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Abstract  

Laser-induced oxidation of metallic surfaces such as titanium is used in many application 

areas for colour marking due to its selectivity, cleanness and processing speed. However, as 

the generated colours are permanent this reduces the flexibility and applicability of this laser 

processing technology. Therefore, a method is reported in this paper to erase selectively the 

oxide-based colours using laser-induced oxygen reduction. Especially, the colour marks are 

reprocessed in a low oxygen environment employing a nanosecond laser. A low fluence was 

used in order to diffuse oxygen out into the atmosphere and yield a lower form of metal 

oxides or a pure metal. Any cumulative fluence exceeding 25 J/cm2 was sufficient to erase 

any laser-induced colours on titanium substrates.  The XPS analysis revealed that all fields 

were mainly comprised of TiO2 prior to erasing with only small contributions from Ti2O3 and 

TiO/TiN. Following the proposed laser-induced oxygen reduction, the relative concentration 

of TiO2 decreased substantially while the overall amount of Ti in the near surface region 

increased. The results clearly show that the erasing of oxide-based colour marks is only due to 

oxygen diffusion back into the atmosphere and there were not any signs of laser ablation. 

Keywords: nanosecond laser, Laser-induced reduction, metallization, titanium oxide, color 

erasing, color rewriting, color marking,  
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1. Introduction  

Laser-induced oxidation of metals and semiconductors has gained a considerable attention by 

research community since it was reported for the first time in early 1970s [1]. One of the main 

advantages of laser-induced oxidation compared with other oxidation methods is the 

selectivity that differentiate and make this technology attractive for a range of applications [2, 

3]. In particular, oxidation of titanium surfaces has many chemical, electrical, sensing, optical, 

tribological, and medical applications. This is due to the unique properties of titanium oxides 

compared to the substrate. One of the main applications of laser-induced oxidation of titanium 

is laser colour marking.  

When pulsed (nanosecond or longer) or continuous wave (CW) lasers interact with a metal, a 

thin film of the metal oxides is formed due to melting and re-solidification of the substrate’s 

material in air. The thickness of the generated film depends on used laser parameters, 

especially mainly on the accumulated fluence, and as result of the varying film thickness the 

surface can appear in different colours. This is due to the thin film interference phenomenon 

while the colours dependent on the oxide thickness. 

Generally, the oxidation of titanium leads to a number of stable Ti-O phases such as Ti2O, 

TiO, Ti2O3, Ti3O5, and TiO2. However, TiO2 (rutile) is the main structure and is the most 

stable side product of the oxidized Ti substrate [1]. The formed film consists of multilayers of 

oxides as stated by Del pino et al. [4-6], and others [7-10]. In addition, it was reported that the 

oxygen concentration is depth dependent, in particular, decreases with the depth increase [11, 

12]. Two main layers constitute the film, i.e. the first is a transparent TiO2 with some Ti2O3 

on top that is followed by lower forms of titanium oxides, such as TiO and Ti2O. The surface 

colourization is attributed to the transparent top layer that is due to the thin film interference 
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phenomenon mentioned above. At the same time, the underneath layer is opaque and has a 

metallic characteristics [6, 8], in particular its optical properties are very similar to those of 

pure titanium [13, 14].  

Laser colour marking of titanium has been of interest to many industrial sectors, e.g. for 

aerospace, automotive, medical, optical and anti-counterfeit applications [15]. It is widely 

used to imprint product information, logos, and functional data on medical devices, implants, 

and surgical instruments [16, 17]. And, for this application area, it is critical the general 

surface properties of components, such as corrosion resistance and any performance 

characteristics [18, 19], to stay unaffected by the marking process. This is explicitly stated in 

ASTM F86 and F983 standards for permanent marking of implant components. In addition, 

the marking material should not be in anyway toxic. All these stringent requirements can be 

fulfilled by titanium dioxide that is the main side product on processed Ti substrates [1], i.e. it 

is nontoxic, biocompatible, and also exhibits negligible solubility in most solvents [20, 21].  

Laser colour marking is one of the most flexible marking methods and this make the 

technology a very attractive proposition. However, as the generated colours are permanent 

this impacts its flexibility and applicability. Thus, capabilities to make such colour marks 

erasable and rewritable can broaden the application areas of this technology and can add one 

more advantage when compared with other methods.  

Employing laser processing to remove paints (de-painting), oxides (de-oxidation), and rust 

(de-rusting) with different thicknesses was reported by Daurelio et al. [22], i.e. a very high 

fluence was applied to ablate paints and oxides. However, the oxides’ removal in this case is 

performed by laser ablation and this leads to a range of negative side effects on the surfaces, 

e.g. changes in surface morphology and integrity, that affect the functional performance of 
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processed parts. In another research, Veiko et al. [23, 24] demonstrated the high mechanical 

and chemical wear resistance of titanium dioxides’ thin films. In particular, neither the 

morphology nor the appearance were affected after treating the film by abrasion for 5 

minutes, immersing it either in 5% citric acid for 40 minutes or in ultrasonic bath for 20 

minute, and soaking it for one hour in 200°C muffle furnace.  

Thus, colour surface marks induced on titanium surfaces by oxidation are very durable and 

cannot be erased by chemical treatments in various solutions [20, 21]. At the same time, any 

reprocessing of parts mechanically to remove such colour marks will affect their functionality 

and also will have cost implications. In addition, it is important to stress that neither chemical 

treatments nor mechanical processing can erase the Ti oxides selectively. Therefore, other 

methods for their selective removal should be sought.  

 

In this paper, a method is presented for erasing colour marks on Ti substrates by laser 

processing in an oxygen controlled environment. In the next section, the methods and 

equipment used in the research are described and then the obtained results are presented and 

discussed.  Finally, conclusions are made about the capabilities of the proposed method for 

metalizing transparent oxide layers and thus to achieve a metallic appearance. 

 

2. Methods and equipment 

In designing a method for removing colour marks in in the form of oxides on parts, it is 

important to take into account the specific requirements of various applications that can 

benefit from its implementation and also to have in-depth understanding of the laser-material 

interaction mechanism that should take place during the process. In particular, a method 
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should be designed for erasing colour marks, i.e. laser-induced oxides, on titanium surfaces 

that should be able to “reverse” the oxidation mechanism in creating them. Especially, when 

metals are heated in an oxygen rich environment, the oxygen reacts with their surface and free 

electrons are transferred from them into the adsorbed oxygen. As a result, ions are diffused 

through the native oxide layer to form thin oxide films [16, 25]. 

As it was stated above, the proposed erasing method should be able to reverse the oxidation 

process and thus to reduce/remove the oxygen from such oxide layers and as a result to yield a 

lower form of metal oxides or a pure metal. To achieve this the surface should be heated in a 

low oxygen environment, i.e. vacuum or inert gas, so that to diffuse the oxygen out into the 

atmosphere. Especially, the applied laser fluence should be less than the damage threshold, 

but at the same time sufficiently high to heat the oxides and thus to trigger the oxygen 

diffusion back into the atmosphere. Figure 1 illustrate the colorizing process and also the 

proposed method for erasing the laser-induced oxides. 

Laser processing of materials in controlled environments have been used in different 

applications before. For example, it was applied to polish metal surfaces [26], nitride surfaces 

[27-30] and also to prevent the generation of oxides during laser cutting and texturing [31, 

32]. In addition, laser processing in controlled environments was used to alter oxides’ 

conductivity, in particular through a laser induced reduction (also known as laser induced 

metallization) that involved a controlled laser heating in inert gas atmosphere. In this way, the 

properties of different oxides’ thin films were altered to become semiconductors, insulators or 

superconductors [33-37]. Thus, the proposed method should employ a similar laser-material 

interaction mechanism to perform so call laser-induced oxygen reduction. 
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An experimental study was carried out to investigate the proposed method employing a 

nanosecond fibre laser source (redENERGY G4 50W) from SPI Lasers. With wavelength of 

1064 nm and a 1 MHz maximum pulse repetition rate, it can be used for laser processing with 

25 different pulse durations, from 15 to 220 ns. The experiments were performed on a 

reconfigurable laser micro processing platform with a 3D scanner (RhoThor RTA) from 

Newson Engineering and a 100 mm telecentric F-theta lens. The substrates were mounted 

horizontally on a high precision stack-up of mechanical stages from Aerotech. A specially 

designed chamber was employed to achieve a low oxygen atmosphere by purging the air and 

replace it with argon during the laser processing. The argon flow rate and the maintained 

pressure inside the chamber were 25 L/min and 5 Bar, respectively 

The substrates used in the experiments were 0.7 mm thickness sheets of commercially 

available pure titanium (Grade 1). The samples were cleaned ultrasonically in water and 

acetone and then dried with hot air prior to laser processing. The morphology of the processed 

Ti substrates was inspected using an Alicona G5 Infinite Focus (IF) system.  

 

Fig.1. Schematic sketches of laser colour marking and erasing by laser-induced oxidation and 

laser-induced oxygen reduction, respectively. 
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Compositional analysis of the surfaces of several samples was carried out using x-ray 

photoelectron spectroscopy (XPS) measurements conducted on a Kratos Axis Ultra DLD 

spectrometer at the University of Warwick Photoemission Facility. The samples were 

mounted on to a standard sample bar using electrically conductive carbon tape and loaded in 

to the instrument. XPS measurements were performed in the main analysis chamber, with the 

sample being illuminated using a monochromated Al Kα x-ray source. The measurements 

were conducted at room temperature and at a take-off angle of 90° with respect to the surface 

parallel. The core level spectra were recorded using a pass energy of 20 eV (resolution 

approx. 0.4 eV), from an analysis area of 300 mm x 700 mm. The spectrometer work function 

and binding energy scale of the spectrometer were calibrated using the Fermi edge and 3d5/2 

peak recorded from a polycrystalline Ag sample prior to the commencement of the 

experiments. The data were analysed in the CasaXPS package, using Shirley backgrounds and 

mixed Gaussian-Lorentzian (Voigt) lineshapes. For compositional analysis, the analyser 

transmission function has been determined using clean metallic foils to determine the 

detection efficiency across the full binding energy range. 

As stated earlier, the colours obtained through laser induced oxidation are dependent on the 

oxide thickness. In particular, the main colours that can be produced on titanium surfaces by 

increasing the film thickness range from golden through orange, purple, blue, light blue to 

greenish blue. Thus, to validate the proposed erasing method, fields with increasing film 

thickness were created that represented different colour grades producible through laser-

induced oxidation. In particular, the colours are generated by scanning the laser over the 

10x10 mm2 fields employing a zig-zag hatching strategy with a 20 µm hatch distance. The 

laser pulse repetition rate and pulse energy used were 1 MHz and 19.8 µJ, respectively that 

were selected based on the result in another experimental study [3]. The laser spot diameter 
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was 60 µm and thus an average fluence of 0.351 J/cm2 per pulse was used in all experimental 

trials. The scanning speed was varied to process the fields and thus to produce TiO2 with 

varying thickness and hence colours. Especially, the scanning speed was varied from 360 to 

80 mm/s and thus to achieve a cumulative fluence from 58 to 260 J/cm2 as stated in Table 1. 

The eight fields with varying colours on titanium substrates produced by laser-induced 

oxidation in air with these process settings as shown in Fig2. (a).   

Table 1: laser parameters of fields number 1-8 in Fig2. (a).   

Field number 1 2 3 4 5 6 7 8 

colour 
        

Scanning 

speed (mm/s) 
360 300 230 190 160 120 100 80 

Cumulative 

fluence 

(J/cm2) 

58 70 91 110 131 175 210 260 

 

3. Results and discussion  

A set of experimental trials were perform to validate the proposed method for erasing colour 

marks through laser-induced oxygen reduction. Especially, TiO2 fields on Ti substrates 

covering the whole range of colours in Table 1 were reprocessed in argon atmosphere with a 

varying cumulative fluence from 12 to 210 J/cm2.  The laser-induced oxygen reduction 

settings used in conducting these initial trials are given in Table S2. The efficiency of the 

reduction process is directly proportional to the irradiation intensity and inversely 

proportional to the oxygen concentration in the atmosphere [33]. Therefore, any processing of 

colours, TiO2 fields, with cumulative fluence of less than 20 J/cm2 leads to altering the 

colours’ appearance but not to erasing them. At the same time, it was possible to erase all 
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colours with their corresponding TiO2 film thicknesses with any cumulative fluence exceeding 

25 J/cm2 as shown in Table S2. The lowest cumulative fluence, i.e. 25 J/cm2, was selected to 

investigate further the proposed method for erasing TiO2 based colour marks in order to avoid 

any ablation and also to process the surface in the most efficient way.   

   

 

Figure 2 shows the processed fields of colours before and after being erased using an 

accumulated fluence of 25 J/cm2. The roughness of the fields was almost the same before and 

after the erasing operation, in particular Sa of 0.5-0.6 um and 0.6-0.7 um, respectively, while 

 

Fig.2. Eight fields of colours generated on titanium substrate. (a) before erasing, (b) 

after erasing. 
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the Sa of the as-received substrate was 0.6 um. The cracks noticeable on the proceed fields, as 

shown in Figure 2, can be attributed to fast heating/cooling during laser processing. However, 

it is important to stress that they are formed during the colouring operation on the Ti 

substrates [38-40] and just become more pronounced after the erasing after erasing the TiO2 

film.  There was no any traces of colours left on the processed area of the substrate and its 

appearance was similar to that of as-received Ti substrates.  

To quantify colour differences between as-received substrate and the processed eight fields, 

the L*a*b* colour values were measured following the method in [3] and based on BS-ISO 

11664-4-2011 and ASTM-D2244.16851. In particular, three measurements were taken for 

each of the eight processed fields and the average colour difference (ΔEavg) and the maximum 

difference (ΔEmax) were 0.62 and 1.544, respectively. These quantitative assessment proves 

that there are no noticeable colour differences between the as-received substrate and the 

erased eight fields as ΔEmax is less than 2.3, the Just Noticeable Difference (JND) value [41].   

The fields with the highest TiO2 thickness, i.e. blue, light blue, greenish blue and yellowish 

blue, had some almost indistinguishable marks left after erasing them. These marks are 

colourless and they could be explained with the high surface roughness that results after laser-

induced oxidation with high fluence. Also, these almost indistinguishable marks could be 

considered as an evidence that the TiO2 erasing process is the result of deoxidation by oxygen 

reduction rather than ablation as the as-received substrate roughness is not changed. In 

addition, it is important to stress that the pulse’s fluence used was 0.35 J/cm2 and it was much 

less than the ablation threshold of titanium, in particular approximately 1.17 J/cm2 for the 

same laser pulse duration and wavelength [42].  
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The objective of this research was not only to erase TiO2 colour marks but also to develop a 

method that could be used to rewrite them on processed areas.  Therefore, the acronym of the 

University (UOB) was rewritten over the erased area of the coloured field as shown in Figure 

3. Especially, each of the letters in the acronym was produced with a different cumulative 

fluence, in particular 81, 120, and 220 J/cm2, respectively.  

The changes in the surface composition and film thicknesses were analysed employing XPS 

measurements prior to and after laser-induced oxygen reduction. Figure 4 depicts the Ti 2p 

spectra acquired from Field 3 in Fig. 2 (a) before and after erasing the colour, respectively. 

The significant differences in the surface composition are clearly seen in the figure.  

The binding energy of the Ti 2p3/2 component for each specific compound were analysed 

further. Prior to erasing, the spectrum is dominated by the contribution from TiO2 at 459.3 eV 

[43]. A small contribution at 457.0 eV was also detected that could be due to a very small 

amount of Ti2O3 in the near-surface region. No contributions from Ti(II) at 455.5 eV or 

metallic Ti at 454.0 eV were observed within the sampling depth of Field 3. A similar Ti 2p 

spectra was obtained for Fields 2 and 4 before applying the laser-induced oxygen reduction 

 

 Fig.3. The three letters rewritten on the erased area of the colour marked fields  
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(available in the supplementary information for the paper) and again the existence of a thick 

TiO2 layer prior to erasing was detected on both fields.  

After the erasing process (see Figure 4(b)), the Ti 2p spectrum revealed a reduction in the 

intensity of the TiO2 components on all analysed fields along with increased contributions 

from multiple Ti oxidation states, namely TiO2 (459.1 eV, 58.1 %), Ti2O3 (457.7 eV, 11.1 %), 

TiO/TiN (455.6 eV, 10.2 %) and metallic Ti (454.0 eV, 20.6 %). The metallic Ti 2p 

component was fitted using an asymmetric Lorentzian lineshape LA(1.2,5,8) that closely 

corresponds to the lineshape reported by Biesinger at al. [43]. Evidences of lower Ti oxidation 

states and metallic Ti in the spectrum suggests that the thickness of the TiO2 film was reduced 

significantly and it was estimated to be approximately 2 nm after the erasing process 

(calculated using a thickogram [44]). Therefore, the erasing of the colours can be attributed 

fully to this significant reduction of the TiO2 thickness after processing the area in Fig. 2 (b).   
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Further evidences about the TiO2 layer thickness reduction was found in the O 1s spectra 

shown in Figure 5 that was obtained again before and after the erasing process from Field 3 

(see Fig. 2 (a)). The total elemental compositions obtained for Fields 2, 3 and 4 compared 

with that obtained after the processing of Field 3 (referred to as 3prime) are provided in Table 

2. The TiO2 contribution to the total detected O 1s intensity fell from 79 % to 62 % and the 

Ti:O ratio increased from 0.42:1 to 0.53:1, both clearly pointing to a thinning of the TiO2 

layer such that Ti atoms in lower oxidation states are now within the sampling depth in Field 

3. 

 

Fig. 4 Ti 2p XPS spectra obtained (a) before and (b) after the laser-induced oxygen reduction 
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Table 2. Total elemental ratios derived from XPS measurements of Fields 2, 3, 4 and 3prime, 

accurate to +/- 2.0 %, together with the Ti:O ratio for them. 

Sample Ti O Ti:O C K N Zn Ca Na Cl 

2 15.8 39.6 0.4 40.1 0.3 1.6 0.7 0.7 1.2 0.2 

3 18.1 43.5 0.42 35.6 0.2 1.5 0.3 0.4 0.5 0.0 

4 16.6 40.9 0.41 35.3 1.4 1.2 0.3 0.5 2.9 1.0 

3prime 20.3 38.6 0.53 37.5 0.0 3.3 0.1 0.1 0.1 0.0 

 

The O 1s spectra obtained from Fields 2, 3, 4 and 3prime, available in the supplementary 

information for the paper, clearly demonstrate the presence of substantial TiO2 layers on the 

 

Fig. 5 O 1s XPS spectra obtained (a) before and (b) after the erasing process.  
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surfaces of all of three fields prior to the erasing process. The relative intensity of TiO2 in the 

O 1s spectrum is significantly reduced for Field 3prime and thus the field exhibits a 

significant thinning of the TiO2 layer. The associated C 1s and N 1s spectra for Filed 3prime 

are also provided in the supplementary information to the paper and they confirm the presence 

of a small amount of TiN (at 396.6 eV to 397 eV in the N 1s spectra) and the formation of a 

small amount of TiC during the erasing process (282.1 eV in the C 1s spectrum). In addition, 

the downward shift in binding energy of the C-C/C-H component in the C 1s region, from 

285.8 eV in Field 3 to 285.5 eV in Field 3prime, points again towards a thinning of the TiO2 

layer during the erasing process. 

It should be noted that in the Ti 2p region, the contribution from TiN overlaps with TiO at a 

binding energy of 455.5 eV to 456 eV, and also the contribution from TiC in Field 3prime 

was too small to be resolved. Correlating the various XPS spectra and the atomic ratios 

provided in Table 2, there is a noticeable increase in the relative amount of N in Field 3prime. 

This suggests either the formation of TiN in the near surface region during erasing, or some 

small inclusions of TiN below the surface in Field 3 that are revealed during the erasing 

process. Of the three fields before applying the laser-induced oxygen reduction, Field 2 

exhibits the most TiN and sub-oxide species, suggesting that this field has a thinner TiO2 

layer compared to Fields 3 and 4. 
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4. Conclusions 

A method is proposed for selective erasing of oxide-based colour marks by laser-induced 

oxygen reduction. The colour marks can be reprocessed with a low fluence with a nanosecond 

laser in low oxygen environment and thus to diffuse oxygen out into the atmosphere and yield 

a lower form of metal oxides or a pure metal. Eight fields with different TiO2 thicknesses with 

their corresponding colours were selectively processed to erase laser-induced colour marks. 

Any cumulative fluence exceeding 25 J/cm2 was sufficient to erase any laser-induced colours 

on the Ti substrates with only some almost indistinguishable marks left on fields with a higher 

TiO2 thickness. These marks were colourless and were attributed to the high surface 

roughness that results after laser-induced oxidation with high fluence. The XPS analysis 

revealed that all fields were mainly comprised of TiO2 prior to erasing with only small 

contributions from Ti2O3 and TiO/TiN. As a result of the proposed laser-induced oxygen 

reduction, the relative concentration of TiO2 decreased substantially while and the overall 

amount of Ti in the near surface region increased. The results clearly show that the erasing of 

oxide-based colour marks is only due to oxygen diffusion back into the atmosphere and there 

were not any signs of laser ablation.  
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