomial distribu-
tion and the continuous beta distribution is exploited.
Essentially for a sample of size, n drawn from a Uniform
[0, 1], the number of draws, k, with a value less than or
equal to probability p, has a Binomial(n, p) distribution.
Moreover, if the sample of draws from the uniform distribu-
tion is ordered in terms of magnitude, the resulting ordered
statistic has a Betaða; k; n� k þ 1Þ distribution for level of
significance. Because in general, PðX � kÞ51� PðXOkÞ
and for a binomial where the k values are discrete PðX � kÞ
5 1� PðX � k þ 1Þ, the confidence interval at level of sig-
nificance, a is given by
½Betaða=2;k;n� kþ 1Þ;Betað1� a=2;kþ 1;n� kÞ�
Thus the 99% confidence interval for the test positive
rate r 5 k/nr, for sample size, nr is given by
½Betað0:005;k;nr � kþ 1Þ; Betað0:995;kþ 1;nr � kÞ�
Similarly, the 99% confidence interval for the prevalence
may be derived.



9B.H. Willis et al. / Journal of Clinical Epidemiology 106 (2019) 1e9
(iii) Confidence intervals using Hotelling’s T2

distribution

Let x be the vector of observed values for 2 correlated
variables, m be the associated parameter vector and S be
the sample covariance matrix. The Hotelling statistic T2

is defined as T25ðn� 1Þðx� mÞTS�1ðx� mÞ [19] and has
the following distribution:
T2|
2ðn� 1Þ
ðn� 2Þ F2; n�2
Thus, it is proportional to the F distribution. The confi-
dence interval for the ith element of x at a level of signifi-
cance a is given by
 

xi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn� 1Þ
ðn� 2Þ F2; n�2;ð1�aÞSii

s
;

xi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn� 1Þ
ðn� 2Þ F2; n�2;ð1�aÞ Sii

s !

Here x1 is logitðrÞand x2 is logitðpÞ. For sample size nr,

S11 is the associated variance for the logitðrÞ estimated by
the delta method to be 1=nrð1� rÞr [20]. Similarly,
S2251=npð1� pÞp for sample size np.

For the logitðrÞ, the 99% confidence interval is given by
 
logitðrÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnr � 1ÞF2; nr�2;0:99

ðnr � 2Þnrð1� rÞr

s
;

logitðrÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnr � 1ÞF2; nr�2;0:99

ðnr � 2Þnrð1� rÞr

s !
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